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Outline

0 What is submodularity?
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Interactive recommendation

@ Number of recommendations k to choose from large data.
@ Similar articles — similar click-through rates!

@ Performance depends on query / context.
e Similar users — similar click-through rates!

@ Need to compile sets of k recommendations(instead of only
one).
e Similar sets— similar click-through rates!
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News recommendation
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National Guard Called Out in Baltimore as Police and Youths
Clash After ...
BALTIMORE - Rioters in northwest Baltimore looted stores and pelted riot-gear-clad police with

rocks on Monday, hours after Freddie Gray, the 25-year-old black man who has become the
nation's latest symbol of police brutalty, was laid to rest amid ..

Latest on police-custody death: Governor declares emergency Related
Maryland governor declares state of emergency in Balimore amid rioting Bakinciss
Death »

Trending on Google+: Baltimore protests turn violent; police officers attacked
In Depth: Maryland Gov. activates National Guard as Baltimore protests rage

Wikipedia: Death of Freddie Gray
KATHMANDU, April 27 (Xinhua) - Smoke from burning pyres for bodies rose high and spread wide. The

Sorrow prevails Nepal capital after deadly quake
Nepalese, who are a quiet people, restrained from crying out loud.

In US-Japan talks, China is the elephant in the room

Japanese Foreign Minister Fumio Kishida, left, and Defense Mi katan, second from left attend a
meeting with U.S. Secretary of State John Kerry, third from right, and Secretary of Defense Ashton Carter, not
visible, in New York, Monday, April 27, .

Nepal earthquake: RAF plane leaves for Nepal with UK aid

A An RAF plane carrying UK aid supphes and aleam of British Army Gurkha engineers is on its way to Nepal.
Dozens of British and devastating earthquake.
Apple Earnings Surge 33% on iPhone Sales
Apple Inc. AAPL 1.82 % is pulling of a feat rarely seen in any industry, much less the cutthroat world of
=
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Relevance vs. Diversity

@ Users may have different interests /
queries may be ambiguous.

e E.g., "jaguar", "squash”,---.

@ Want to choose a set that is relevant to
as many users as possible.

e Users may choose from the set the
article they’re most interested in.

@ Want to optimize both relevance and
diversity.

EES

LR
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Simple abstract model

@ Given a set W of users and a collection V of articles/ads.
@ Each article i is relevant to a set of users ;.
e For now suppose this is known!

@ For each set A of articles, define
F(A) = | Uiea Si|-
@ Want to select k articles from V to maximize "users covered"

max F(A).
ACV JA|<k

@ Number of sets A grows exponential in k!
@ Finding optimal A is NP-hard.
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Maximum coverage

@ Given: Collection V of sets, utility function F(.).

Want: A* C V such that
A* = argmax| 4 <, F(A)

NP-hard!
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Set Functions

@ Ground set X := {x,x2, ..., x,} is the domain of interest or the
universe of elements.

e In sensor network, the ground set might consist of all possible
locations where sensors could be placed.
@ The solution space V :=2¥ = {A | A C X}.

@ A set function takes as input a set, and outputs a real number.

e Inputs are some subsets of ground set X.
e F:2X 5 R.

@ Itis common in the literature to use either X or V as the ground
set.

@ We will follow this inconsistency in the literature and will
inconsistently use either X or V as our ground set (hopefully not
in the same equation, if so, please point this out).
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Modular Functions

@ If Fis a modular function, then for any A, B C X, we have
F(A)+ F(B) = F(ANB) + F(AUB).

@ If Fis a modular function, it may be written as

)+ (F({a}) — F(0)).

acA

@ Modular set functions

e Associate a weight w; with each i € X, and set F(S) = >, ¢ wi.

e Discrete analogue of linear functions.

@ Other possibly useful properties a set function may have:
e Monotone: if A C B C X, then F(A) < F(B).
e Nonnegative: F(S) > 0 for all S C X.
e Normalized: F(0) = 0.
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Submodular Functions

Definition 1

A set function F : 2X — R is submodular if and only if
F(A)+ F(B) > F(ANB) + F(AUB)

forallA,B C X.

@ “Uncrossing” two sets reduces their

total function value. ‘

(>

Definition

A set function F : 2X — R is supmodular if and only if —F is
submodular.
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Submodular Functions

Definition 2 (diminishing returns)
A set function F : 2 — R is submodular if and only if

F(BU{s})—F(BZ < F(AU{s}) — F(A)

Gain of adding an element s to a large set Gain of adding an element s to a small set

foralACBC XandseX\B.

@ The marginal value of the added element

exhibits “diminishing marginal returns”. B
@ This means that the incremental “value”,

“gain”, or “cost” of s decreases (diminishes)

as the context in which s is considered

grows from A to B.

o
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Submodular: Consumer Costs of Living

@ Consumer costs are very often submodular.
e For example:

i) +()> i) + ()

e When seen as diminishing returns:

) -f(H) > (g )1l hg)
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Submodular Functions

Definition 3 (group diminishing returns)

A set function F : 2X — R is submodular if and only if
F(BUC)—F(B)<FAUC)—F(A)

forallAC BC X and C C X\B.

@ This means that the incremental “value”, “gain”, or “cost” of set C
decreases (diminishes) as the context in which C is considered
grows from A to B.
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Equivalence of Definitions

Definition 2 — Definition 3

Let C = {cy,..., cx}- The Definition 2 implies
FAUC) - ( )
= FAUC)— Z (AU{ct,...,¢i}) —F(AU{ct,...,¢})) — F(A)
i=1

k
— Z(F(AU {er, .. a}) = F(AU{c, ... cim1}))
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Equivalence of Definitions

Definition 1 — Definition 2
Let A’ = AU {s}, B' = B, from Definition 1, we have

F(AU{s}) + F(B) F(A") + F(B')
> FA'NB)+FA' UB)

F(A)+ F(BU {s})

Definition 2 — Definition 1
Assume A # B. Define A’ =ANB, C =A\Band B’ = B. Then

F(A'UC)—F(A") > F(BUC)—F(B)
= F((ANB)U(A\B)) + F(B) > F(BU (A\B)) + F(4)
< F(A)+F(B)>F(AUB)+ F(ANB)
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Submodularity

@ Submodular functions have a long history in economics, game
theory, combinatorial optimization, electrical networks, and
operations research.

@ They are gaining importance in machine learning as well.

@ Arbitrary set functions are hopelessly difficult to optimize, while
the minimum of submodular functions can be found in polynomial
time, and the maximum can be constant-factor approximated in
low-order polynomial time.

@ Submodular functions share properties in common with both
convex and concave functions.
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Example: Set cover

@ Fis submodular:A C B
F(AU{s}) — F(A) > F(BU{s}) — F(B)

Gain of adding an element s to a small set Gain of adding an element s to a large set

A

@ Natural example:
° SetSl;SZa"' 7Sn
e F(A)=size of union of §;
(e.g., number of satisfied users) B

F(A) = |UieaSi] Ky
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Closedness properties

@ Fy,---,F, are submodular functionson Vand Ay, --- , A\, > 0.
@ Then: F(A) = >, \iFi(A) is submodular!

@ Submodularity closed under nonnegative linear combinations
@ Extremely useful fact:

® Fy(A) is submodular = 3", P(0)Fy(A) is submodular!
e Multi-objective optimization:
Fi,--- ,F, are submodular, \; > 0 = >, \;F;(A) is submodular.
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Probabilistic set cover

@ Document coverage function:
cover,(c)=probability document d covers concept ¢, e.g., how
strongly d covers c.
It can model how relevant is concept ¢ for user u.

@ Set coverage function:
covery(c) = 1 — Ilzea(1 — covery(c)).
Probability that at least one document in A covers c.
@ Objective:
max F(A) = gwc.coverA(c)
w,. is the concept weights.

@ The objective function is submodular.
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The value of a friend

@ Let X be a group of individuals. How valuable to you is a given
friendx e X ?

@ It depends on how many friends you have.

@ Given a group of friends § C X , can you valuate them with a
function F(S) and how?

@ Let F(S) be the value of the set of friends S. Is submodular or
supermodular a good model?
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Information and Summarization

@ Let X be a set of information containing elements

e X might say be either words, sentences, documents, web pages,
or blogs.

e Each x € X is one element, so x might be a word, a sentence, a
document, etc.

e The total amount of information in X is measure by a function
F(X); subset S C X measures the amount of information in S,
given by F(S).

@ How informative is any given item x in different sized contexts?
Any such real-world information function would exhibit
diminishing returns, i.e., the value of x decreases when it is
considered in a larger context.

@ So a submodular function would likely be a good model.
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Restriction

Restriction

If F(S) is submodularon V.and W C V. Then F'(S) = F(SN W) is
submodular.

Proof: Given A C B C V\{i}, prove:
F(AU{i})NW)—FANW)>F(BU{i})nW)—-FBNW).

If i ¢ W, then both differences on each size are zero.
Suppose thati € W, then (AU {i}) N W = (AN W)U {i} and
BU{ih)NnwW=BNW)U{i}. Wehave ANW C BNW, the
submodularity of F yields

F(ANW)U{i}) — FANW) > F(BNW) U {i}) — F(BNW).
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Conditioning

Conditioning

If F(S) is submodularon V.and W C V. Then F/(S) = F(SUW) is
submodular
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Reflection

Reflection
If F(S) is submodular on V. Then F'(S) = F(V \ S) is submodular.

Proof: Since V\(AUB) = (V\A) N (V\B) and
VA(ANB) = (V\A) U (V\B), then

F(V\A) + F(V\B) > F(V\(AUB)) + F(V\(ANB)))
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Contraction

Let F: 2X — R and A C X. Define F4(S) = F(AUS) — F(A).
Lemma: If F is monotone and submodular, then F,4 is monotone,
submodular, and normalized for any A.

@ Proof: Monotone:
o LetS C T,then Fa(S) = F(AUS) —F(A) < F(AUT) — F(A) = Fa(T)

@ Submodular. Let S, T C X:

Fo(S)+ Fa(T) = F(SUA)—F(A)+ F(TUA) —F(A)
> F(SUTUA)—F(A)+F((SNT)UA) — F(A)
= FA(SUT)+FaA(SNT)
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If Fis normalized and submodular, and A C X, then thereisj € A
such that F({j}) > ‘A‘ F(A)

@ Proof. If A; and A, partition A, i.e., A=A UA,and A NA; =0,
then

F(A1)+ F(Ay) > F(A1 UA2) + F(A1 NAy) = F(A)

@ Applying recursively, we get

Y F({j}) = F(4)

jeA

@ Therefore, maxjes F({j}) > 1jF(A)
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Convex aspects

@ Submodularity as discrete analogue of convexity

@ Convex extension

7/
7
770
757 ////////

o Duality 7
7274
77
774
7/

@ Polynomial time minimization!

A* = in F(A
arg 2in F(4)

@ Many applications (computer vision,ML, - - -)
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Concave aspects

@ Marginal gain  Ap(s|A) = F({s} UA) — F(A)
@ Submodular:

VACB,s¢B: F(AU{s}) — F(A) > F(BU {s}) — F(B)

@ Concave:

VYa<b,s>0 gla+s)—gla) >gb+s)—g(b)

F(A) “intuitively”

v

Al
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Ya<b,s >0

gla+s) —gla) > g(b+s) —g(b)

@ Suppose that a + s € [a, D]

@ Apply the concavity of g(x) to [a,a + s,b + s]:

gla+s)

> gla+s)—gla)

>

4ﬁjﬁf(@+“4j47
b+s—ag b+s—a
—S A

b+sfag(a)+b+sfa

g(b+s)

g(b+ys)

@ Apply the concavity of g(x) to [a + s, b, b + s]:

IA

K b—a
b+s—a
—s s
b+s—a
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Submodularity and Concavity

Let m € RX be a modular function, and g a concave function over R.
Define F(A) = g(m(A)). Then F(A) is submodular. J

Proof: Given A C B C X\v, we have 0 < a =m(A) < b =m(B), and
0 < s=m(v). For g concave, we have
gla+s)—g(a) > g(b+s) — g(b), which implies

g(m(A) +m(v)) — g(m(A)) = g(m(B) + m(v)) — g(m(B))

g(lAD

v

[Al
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Maximum of submodular functions

Suppose F;(A) and F»(A) submodular.
Is F(A) = max(F(A), F2(A)) submodular?

N

F(A) = max(F,(A),Fx(A))

|
L4

Al

max(F, F») not submodular in general!
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Minimum of submodular functions

Well,maybe F(A) = min(F(A), F»(A)) instead?

Fi(A) [F,(A) et o
O 0 0 ( })<— (h=
{a} 1 0 B
{b} |o 1 F({a,b}) - F({a})=1
{a,b} |1 1

min(Fy, F») not submodular in general!
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Max - normalized

Given V, letc ¢ R_‘ﬁ be a given fixed vector. Then F : 2V — R, where

F(A) = :
(4) = maxc;

is submodular and normalized (we take F((})) = 0).

Proof: Since
max(max ¢j, max ¢j) = max ¢j
jeA jeB JEAUB
and
min(max ¢j, maxcj) > max ¢j,
jeA jeB JEANB
we have

max ¢j + max¢; 2> max ¢ + max ¢j
jEA JjEB JjEAUB JjEANB
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Monotone difference of two functions

Let F and G both be submodular functions on subsets of V and let
(F — G)(-) be either monotone increasing. Then h : 2" — R defined by
h(A) = min(F(A), G(A)) is submodular.

@ If h(A) agrees with either f or g on both X and Y , the result
follows since

ggg N f;((?) > min(F(XUY), G(XUY)) + min(F(X N Y), GX A Y))
@ otherwise, w.l.o.g., h(X) = F(X) and h(Y) = G(Y), giving
h(X) +h(Y)=F(X)+G(Y) > F(XUY)+F(XNY)+G(Y) - F(Y)

Assume F — G is monotonic increasing. Hence,
F(XUY)+G(Y)—F(Y)>G(XUY) giving

h(X) +h(Y) > GXUY)+F(XNY)>h(XUY)+h(XNY)
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Min

@ Let F: 2V — R be an increasing or decreasing submodular
function and let k be a constant. Then the function #: 2V — R
defined by

h(A) = min(k; F(A))

is submodular

@ In general, the minimum of two submodular functions is not
submodular. However, when wishing to maximize two monotone
non-decreasing submodular functions, we can define function
h:2V - Ras

h(A) = %(min(k, F) + min(k, G))

then 4 is submodular, and i(A) > k if and only if both F(A) > k
and G(A) > k
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Outline

e Submodular maximization
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Submodular maximization with Cardinality Constraint

Problem Definition
Given a non-decreasing and normalized submodular function
F :2¥ — R on a finite ground set X with |X| = n, and an integer

k < n:
max F(A), s.t. |A| <k

o

Greedy Algorithm

> Ag <+ 0, seti=0

» While |4;] <k
e Choose s € X maximizing F(A; U {s})
@ A +— AU {S}

¢
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]

For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreedy) > (1 - 1/6) F(A*)
63%

@ Greedy algorithm gives near-optimal solution!

@ For many submodular objectives: Guarantees best possible
unless P=NP

@ Can also handle more complex constraints.
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Greedy maximization is near-optimal

Theorem[Nemhauser, Fisher& Wolsey’78]

For monotonic submodular functions, Greedy algorithm gives
constant factor approximation

F(Agreeay) = (1 —1/€)F(A")

@ Proof: Let A; be the working set in the algorithm
@ Let A* be optimal solution.

@ We will show that the suboptimality F(A*) — F(A) shrinks by a
factor of (1 — 1/k) each iteration

@ After k iterations, it has shrunk to (1 — 1/k)* < 1/e from its
original value

@ The algorithm choose s € X maximizing F(A; U {s}). Hence:
F(Ain1) = F(4) + F(A;i U {s}) — F(Ai) = F(A;) + max Fy, ({/})
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@ By our lemmas, there is j € A* s.t.

1
Fu(l}) = [Fa(A") (2pply lemma to £y )

= LFAUAY) — F(A)

> L (FAT) — F(A)

@ Therefore
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Scaling up the greedy algorithm [Minoux’78]

In round i+1,
@ have plcked A =51, ,5
@ pick s;41 = argmax, F(A; U {s}) — F(A;).

@ Update the gain of other elements affected by the addition of s, ;.

The core of the algorithm is maximize "marginal benefit" A(s|A;)

A(s|A;) = F(A; U {s}) — F(A))

Key observation: Submodularity implies

A(s [ A) 2 A(s | Aig)

[l |

Marginal benefits can never increase!
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"Lazy" greedy algorithm [Minoux’78]

Lazy greedy algorithm: Benefit A(s | A)
@ First iteration as usual a -
@ Keep an ordered list of marginal
benefits /A\; from previous iteration b .
@ Re-evaluate A; only for top o
element
@ If A\; stays on top, use it, d
otherwise re-sort c

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec,Krause et al.’07]
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Empirical improvements [Leskovec, Krause et al’06]

. 400
a') o 300 ) /-" PN )
=] 5 Exhaustive search e (3] B3] < Exhaustive search
8 c " (All subsets) g § 300 (All subsets)
n £ 200 Naive ' <als i
— (] o 7] K} Naive
| E greedy > "Z| E 200 greedy
| = el Ul w
2| 2100 e 3| £
= Lazy greed c
3| ¢ e yareed 39 émo Lazy greedy
v & W
0 &= \
1 2 3 456 7 8 910 1 2 3 4 5 6 7 8 9 I
Number of sensors selected Number of blogs selected
3““ c
Sensor placement ﬂ.:;g% 1 Blog selection ===
&
30x speedup 700x speedup
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Stochastic-greedy algorithm [[Mirzasoleimanet al’14]

In round i+1,
@ have picked A; = 51, - , ;.
@ Ris a random subset obtained by sampling s random elements
from X \ A.

(] pICk Si+1 = arg maxXscp F(Al U {S}) — F(Al)

The algorithm at each step selects a random subset R of size

s = 7log % choosing the element from R that provides the maximum
marginal gain to the current solution A.

It achieves a (1 — 1 — ¢) approximation guarantee with O(nlog 1)
function evaluations, where ¢ is an acceptable error bound for the
algorithm.
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Outline

e Submodular minimization
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Optimizing Submodular Functions

@ As our examples suggest, optimization problems involving
submodular functions are very common

@ These can be classified on two axes: constrained/unconstrained
and maximization/minimization
Maximization Minimization

Unconstrained | NP-hard
1 approximation

Polynomial time

via convex opt
Constrained Usually NP-hard Usually NP-hard to apx.
1 — 1/e (mono, matroid) Few easy special cases
O(1) (“nice” constriants)

Representation

In order to generalize all our examples, algorithmic results are often
posed in the value oracle model. Namely, we only assume we have
access to a subroutine evaluating F(S).
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Problem Definition
Given a submodular function f : 2X — R on a finite ground set X,

min F(S)
st. SCX

@ We denote n = |X]|
@ We assume F(S) is a rational number with at most b bits

@ Representation: in order to generalize all our examples,
algorithmic results are often posed in the value oracle model.
Namely, we only assume we have access to a subroutine
evaluating F(S) in constant time.

An algorithm which runs in time polynomial in n and b.
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Some more notations

e E={1,2,...,n}
o RE={x=(x;eR:jEE)}
o R ={x=(xeR:jEE): x>0}

@ Any vector x € R¥ can be treated as a normalized modular
function, and vice verse. That is

x(A) = Zxa.
acA
Note that x is said to be normalized since x(0) = 0.
@ Given A C E, define the vector 1, € R% to be
) 1 ifjeA
IO
0 ifj¢A
@ given modular function x € RE, we can write x(A) in a variety of

ways, i.e., x(A) =x- 14 = > ;4% 48/59



Continuous Extensions of a Set Function

@ A set function F on X = {1, ...,n} can be thought of as a map
from the vertices {0, 1}" of the n-dimensional hypercube to the
real numbers.

Extension of a Set Function

Given a set function F : {0, 1}* — R, an extension of F to the
hypercube [0, 1]" is a function g : [0, 1]* — R satisfying g(x) = F(x) for
every x € {0,1}".

(1,0, 1)~1, 3} (1,1,1)~{1,2,3)
min  F(w) (0,0, )~{3;
velony (LO0~1)| | S OL 123
with VA C X, F(1,4) = F(A) SURR N U7 N )

0,0,0~{] 0,1, 0)~(2}
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Choquet integral - Lovasz extension

@ Subsets may be identified with elements of {0, 1}"

@ Given any set-function F and w such that w;, > ... > w;,, define

flw) = ijk i) = F - vdie1})

n—1

= Z(ij - ij+1)F({j17 cee 7jk}) + anF({jla cee 7]n})

k=1

@ If w= 14, f(w) = F(A) = extension from {0, 1}" to R”
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Choquet integral - Lovasz extension, example: p =2

© Ifwi > wy, f(w) = F({1})wr + [F({1,2}) = F({1})]w2
© Ifwi <ws, f(w) = F({2H)wa + [F({1,2}) — F({2})]wi

level set {w € R?, f(w) = 1} is displayed in blue

@ Compact formulation: f(w) =
[F({1,2}) = F({1}) = F({2D] min(wi, w2) + F({1})wr + F({Z}w>
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Links with convexity

Theorem (Lovasz, 1982)

F is submodular if and only if f is convex

@ Proof requires: Submodular and base polyhedra

@ Submodular polyhedron: P(F) = {s € R",VA C V,5(A) < F(A)}

@ Base polyhedron: B(F) = P(F)N{s(V) =F(V)}

S5

P(E)

B(F)

S3
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Submodular and base polyhedra

@ P(F) has non-empty interior
@ Many facets (up to 2"), many extreme points (up to n!)

Fundamental property (Edmonds, 1970): If F is submodular,
maximizing linear functions may be done by a “greedy algorithm”

@ Letw e R% suchthatw;, > ... >w;,
@ Lets, =F({ji,....Jx}) —F({j1,.. -, jk—1}) fork e {1,... n}
@ Then

flw) = Sler}Dz(L;() wls = Sl&&(mfg) w's

@ Both problems attained at s defined as above.

@ proofs: pages 41-44 in http://bicmr.pku.edu.cn/
~wenzw/bigdata/submodular_fbach_mlss2012.pdf
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Links with convexity

Theorem (Lovasz, 1982)
F is submodular if and only if f is convex

@ If Fis submodular, f is the maximum of linear functions. Then f is
convex

@ If fis convex, letA,BCV
@ laup + lang = 14 + 15 has components equal to 0 (on V\(A U B)),
2(onANnB)and 1 (on AAB = (A\B) U (B\A))

e Thus f(1aus + lans) = F(A U B) + F(A N B). Proof by writing out
Sf(Laug + lang) and the definition of f(w).

e By homogeneity and convexity, /(14 + 15) < f(14) +f(15), which is
equal to F(A) + F(B), and thus F is submodular.
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Links with convexity

Theorem (Lovasz, 1982)

If F is submodular, then

@ Since f is an extension of F,

min F(A) = min f(w) > min f(w)

ACV we{0,1}1 wel0,1]n
@ Any w € [0, 1]" can be decomposed as w = ) i" | A1z, where
By C...CB,=V,where A >0and A(V) < 1:
e Since mingcy F(A) <0 (F(0) = 0),

m m

fw) = ; NF(B;) > > Aimin F(A) > min F(4)

e Thus min,,¢g,1j»f(w) > mingcy F(A). .
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Links with convexity

@ Anyw € [0,1]", sort w;, > ... >w;,. Find X such that

n n
Z)\jk :Wj],Z)\jk :sz,...,)\jn = Wj,,
k=1 k=2

Bl == {j1}732 - {jlujZ}a CIEIR 7Bn - {jl)jZa ... 7]n}

Then we have w = "7 | A1, where B; C ... C B, = V, where
A>0and A\(V) => .y M < 1.
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Submodular function minimization

@ Let F:2Y — R be a submodular function (such that F(}) = 0)

F A — min

— min max w's
we(0,1)" seB(F)

= max min w's= max s_(V)
sEB(F) we[0,1]" sEB(F)
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Submodular function minimization

Convex optimization
If F is submodular, then

L~ mi o
ity (A) ngéfll}nf(W) wg[l(}fﬁnf(w)

Using projected subgradient descent to minimize f on [0, 1]"

Cs:), where s, € Of (w;_1)

® f(w) = max,ecppyw's

@ Standard convergence results from convex optimization

, C
flw) = min flw) < =
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Summary

@ Many problems of recommending sets can be cast as
submodular maximization

@ Greedy algorithm gives best set of size k

@ Can use lazy evaluations to speed up

@ Approximate submodular maximization possible under a variety
of constraints:

Matroid

Knapsack

Multiple matroid and knapsack constraints

Path constraints (Submodular orienteering)

Connectedness (Submodular Steiner)

Robustness (minimax)
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