
Algorithms for Support Vector Machines

http://bicmr.pku.edu.cn/~wenzw/bigdata2016.html

Acknowledgement: this slides is based on Prof. Jure Leskovec’s and Prof. Stephen
Wright’s lecture notes

1/50

http://bicmr.pku.edu.cn/~wenzw/bigdata2016.html

2/50

Support Vector Machines

Want to separate "+" from "-" using a line

Data:
Training examples:

(x1, y1) · · · (xn, yn)

Each example i:
xi = (x(1)

i , · · · , x(d)
i)

x(j)
i is real valued

yi ∈ {−1,+1}

Inner product:
w · x =

∑d
j=1 w(j) · x(j)

Which is best linear separator (defined by w)?

3/50

Large Margin

Distance from the separating
hyperplane corresponds to
the "confidence" of prediction

Example:
We are more sure about the
class of A and B than of C

Margin: Distance of closest example from the decision
line/hyperplane

4/50

What is the margin?

Let f (x) = w · x:
Line L:
w · x + b = w(1)x(1) + w(2)x(2) + b = 0
w = (w(1),w(2))

Point A = (x(1)
A , x(2)

A)

Point M on a line = (x(1)
M , x(2)

M)

d(A,L) = |f (xA)− f (xM)|
= |(xA − xM) · w|
= |xA · w− xM · w|
= |w · xA + b|

Remember x(1)
M w(1) + x(2)

M w(2) = −b
since M belongs to line L

5/50

Largest Margin

Prediction = sign(w · x + b)

"Confidence" = (w · x + b)y

For i-th datapoint:
γi = (w · xi + b)yi

Want to solve:
maxw mini γi

Can rewrite as

max
w,γ

γ

s.t. yi(w · xi + b) ≥ γ,∀i

6/50

Support Vector Machine

Maximize the margin:
Good according to intuition, theory
(VC dimension) & practice

max
w,γ

γ

s.t. yi(w · xi + b) ≥ γ,∀i

γ is margin · · · distance from the
separating hyperplane

7/50

Support Vector Machines

Separating hyperplane is
defined by the support
vectors

Points on +/- planes from
the solution
If you knew these points,
you could ignore the rest
If no degeneracies, d+1
support vectors (for d
dimensional data)

8/50

Canonical Hyperplane: Problem

Problem:
There exists xM with
w · xM + b = 0. Hence,
w · x + b = w · (x− xM)
Let w · (x− xM)y = γ,
then 2w · (x− xM)y = 2γ

Scaling w increses
margin!

Solution:
Work with normalized w:
γ = (w

‖w‖ · x + b)y

Let’s also require support
vectors xj to be on the plane
defined by:
w · xj + b = ±1

‖w‖ =
√∑d

j=1(w(j))2

9/50

Canonical Hyperplane: Solution

Want to maximize margin γ!
What is the relation
between x1 and x2?

x1 = x2 + 2γ w
‖w‖

We also know:
w · x1 + b = +1
w · x2 + b = −1

So:
w · x1 + b = +1
w(x2 + 2γ w

‖w‖) + b = +1

w · x2 + b+︸ ︷︷ ︸
−1

2γ w·w
‖w‖ = +1 ⇒ γ = ‖w‖

w·w = 1
‖w‖

Note: w · w = ‖w‖2

10/50

Maximizing the Margin

We started with

max
w,γ

γ

s.t. yi(w · xi + b) ≥ γ,∀i

But w can be arbitrarily large!
We normalized and · · ·
max γ ≈ max 1

‖w‖ ≈ min ‖w‖ ≈
min 1

2‖w‖
2

Then:

min
w

1
2
‖w‖2

s.t. yi(w · xi + b) ≥ 1, ∀i

This is called SVM with "hard"
constraints

11/50

Non linearly separable data?

If data is not separable, introduce
penalty:

min
w

1
2
‖w‖2 + C (#number of mistakes)

s.t. yi(w · xi + b) ≥ 1, ∀i

Minimize ‖w‖2 plus the number of
training mistakes
Set C using cross validation

How to penalize mistakes?
All mistakes are not equally bad!

12/50

Support Vector Machines

Introduce slack variables ξi

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w · xi + b) ≥ 1− ξi,∀i
ξ ≥ 0

If point xi is on the wrong side of the
margin then get penalty ξi

13/50

Slack Penalty C

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi(w · xi + b) ≥ 1− ξi,∀i
ξ ≥ 0

What is the role of slack penalty C:
C =∞ : Only want to w,b that
separate the data

C = 0 : Can set ξi to anything, then
w=0(basically ignores the data)

14/50

Support Vector Machines

SVM in the "natural" form (exact penalty function)

arg min
w,b

1
2

w · w︸︷︷︸
Margin

+C
n∑

i=1

max{0, 1− yi(w · xi + b)}︸ ︷︷ ︸
Empirical loss L (how well we fit training data)

C is Regularization parameter
SVM uses "Hinge Loss":

min
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

s.t. yi · (w · xi + b) ≥ 1− ξi, ∀i
ξ ≥ 0

15/50

SVM Classification: Primal

min
w,b,ξ

1
2

w · w + C
n∑

i=1

ξi

s.t. yi · (xi · w + b) ≥ 1− ξi,∀i
ξ ≥ 0

Want to estimate w and b!
Standard way: use a solver!

Solver:software for finding solutions to "common" optimization
problems

Use a quadratic solver:
Minimize quadratic function
Subject to linear constraints

Challenge: solvers for problems with big data!

16/50

Dual

Dual is also a convex QP, in variable α = (α1, α2, . . . , αN)T :

min
α

1
2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0,

where

Kij = (yiyj)xT
i xj, y = (y1, y2, . . . , yN)T , 1 = (1, 1, . . . , 1)T .

KKT conditions relate primal and dual solutions:

w =

N∑
i=1

αiyixi,

while b is Lagrange multiplier for yTα = 0. Leads to classifier:

f (x) =

N∑
i=1

αiyi(xT
i x) + b.

17/50

Kernel Trick, RKHS

For a more powerful classifier, can project feature vector xi into a
higher-dimensional space via a function φ : Rn → Rt and classify in
that space. Dual formulation is the same, except for redefined K:

Kij = (yiyj)φ(xi)
Tφ(xj).

Leads to classifier:

f (x) =

N∑
i=1

αiyiφ(xi)
Tφ(x) + b.

Don’t actually need to use φ at all, just inner products φ(x)Tφ(x̄).
Instead of φ, work with a kernel function k : Rn × Rn → R.

If k is continuous, symmetric in arguments, and positive definite, there
exists a Hilbert space and a function φ in this space such that
k(x, x̄) = φ(x)Tφ(x̄).

18/50

Thus, a typical strategy is to choose a kernel k, form Kij = yiyjk(xi, xj),
solve the dual to obtain α and b, and use the classifier

f (x) =

N∑
i=1

αiyik(xi, x) + b,

Most popular kernels:
Linear: k(x, x̄) = xT x̄

Gaussian: k(x, x̄) = exp(−γ‖x− x̄‖2)

Polynomial: k(x, x̄) = (xT x̄ + 1)d

These (and other) kernels typically lead to K dense and ill
conditioned.

19/50

Solving the Primal and (Kernelized) Dual

Many methods have been proposed for solving either the primal
formulation of linear classification, or the dual (usually the kernel
form).

Many are based on optimization methods, or can be interpreted using
tools from the analysis of optimization algorithms.

Methods compared via a variety of metrics:
CPU time to find solution of given quality (e.g. error rate).
Theoretical efficiency.
Data storage requirements.
(Simplicity.) (Parallelizability.)

20/50

Solving the Dual

min
α

1
2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0.

Convex QP with mostly bound constraints, but
a. Dense, ill conditioned Hessian makes it tricky.
b. The linear constraint yTα = 0 is a nuisance!

21/50

Dual SVM: Coordinate Descent

(Hsieh et al 2008) Deal with the constraint yTα = 0 by getting rid of it!
Corresponds to removing the “intercept” term b from the classifier.

Get a convex, bound-constrained QP:

min
α

1
2
αTKα− 1Tα s.t. 0 ≤ α ≤ C1.

Basic step: for some i = 1, 2, . . . ,N, solve this problem in closed form
for αi , holding all components αj, j 6= i fixed.

Can cycle through i = 1, 2, ...,N, or pick i at random.
Update Kα by evaluating one column of the kernel.
Gets near-optimal solution quickly.

22/50

Dual SVM: Gradient Projection

(Dai, Fletcher 2006) Define Ω = {0 ≤ α ≤ C1, yTα = 0} and solve

min
α∈Ω

q(α) :=
1
2
αTKα− 1Tα

by means of gradient projection steps:

αl+1 = PΩ(αl − γl∇q(αl)),

where PΩ denotes projection onto Ω and γl is a steplength.
PΩ not trivial, but not too hard to compute.
Can choose γl using a Barzilai-Borwein formula together with a
nonmonotone (but safeguarded) procedure. Basic form of BB
chooses γl so that γ−1

l I mimics behavior of true Hessian ∇q over the
latest step; leads to

γl =
sT

l sl

sT
l yl

, where sl := αl − αl−1, yl := ∇q(αl)−∇q(αl−1)

.

23/50

Dual SVM: Decomposition

Many algorithms for dual formulation make use of decomposition:
Choose a subset of components of α and (approximately) solve a
subproblem in just these components, fixing the other components at
one of their bounds. Usually maintain feasible α throughout.

Many variants, distinguished by strategy for selecting subsets, size of
subsets, inner-loop strategy for solving the reduced problem.

SMO: (Platt 1998). Subproblem has two components.

SMVlight: (Joachims 1998). Use chooses subproblem size (usually
small); components selected with a first-order heuristic. (Could use
an `1 penalty as surrogate for cardinality constraint?)

PGPDT: (Zanni, Serafini, Zanghirati 2006) Decomposition, with
gradient projection on the subproblems. Parallel implementation.

24/50

LIBSVM: (Fan, Chen, Lin, Chang 2005). SMO framework, with first-
and second-order heuristics for selecting the two subproblem
components. Solves a 2-D QP to get the step.

Heuristics are vital to efficiency, to save expense of calculating
components of kernel K and multiplying with them:

Shrinking: exclude from consideration the components αi that
clearly belong at a bound (except for a final optimality check);
Caching: Save some evaluated elements Kij in available
memory.

Performance of Decomposition:
Used widely and well for > 10 years.
Solutions α are often not particularly sparse (many support
vectors), so many outer (subset selection) iterations are required.
Can be problematic for large data sets.

25/50

Dual SVM: Active-Set

(Scheinberg 2006)
Apply a standard QP active-set approach to Dual, usually
changing set of “free” components αi ∈ (0,C) by one index at
each iteration.
Update Cholesky factorization of “free” part of Hessian K after
each change.
Uses shrinking strategy to (temporarily) ignore components of α
that clearly belong at a bound.

(Shilton et al 2005) Apply active set to a min-max formulation (a way
to get rid of yTα = 0:

max
b

min
0≤α≤C1

1
2

[
b
α

]T [0 yT

y K

] [
b
α

]
−
[

0
1

]T [b
α

]
Cholesky-like factorization maintained.

26/50

Active set methods good for
warm starting, when we explore the solution path defined by C.
incremental, where we introduce data points (xi, yi) one by one
(or in batches) by augmenting α appropriately, and carrying on.

27/50

Dual SVM: Interior-Point

(Fine&Scheinberg 2001). Primal-dual interior-point method. Main
operation at each iteration is solution of a system of the form

(K + D)u = w,

where K is kernel and D is a diagonal. Can do this efficiently if we
have a low-rank approximation to K, say K ≈ VVT , where V ∈ RN×p

with p� N.
F&S use an incomplete Cholesky factorization to find V. There are
other possibilities:

Arnoldi methods: eigs command in Matlab. Finds dominant
eigenvectors / eigenvalues.
Sampling: Nyström method (Drineas&Mahoney 2005).
Nonuniform sample of the columns of K, reweight, find SVD.

28/50

Low-rank Approx + Active Set

If we simply use the low-rank approximation K ← VVT , the dual
formulation becomes:

min
α

1
2
αTVVTα− 1Tα s.t. 0 ≤ α ≤ C1, yTα = 0.

If we introduce γ = VTα ∈ Rp, it becomes

min
α,γ

1
2
γTγ − 1Tα s.t. 0 ≤ α ≤ C1, γ = VTα, yTα = 0,

For small p, can solve this efficiently with an active-set QP code (e.g.
CPLEX).

Solution is unique in γ, possibly nonunique in α, but can show that
the classifier is invariant regardless of which particular α is used.

29/50

Solving the Primal

min
w,b,ξ

1
2
‖w‖2

2 + C
N∑

i=1

ξi,

subject to ξi ≥ 0, yi(wTxi + b) ≥ 1− ξi, i = 1, 2, . . . ,N.

Motivation: Dual solution often not particularly sparse (many
support vectors - particularly with a nonlinear kernel). Dual
approaches can be slow when data set is very large.

Methods for primal formulations have been considered anew recently.

Limitation: Lose the kernel. Need to define the feature space
“manually” and solve a linear SVM.

But see (Chapelle 2006) who essentially replaces feature vector xi by
[k(xj, xi)]j=1,2,...,N , and replaces wTw by wTKw. (The techniques below
could be applied to this formulation.)

30/50

Primal SVM: Cutting Plane

Formulate the primal as

min
w,b

P(w, b) :=
1
2
‖w‖2

2 + R(w, b),

where R is a piecewise linear function of (w, b):

R(w, b) = C
N∑

i=1

max(1− yi(wTxi + b), 0).

Cutting-plane methods build up a piecewise-linear lower-bounding
approximation to R(w, b) based on a subgradient calculated at the
latest iterate (wk, bk). This approach used in many other contexts, e.g.
stochastic linear programming with recourse.

In SVM, the subgradients are particularly easy to calculate.

(Joachims 2006) implemented as SVMperf . (Franc&Sonnenburg
2008) add line search and monotonicity: OCAS. Convergence /
complexity proved.

31/50

Modifications tried (Lee and Wright) by modifying OCAS code:
partition the sum R(w, b) into p bundles, with cuts generated
separately for each bundle. Gives a richer approximation, at the
cost of a harder subproblem.
different heuristics for adding cuts after an unsuccessful step.

Many more ideas could be tried. In the basic methods, each iteration
requires computation of the full set of inner products
wTxi, i = 1, 2, . . . ,N. Could use strategies like partial pricing in linear
programming to economize.

32/50

Primal SVM: How to estimate w?

Want to estimate w,b!

min
w,b,ξ

1
2

w · w + C
n∑

i=1

ξi

s.t. yi · (xi · w + b) ≥ 1− ξi, ξ ≥ 0
Alternative approach:

Want to minimize f(w,b):

f (w, b) =
1
2

d∑
j=1

(w(j))2 + C
n∑

i=1

max{0, 1− yi(

d∑
j=1

w(j)x(j)
i + b)}

How to minimize convex functions f (z)?
Use subgradient method: minz f (z)
Iterate: zt+1 ← zt − η∇f (zt)

33/50

Primal SVM: How to estimate w?

Want to minimize f(w,b):

f (w, b) =
1
2

d∑
j=1

(w(j))2 + C
n∑

i=1

max{0, 1− yi(

d∑
j=1

w(j)x(j)
i + b)}︸ ︷︷ ︸

Empirical loss L(xiyi)

Compute the subgradient ∇f (w(j), b)

∂f (w, b)

∂w(j)
= w(j) + C

n∑
i=1

∂L(xi, yi)

∂w(j)

∂L(xi, yi)

∂w(j)
= 0 if yi(w · xi + b) ≥ 1

= −yix
(j)
i else

34/50

Primal SVM: How to estimate w?

subgradient method:

Iterate until convergence:

For j = 1 · · · d
Evaluate: ∇w(j) f = ∂f (w,b)

∂w(j) = w(j) + C
∑n

i=1
∂L(xi,yi)

∂w(j)

Update:
w(j) ← w(j) − η∇w(j) f

η is learning rate parameter

C is regularization parameter

Problem:
Computing ∇w(j) f takes O(n) time!

n is size of the training dataset

35/50

Primal SVM: How to estimate w?

We just had: ∇w(j) f = w(j) + C
∑n

i=1
∂L(xi,yi)

∂w(j)

Stochastic subgradient method
Instead of evaluating gradient over all examples evaluate it for
each individual training example

(∇w(j) f)i = w(j) + C
∂L(xi, yi)

∂w(j)

Stochastic subgradient method

Iterate until convergence:
For i = 1 · · · n

For j = 1 · · · d
Evaluate: (∇w(j) f)i

Update: w(j) ← w(j) − η(∇w(j) f)i

36/50

Primal SVM: Stochastic Subgradient

(Bottou) Take steps in the subgradient direction of a few-term
approximation to P(w, b), e.g. at iteration k, for some subset
Ik ⊂ {1, 2, . . . ,N}, use subgradient of

Pk(w, b) :=
1
2
‖w‖2

2 + C
N
|Ik|
∑
i∈Ik

max(1− yi(wTxi + b), 0),

Step length ηk usually decreasing with k according to a fixed
schedule. Can use rules ηk ∼ k−1 or ηk ∼ k−1/2.

Cheap if |Ik| is small. Extreme case: Ik is a single index, selected
randomly. Typical step: Select j(k) ∈ {1, 2, . . . ,N} and set

(wk+1, bk+1)← (wk, bk)− ηkgk,

where

gk =

{
(w, 0) if 1− yj(k)(wTxj(k) + b) ≤ 0,
(w, 0)− CNyj(k)(xj(k), 1) otherwise.

37/50

Stochastic Subgradient

(Shalev-Shwartz, Singer, Srebro 2007). Pegasos: After subgradient
step, project w onto a ball {w| ‖w‖2 ≤

√
CN}. Performance is

insensitive to |Ik|. (Omits intercept b.)

Convergence: Roughly, for steplenths ηk = CN/k, have for fixed total
iteration count T and k randomly selected from {1, 2, . . . ,T}, the
expected value of the objective f is within O(T−1 log T) of optimal.

Similar algorithms proposed in (Zhang 2004), (Kivinen, Smola,
Williamson 2002) - the latter with a steplength rule of ηk ∼ k−1/2 that
yields an expected objective error of O(T−1/2) after T iterations.

There’s a whole vein of optimization literature that’s relevant—
Russian in origin, but undergoing a strong revival. One important and
immediately relevant contribution is (Nemirovski et al. 2009).

38/50

Stochastic Approximation Viewpoint

(Nemirovski et al, SIAM J Optimization 2009) consider the setup

min
x∈X

f (x) := Eζ [F(x, ζ)],

where subgradient estimates G(x, ζ) are available such that
g(x) := Eζ [G(x, ζ)] is a subgradient of f at x. Steps:

xk+1 ← PX(xk − ηkG(xk, ζk))

where ζk selected randomly. Some conlusions:
If f is convex with modulus γ, steplengths ηk = (γk)−1 yield
E[f (xk)− f (x∗)] = O(1/k).
Slight differences to the stepsize (e.g. a different constant
multiple) can greatly degrade performance.
If f is convex (maybe weakly), the use of stepsizes ηk ∼ k−1/2

yields convergence at rate k−1/2 of a weighted average of
iterates in expected function value.
This is a slower rate, but much less sensitive to the “incorrect”
choices of steplength scaling. See this in practice.

39/50

Example: Text categorization

Example by Leon Bottou:
Reuters RCV1 document corpus

Predict a category of a document
One vs. the rest classification

n = 781, 000 training examples(documents)

23, 000 test examples

d = 50, 000 features
One feature per word

Remove stop-words

Remove low frequency words

40/50

Example: Text categorization

Questions:
1 Is SGD successful at minimizing f (w, b)?

2 How quickly does SGD find the min of f (w, b)?

3 What is the error on a test set?

(1) SGD-SVM is successful at minimizing the value of f (w, b)
(2) SGD-SVM is super fast
(3) SGD-SVM test set error is comparable

41/50

Optimization "Accuracy"

Optimization quality: |f (w, b)− f (wopt, bopt)|

For optimizing f (w, b) within reasonable quality

SGD− SVM is super fast

42/50

SGD vs. Batch Conjugate Gradient

SGD on full dataset vs. Batch Conjugate Gradient on a sample
of n training examples

Bottom line:Doing a simple (but fast) SGD
update many times is better than doing a
complicated (but slow) BCG update a few
times

43/50

Practical Considerations

Need to choose learning rate η and t0

wt+1 ← wt −
ηt

t + t0
(wt + C

∂L(xi, yi)

∂w
)

Leon suggests:
Choose t0 so that the expected initial updates are comparable with
the expected size of the weights

Choose η :

Select a small subsample

Try various rates η(e.g., 10, 1, 0.1, 0.01, · · ·)

Pick the one that most reduces the cost

Use η for next 100k iterations on the full dataset

44/50

Practical Considerations

Sparse Linear SVM:
Feature vector xi is sparse (contains many zeros)

Do not do: xi = [0, 0, 0, 1, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, · · ·]
But represent xi as a sparse vector xi = [(4, 1), (9, 5), · · ·]

Can we do the SGD update more efficiently?

w← w− η(w + C
∂L(xi, yi)

∂w
)

Approximated in 2 steps:

w← w− ηC
∂L(xi, yi)

∂w
w← w(1− η)

cheap: xi is sparse and so few
coordinates j of w will be updated

expensive:w is not sparse,all
coordinates need to be updated

45/50

Practical Considerations

Solution 1: w = s · v
Represent vector w as the product of
scalar s and vector v

Then the update procedure is:
(1) v = v− ηC ∂L(xi,yi)

∂w
(2) s = s(1− η)

Two step update
procedure:
(1) w← w− ηC ∂L(xi,yi)

∂w
(2) w← w(1− η)

Solution 2:
Perform only step (1) for each training example

Perform step (2) with lower frequency and higher η

46/50

Practical Considerations

Stopping criteria
How many iterations of SGD?

Early stopping with cross validation
Create validation set

Monitor cost function on the validation set

Stop when loss stops decreasing

Early stopping
Extract two disjoint subsamples A and B of training data

Train on A, stop by validating on B

Number of epochs is an estimate of k

Train for k epochs on the full dataset

47/50

Alternative Formulations: ‖w‖1.

Replacing ‖w‖2
2 by ‖w‖1 in the primal formulation gives a linear

program (e.g. Mangasarian 2006; Fung&Mangasarian 2004, others):

min
w,b,ξ
‖w‖1 + C

N∑
i=1

max(1− yi(wTxi + b), 0).

Sometimes called “1-norm linear SVM.”

Tends to produce sparse vectors w; thus classifiers that depend on a
small set of features.

(‖ · ‖1 regularizer also used in other applications, e.g. compressed
sensing).

Production LP solvers may not be useful for large data sets; the
literature above describes specialized solvers.

48/50

Elastic Net

Idea from (Zou&Hastie 2005). Include both ‖w‖1 and ‖w‖2 terms in
the objective:

min
w,ξ

λ2

2
‖w‖2

2 + λ1‖w‖1 +

N∑
i=1

max(1− yi(wTxi + b), 0).

In variable selection, combines ridge regression with LASSO. Good
at “group selecting” (or not selecting) correlated wi’s jointly.

Is this useful for SVM?

It would be easy to extend some of the techniques discussed earlier
to handle this formulation.

49/50

SpaRSA

An extremely simple approach introduced in context of compressed
sensing (Wright, Figueiredo, Nowak 2008) can be applied more
generally, e.g. to logistic regression. Given formulation

minF(x) + λR(x),

and current iterate xk, find new iterate by choosing scalar αk and
solving

min
z

1
2αk

(z− xk)T(z− xk) +∇F(xk)T(z− xk) + λR(z).

Possibly adjust αk to get descent in the objective, then set xk+1 ← z.
Form a quadratic model of F around xk , correct to first order,
with simple Hessian approximation 1/αk.
Variants: Barzilai-Borwein, nonmonotonic.
Useful when the subproblem is cheap to solve.
Continuation strategy useful in solving for a range of λ values
(largest to smallest). Use solution for one λ as warm start for the
next smaller value.

50/50

When R = ‖ · ‖1 (standard compressed sensing), can solve
subproblem in O(n) (closed form).

Still cheap when

R(x) =
∑

l

‖x[l]‖2, R(x) =
∑

l

‖x[l]‖∞

where x[l] are disjoint subvectors. (Group LASSO.)

Not so clear how to solve the subproblems cheaply when
subvectors x[l] are not disjoint in the group-lasso formulation
regularized R chosen to promote a hierarchical relationship
between components of x

R(x) is a TV-norm.

