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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization
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Interactive recommendation

Number of recommendations k to choose from large data.
Similar articles→ similar click-through rates!

Performance depends on query / context.
Similar users→ similar click-through rates!

Need to compile sets of k recommendations(instead of only
one).

Similar sets→ similar click-through rates!
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News recommendation

Which set of articles satisfies most users?
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Relevance vs. Diversity

Users may have different interests /
queries may be ambiguous.

E.g., "jaguar", "squash",· · · .

Want to choose a set that is relevant to
as many users as possible.

Users may choose from the set the
article they’re most interested in.

Want to optimize both relevance and
diversity.
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Simple abstract model

Given a set W of users and a collection V of articles/ads.
Each article i is relevant to a set of users Si.

For now suppose this is known!

For each set A of articles, define

F(A) = | ∪i∈A Si|.

Want to select k articles from V to maximize "users covered"

max
A⊆V,|A|<k

F(A).

Number of sets A grows exponential in k!
Finding optimal A is NP-hard.
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Maximum coverage

Given: Collection V of sets, utility function F(.).

Want: A∗ ⊆ V such that

A∗ = argmax|A|≤kF(A)

NP-hard!
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Set Functions

Ground set X := {x1, x2, ..., xn} is the domain of interest or the
universe of elements.

In sensor network, the ground set might consist of all possible
locations where sensors could be placed.

The solution space V := 2X = {A | A ⊆ X}.

A set function takes as input a set, and outputs a real number.
Inputs are some subsets of ground set X.
F : 2X → R.

It is common in the literature to use either X or V as the ground
set.

We will follow this inconsistency in the literature and will
inconsistently use either X or V as our ground set (hopefully not
in the same equation, if so, please point this out).
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Modular Functions

If F is a modular function, then for any A,B ⊆ X, we have

F(A) + F(B) = F(A ∩ B) + F(A ∪ B).

If F is a modular function, it may be written as

F(A) = F(∅) +
∑
a∈A

(F({a})− F(∅)) .

Modular set functions
Associate a weight wi with each i ∈ X, and set F(S) =

∑
i∈S wi.

Discrete analogue of linear functions.

Other possibly useful properties a set function may have:
Monotone: if A ⊆ B ⊆ X, then F(A) ≤ F(B).
Nonnegative: F(S) ≥ 0 for all S ⊆ X.
Normalized: F(∅) = 0.
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Submodular Functions

Definition 1
A set function F : 2X → R is submodular if and only if

F(A) + F(B) ≥ F(A ∩ B) + F(A ∪ B)

for all A,B ⊆ X.

“Uncrossing” two sets reduces their
total function value.

Definition
A set function F : 2X → R is supmodular if and only if −F is
submodular.
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Submodular Functions

Definition 2 (diminishing returns)
A set function F : 2X → R is submodular if and only if

F(B ∪ {s})− F(B)︸ ︷︷ ︸
Gain of adding an element s to a large set

≤ F(A ∪ {s})− F(A)︸ ︷︷ ︸
Gain of adding an element s to a small set

for all A ⊆ B ⊆ X and s ∈ X \ B.

The marginal value of the added element
exhibits “diminishing marginal returns”.
This means that the incremental “value”,
“gain”, or “cost” of s decreases (diminishes)
as the context in which s is considered
grows from A to B.
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Submodular: Consumer Costs of Living

Consumer costs are very often submodular.
For example:

When seen as diminishing returns:



13/59

Submodular Functions

Definition 3 (group diminishing returns)
A set function F : 2X → R is submodular if and only if

F(B ∪ C)− F(B) ≤ F(A ∪ C)− F(A)

for all A ⊆ B ⊆ X and C ⊆ X\B.

This means that the incremental “value”, “gain”, or “cost” of set C
decreases (diminishes) as the context in which C is considered
grows from A to B.
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Equivalence of Definitions

Definition 2 =⇒ Definition 3
Let C = {c1, . . . , ck}. The Definition 2 implies

F(A ∪ C)− F(A)

= F(A ∪ C)−
k−1∑
i=1

(F(A ∪ {c1, . . . , ci})− F(A ∪ {c1, . . . , ci}))− F(A)

=

k∑
i=1

(F(A ∪ {c1, . . . , ci})− F(A ∪ {c1, . . . , ci−1}))

≥
k∑

i=1

(F(B ∪ {c1, . . . , ci})− F(B ∪ {c1, . . . , ci−1}))

= F(B ∪ C)− F(B)
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Equivalence of Definitions

Definition 1 =⇒ Definition 2
Let A′ = A ∪ {s}, B′ = B, from Definition 1, we have

F(A ∪ {s}) + F(B) = F(A′) + F(B′)

≥ F(A′ ∩ B′) + F(A′ ∪ B′)

= F(A) + F(B ∪ {s})

Definition 2 =⇒ Definition 1
Assume A ̸= B. Define A′ = A ∩ B, C = A\B and B′ = B. Then

F(A′ ∪ C)− F(A′) ≥ F(B′ ∪ C)− F(B′)

⇐⇒ F((A ∩ B) ∪ (A\B)) + F(B) ≥ F(B ∪ (A\B)) + F(A′)

⇐⇒ F(A) + F(B) ≥ F(A ∪ B) + F(A ∩ B)
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Submodularity

Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

They are gaining importance in machine learning as well.

Arbitrary set functions are hopelessly difficult to optimize, while
the minimum of submodular functions can be found in polynomial
time, and the maximum can be constant-factor approximated in
low-order polynomial time.

Submodular functions share properties in common with both
convex and concave functions.
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Example: Set cover

F is submodular: A ⊆ B

F(A ∪ {s})− F(A)︸ ︷︷ ︸
Gain of adding an element s to a small set

≥ F(B ∪ {s})− F(B)︸ ︷︷ ︸
Gain of adding an element s to a large set

Natural example:
Set S1, S2, · · · , Sn

F(A)=size of union of Si

(e.g., number of satisfied users)

F(A) = |∪i∈ASi|
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Closedness properties

F1, · · · ,Fm are submodular functions on V and λ1, · · · , λm ≥ 0.
Then: F(A) =

∑
i λiFi(A) is submodular!

Submodularity closed under nonnegative linear combinations
Extremely useful fact:

Fθ(A) is submodular⇒
∑

θ P(θ)Fθ(A) is submodular!
Multi-objective optimization:
F1, · · · ,Fm are submodular, λi > 0⇒

∑
i λiFi(A) is submodular.
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Probabilistic set cover

Document coverage function:
coverd(c)=probability document d covers concept c, e.g., how
strongly d covers c.
It can model how relevant is concept c for user u.

Set coverage function:

coverA(c) = 1−Πd∈A(1− coverd(c)).

Probability that at least one document in A covers c.

Objective:
max
|A|≤k

F(A) =
∑

c

wc.coverA(c)

wc is the concept weights.

The objective function is submodular.
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The value of a friend

Let X be a group of individuals. How valuable to you is a given
friend x ∈ X ?

It depends on how many friends you have.

Given a group of friends S ⊆ X , can you valuate them with a
function F(S) and how?

Let F(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Information and Summarization

Let X be a set of information containing elements
X might say be either words, sentences, documents, web pages,
or blogs.

Each x ∈ X is one element, so x might be a word, a sentence, a
document, etc.

The total amount of information in X is measure by a function
F(X); subset S ⊆ X measures the amount of information in S,
given by F(S).

How informative is any given item x in different sized contexts?
Any such real-world information function would exhibit
diminishing returns, i.e., the value of x decreases when it is
considered in a larger context.

So a submodular function would likely be a good model.
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Restriction

Restriction
If F(S) is submodular on V and W ⊆ V. Then F′(S) = F(S ∩W) is
submodular.

Proof: Given A ⊆ B ⊆ V\{i}, prove:

F((A ∪ {i}) ∩W)− F(A ∩W) ≥ F((B ∪ {i}) ∩W)− F(B ∩W).

If i /∈ W, then both differences on each size are zero.
Suppose that i ∈ W, then (A ∪ {i}) ∩W = (A ∩W) ∪ {i} and
(B ∪ {i}) ∩W = (B ∩W) ∪ {i}. We have A ∩W ⊆ B ∩W, the
submodularity of F yields

F((A ∩W) ∪ {i})− F(A ∩W) ≥ F((B ∩W) ∪ {i})− F(B ∩W).
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Conditioning

Conditioning
If F(S) is submodular on V and W ⊆ V. Then F′(S) = F(S ∪W) is
submodular



24/59

Reflection

Reflection
If F(S) is submodular on V. Then F′(S) = F(V \ S) is submodular.

Proof: Since V\(A ∪ B) = (V\A) ∩ (V\B) and
V\(A ∩ B) = (V\A) ∪ (V\B), then

F(V\A) + F(V\B) ≥ F(V\(A ∪ B)) + F(V\(A ∩ B)))
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Contraction

Let F : 2X → R and A ⊆ X. Define FA(S) = F(A ∪ S)− F(A).
Lemma: If F is monotone and submodular, then FA is monotone,
submodular, and normalized for any A.

Proof: Monotone:
Let S ⊆ T, then FA(S) = F(A∪ S)−F(A) ≤ F(A∪T)−F(A) = FA(T)

Submodular. Let S,T ⊆ X:

FA(S) + FA(T) = F(S ∪ A)− F(A) + F(T ∪ A)− F(A)

≥ F(S ∪ T ∪ A)− F(A) + F((S ∩ T) ∪ A)− F(A)

= FA(S ∪ T) + FA(S ∩ T)
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Lemma
If F is normalized and submodular, and A ⊆ X, then there is j ∈ A
such that F({j}) ≥ 1

|A|F(A)

Proof. If A1 and A2 partition A, i.e., A = A1 ∪ A2 and A1 ∩ A2 = ∅,
then

F(A1) + F(A2) ≥ F(A1 ∪ A2) + F(A1 ∩ A2) = F(A)

Applying recursively, we get∑
j∈A

F({j}) ≥ F(A)

Therefore, maxj∈A F({j}) ≥ 1
|A|F(A)
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Convex aspects

Submodularity as discrete analogue of convexity

Convex extension

Duality

Polynomial time minimization!

A∗ = argmin
A⊆V

F(A)

Many applications (computer vision,ML, · · · )
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Concave aspects

Marginal gain △F(s|A) = F({s} ∪ A)− F(A)
Submodular:

∀A ⊆ B, s ̸∈ B : F(A ∪ {s})− F(A) ≥ F(B ∪ {s})− F(B)

Concave:

∀a ≤ b, s > 0 g(a + s)− g(a) ≥ g(b + s)− g(b)
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∀a ≤ b, s > 0 g(a + s)− g(a) ≥ g(b + s)− g(b)

Suppose that a + s ∈ [a, b]

Apply the concavity of g(x) to [a, a + s, b + s]:

g(a + s) ≥ b− a
b + s− a

g(a) +
s

b + s− a
g(b + s)

⇐⇒ g(a + s)− g(a) ≥ −s
b + s− a

g(a) +
s

b + s− a
g(b + s)

Apply the concavity of g(x) to [a + s, b, b + s]:

g(b) ≥ s
b + s− a

g(a) +
b− a

b + s− a
g(b + s)

⇐⇒ g(b + s)− g(b) ≤ −s
b + s− a

g(a) +
s

b + s− a
g(b + s)
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Submodularity and Concavity

Let m ∈ RX
+ be a modular function, and g a concave function over R.

Define F(A) = g(m(A)). Then F(A) is submodular.

Proof: Given A ⊆ B ⊆ X\v, we have 0 ≤ a = m(A) ≤ b = m(B), and
0 ≤ s = m(v). For g concave, we have
g(a + s)− g(a) ≥ g(b + s)− g(b), which implies

g(m(A) + m(v))− g(m(A)) ≥ g(m(B) + m(v))− g(m(B))
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Maximum of submodular functions

Suppose F1(A) and F2(A) submodular.
Is F(A) = max(F1(A),F2(A)) submodular?

max(F1,F2) not submodular in general!



32/59

Minimum of submodular functions

Well,maybe F(A) = min(F1(A),F2(A)) instead?

min(F1,F2) not submodular in general!
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Max - normalized

Given V, let c ∈ RV
+ be a given fixed vector. Then F : 2V → R+, where

F(A) = max
j∈A

cj

is submodular and normalized (we take F(∅) = 0).
Proof: Since

max(max
j∈A

cj,max
j∈B

cj) = max
j∈A∪B

cj

and
min(max

j∈A
cj,max

j∈B
cj) ≥ max

j∈A∩B
cj,

we have
max
j∈A

cj +max
j∈B

cj ≥ max
j∈A∪B

cj + max
j∈A∩B

cj



34/59

Monotone difference of two functions

Let F and G both be submodular functions on subsets of V and let
(F −G)(·) be either monotone increasing. Then h : 2V → R defined by
h(A) = min(F(A),G(A)) is submodular.

If h(A) agrees with either f or g on both X and Y , the result
follows since

F(X) + F(Y)
G(X) + G(Y)

≥ min(F(X ∪Y),G(X ∪Y))+min(F(X ∩Y),G(X ∩Y))

otherwise, w.l.o.g., h(X) = F(X) and h(Y) = G(Y), giving

h(X) + h(Y) = F(X) + G(Y) ≥ F(X ∪ Y) + F(X ∩ Y) + G(Y)− F(Y)

Assume F − G is monotonic increasing. Hence,
F(X ∪ Y) + G(Y)− F(Y) ≥ G(X ∪ Y) giving

h(X) + h(Y) ≥ G(X ∪ Y) + F(X ∩ Y) ≥ h(X ∪ Y) + h(X ∩ Y)
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Min

Let F : 2V → R be an increasing or decreasing submodular
function and let k be a constant. Then the function h : 2V → R
defined by

h(A) = min(k;F(A))

is submodular

In general, the minimum of two submodular functions is not
submodular. However, when wishing to maximize two monotone
non-decreasing submodular functions, we can define function
h : 2V → R as

h(A) =
1
2
(min(k,F) + min(k,G))

then h is submodular, and h(A) ≥ k if and only if both F(A) ≥ k
and G(A) ≥ k
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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization



37/59

Submodular maximization with Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
F : 2X → R+ on a finite ground set X with |X| = n, and an integer
k ≤ n:

max F(A), s.t. |A| ≤ k

Greedy Algorithm
▶ A0 ← ∅, set i = 0

▶ While |Ai| ≤ k
Choose s ∈ X maximizing F(Ai ∪ {s})
Ai+1 ← Ai ∪ {s}
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]
For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) ≥ (1− 1/e)︸ ︷︷ ︸
∼63%

F(A∗)

Greedy algorithm gives near-optimal solution!
For many submodular objectives: Guarantees best possible
unless P=NP
Can also handle more complex constraints.
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]
For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) ≥ (1− 1/e)F(A∗)

Proof: Let Ai be the working set in the algorithm
Let A∗ be optimal solution.
We will show that the suboptimality F(A∗)− F(A) shrinks by a
factor of (1− 1/k) each iteration
After k iterations, it has shrunk to (1− 1/k)k ≤ 1/e from its
original value
The algorithm choose s ∈ X maximizing F(Ai ∪ {s}). Hence:

F(Ai+1) = F(Ai) + F(Ai ∪ {s})− F(Ai) = F(Ai) + max
j

FAi({j})
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By our lemmas, there is j ∈ A∗ s.t.

FAi({j}) ≥
1
|A∗|

FAi(A
∗) (apply lemma to FAi)

=
1
k
(F(Ai ∪ A∗)− F(Ai))

≥ 1
k
(F(A∗)− F(Ai))

Therefore

F(A∗)− F(Ai+1) = F(A∗)− F(Ai)−max
j

FAi({j})

≤
(

1− 1
k

)
(F(A∗)− F(Ai))

≤
(

1− 1
k

)k

(F(A∗)− F(∅))
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Scaling up the greedy algorithm [Minoux’78]

In round i+1,
have picked Ai = s1, · · · , si

pick si+1 = argmaxs F(Ai ∪ {s})− F(Ai).
Update the gain of other elements affected by the addition of si+1.

The core of the algorithm is maximize "marginal benefit" △(s|Ai)

△(s|Ai) = F(Ai ∪ {s})− F(Ai)

Key observation: Submodularity implies

Marginal benefits can never increase!
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"Lazy" greedy algorithm [Minoux’78]

Lazy greedy algorithm:
First iteration as usual
Keep an ordered list of marginal
benefits △i from previous iteration
Re-evaluate △i only for top
element
If △i stays on top, use it,
otherwise re-sort

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec,Krause et al.’07]
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Empirical improvements [Leskovec, Krause et al’06]
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Stochastic-greedy algorithm [[Mirzasoleimanet al’14]

In round i+1,
have picked Ai = s1, · · · , si.
R is a random subset obtained by sampling s random elements
from X \ A.
pick si+1 = argmaxs∈R F(Ai ∪ {s})− F(Ai).

The algorithm at each step selects a random subset R of size
s = n

k log
1
ϵ , choosing the element from R that provides the maximum

marginal gain to the current solution A.
It achieves a (1− 1

e − ϵ) approximation guarantee with O(n log 1
ϵ )

function evaluations, where ϵ is an acceptable error bound for the
algorithm.
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Outline

1 What is submodularity?

2 Submodular maximization

3 Submodular minimization
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Optimizing Submodular Functions

As our examples suggest, optimization problems involving
submodular functions are very common

These can be classified on two axes: constrained/unconstrained
and maximization/minimization

Maximization Minimization
Unconstrained NP-hard

1
2 approximation Polynomial time

via convex opt
Constrained Usually NP-hard

1 − 1/e (mono, matroid)
O(1) (“nice” constriants)

Usually NP-hard to apx.
Few easy special cases

Representation
In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating F(S).
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Problem Definition
Given a submodular function f : 2X → R on a finite ground set X,

min F(S)

s.t. S ⊆ X

We denote n = |X|

We assume F(S) is a rational number with at most b bits

Representation: in order to generalize all our examples,
algorithmic results are often posed in the value oracle model.
Namely, we only assume we have access to a subroutine
evaluating F(S) in constant time.

Goal
An algorithm which runs in time polynomial in n and b.
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Some more notations

E = {1, 2, . . . , n}

RE = {x = (xj ∈ R : j ∈ E)}

RE
+ = {x = (xj ∈ R : j ∈ E) : x ≥ 0}

Any vector x ∈ RE can be treated as a normalized modular
function, and vice verse. That is

x(A) =
∑
a∈A

xa.

Note that x is said to be normalized since x(∅) = 0.

Given A ⊆ E, define the vector 1A ∈ RE
+ to be

1A(j) =

{
1 if j ∈ A
0 if j /∈ A

given modular function x ∈ RE, we can write x(A) in a variety of
ways, i.e., x(A) = x · 1A =

∑
i∈A xi
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Continuous Extensions of a Set Function

A set function F on X = {1, . . . , n} can be thought of as a map
from the vertices {0, 1}n of the n-dimensional hypercube to the
real numbers.

Extension of a Set Function
Given a set function F : {0, 1}n → R, an extension of F to the
hypercube [0, 1]n is a function g : [0, 1]n → R satisfying g(x) = F(x) for
every x ∈ {0, 1}n.

min
w∈{0,1}n

F(w)

with ∀A ⊆ X, F(1A) = F(A)
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Choquet integral - Lovász extension

Subsets may be identified with elements of {0, 1}n

Given any set-function F and w such that wj1 ≥ . . . ≥ wjn , define

f (w) =

n∑
k=1

wjk [F({j1, . . . , jk})− F({j1, . . . , jk−1})

=

n−1∑
k=1

(wjk − wjk+1)F({j1, . . . , jk}) + wjnF({j1, . . . , jn})

If w = 1A, f (w) = F(A) =⇒ extension from {0, 1}n to Rn
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Choquet integral - Lovász extension, example: p = 2

If w1 ≥ w2, f (w) = F({1})w1 + [F({1, 2})− F({1})]w2

If w1 ≤ w2, f (w) = F({2})w2 + [F({1, 2})− F({2})]w1

level set {w ∈ R2, f (w) = 1} is displayed in blue

Compact formulation: f (w) =
[F({1, 2})− F({1})− F({2})]min(w1,w2) + F({1})w1 + F({2})w2
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Links with convexity

Theorem (Lovász, 1982)
F is submodular if and only if f is convex

Proof requires: Submodular and base polyhedra

Submodular polyhedron: P(F) = {s ∈ Rn, ∀A ⊆ V, s(A) ≤ F(A)}

Base polyhedron: B(F) = P(F) ∩ {s(V) = F(V)}
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Submodular and base polyhedra

P(F) has non-empty interior
Many facets (up to 2n), many extreme points (up to n!)

Fundamental property (Edmonds, 1970): If F is submodular,
maximizing linear functions may be done by a “greedy algorithm”

Let w ∈ Rn
+ such that wj1 ≥ . . . ≥ wjn

Let sjk = F({j1, . . . , jk})− F({j1, . . . , jk−1}) for k ∈ {1, . . . , n}

Then
f (w) = max

s∈P(F)
w⊤s = max

s∈B(F)
w⊤s

Both problems attained at s defined as above.

proofs: pages 41-44 in http://bicmr.pku.edu.cn/
~wenzw/bigdata/submodular_fbach_mlss2012.pdf

http://bicmr.pku.edu.cn/~wenzw/bigdata/submodular_fbach_mlss2012.pdf
http://bicmr.pku.edu.cn/~wenzw/bigdata/submodular_fbach_mlss2012.pdf
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Links with convexity

Theorem (Lovász, 1982)
F is submodular if and only if f is convex

If F is submodular, f is the maximum of linear functions. Then f is
convex

If f is convex, let A,B ⊆ V
1A∪B + 1A∩B = 1A + 1B has components equal to 0 (on V\(A ∪ B)),
2 (on A ∩ B) and 1 (on A∆B = (A\B) ∪ (B\A))

Thus f (1A∪B + 1A∩B) = F(A ∪ B) + F(A ∩ B). Proof by writing out
f (1A∪B + 1A∩B) and the definition of f (w).

By homogeneity and convexity, f (1A + 1B) ≤ f (1A) + f (1B), which is
equal to F(A) + F(B), and thus F is submodular.
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Links with convexity

Theorem (Lovász, 1982)
If F is submodular, then

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) = min
w∈[0,1]n

f (w)

Since f is an extension of F,

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) ≥ min
w∈[0,1]n

f (w)

Any w ∈ [0, 1]n can be decomposed as w =
∑m

i=1 λi1Bi , where
B1 ⊆ . . . ⊆ Bm = V, where λ ≥ 0 and λ(V) ≤ 1:

Since minA⊆V F(A) ≤ 0 (F(∅) = 0),

f (w) =
m∑

i=1

λiF(Bi) ≥
m∑

i=1

λi min
A⊆V

F(A) ≥ min
A⊆V

F(A)

Thus minw∈[0,1]n f (w) ≥ minA⊆V F(A).
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Links with convexity

Any w ∈ [0, 1]n, sort wj1 ≥ . . . ≥ wjn . Find λ such that

n∑
k=1

λjk = wj1 ,

n∑
k=2

λjk = wj2 , . . . , λjn = wjn ,

B1 = {j1},B2 = {j1, j2}, . . . ,Bn = {j1, j2, . . . , jn}

Then we have w =
∑n

i=1 λi1Bi , where B1 ⊆ . . . ⊆ Bn = V, where
λ ≥ 0 and λ(V) =

∑
i∈V λi ≤ 1.
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Submodular function minimization

Let F : 2V → R be a submodular function (such that F(∅) = 0)

convex duality:

min
A⊆V

F(A) = min
w∈[0,1]n

f (w)

= min
w∈[0,1]n

max
s∈B(F)

w⊤s

= max
s∈B(F)

min
w∈[0,1]n

w⊤s = max
s∈B(F)

s−(V)
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Submodular function minimization

Convex optimization
If F is submodular, then

min
A⊆V

F(A) = min
w∈{0,1}n

f (w) = min
w∈[0,1]n

f (w)

Using projected subgradient descent to minimize f on [0, 1]n

Iteration: wt = Π[0,1]n(wt−1 − C√
t st), where st ∈ ∂f (wt−1)

f (w) = maxs∈B(F) w⊤s

Standard convergence results from convex optimization

f (wt)− min
w∈[0,1]n

f (w) ≤ C√
t
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Summary

Many problems of recommending sets can be cast as
submodular maximization
Greedy algorithm gives best set of size k
Can use lazy evaluations to speed up
Approximate submodular maximization possible under a variety
of constraints:

Matroid
Knapsack
Multiple matroid and knapsack constraints
Path constraints (Submodular orienteering)
Connectedness (Submodular Steiner)
Robustness (minimax)
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