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Problems with absolute values

min Y eilxi, assume ¢ > 0
i

st. Ax>b

@ Reformulation 1:

min Z CizZi min Z CiZi
i i
<~
st. Ax>b st. Ax>b
x| <z — %4 <X <z

1

@ Reformulation 2: x; = x™ — x

+
min Zci(x:r—l—x;)
j

st AxT —Ax > b,x+,x_ >0

X, x7 > 0. Then |x;| = x;" +x;
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Problems with absolute values

@ data fitting:
min  [|JAx — b/
X

min  [|Ax — b|;
X
@ Compressive sensing

min x|, st. Ax=b (LP)
min  pllx[l + 5l|Ax+ b (QP,SOCP)
min |Ax — b||, st.  x|l; <1
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Quadratic Programming (QP)

min  g(x) =x' Qx+a'x+p assume Q>~0,0=0"
st. Ax=b>
x>0

@ g(x) = |la|>+ B8 - 1aTQ 'a, where u = Q'/2x + L0724

@ equivalent SOCP

4/34



Quadratic constraints

q(x) = x'B'Bx+a'x+8<0

is equivalent to
(uo, ) =0 0,

where

_ Bx l—a'x—
2
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Norm minimization problems

Letv; = A;x + b; € R™.
@ min, ) ,||vi]| is equivalent to

min E Vio

i
s.t. vi=Ax+b;
(vio, Vi) =0 0

@ min, max;<;<,||vi|| is equivalent to

min ¢
st. vi=Ax+b;
(tv ‘_)l') aafo) 0

6/34



Norm minimization problems

Letv; = Aix + b; € R™,
® [[vpyll;---, [Vl are the norms |[vy]f,..., ||v,|| sorted in
nonincreasing order
® min, Y, |9yl is equivalent to

m

min Z u; + kt

i=1

S-t. T/l:Al_x—i—b” i:lj‘_"m
il <wui+t, i=1,....m
>0, i=1,....m
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Rotated Quadratic Cone

@ rotated cone w'w < xy, where x,y > 0, is equivalent to

2w
<
[ B

@ Minimize the harmonic mean of positive affine functions

min Z 1/(af x4+ 8), st a/x+6;>0

i
is equivalent to
min Z U;
i

st v, = aiTx + Bi
1 < u;ivi
u; 2 0
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Logarithmic Tchebychev approximation

min  max |In(a x) — Inb;|
X 1<i<r

Since | In(a;' x) — In b;| = Inmax(a;' x/b;, b;/a; x), the problem is
equivalent to

min ¢

st 1< (ax/b)t
a;—x/b,- <t
t>0

Inequalities involving geometric means

n 1/n
(H(a;—x + bi)) >t

i=1
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@ n=4

4
max H(aiTx —bj) <=
i=1

max w3

a;rx—bi >0

(alTx — bl)(asz —by) > w%
(a3 x — b3)(aj x — ba) > w3
wiwy > w%

wi Z 0

@ This can be extended to products of rational powers of affine

functions
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Robust linear programming

the parameters in LP are often uncertain

min c¢'x

s.t. a;—x < b;
There can be uncertainty in ¢, a;, b.

two common approaches to handling uncertainty (in g;, for simplicity)
@ deterministic model: constraints must hold for all a; € &;

min ¢ x

st a/x<b, foralla; € &
@ stochastic model: g; is random variable; constraints must hold
with probability n

min c¢'x

s.t. prob(a,-Tx <bj)>n
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deterministic approach via SOCP

@ Choose an ellipsoid as &;:
E=A{ai+Pu||lul <1}, aeR", P eR™

@ Robust LP

min ¢ x

st a'x <b, forall g €&
is equivalent to the SOCP

min c¢'x

st a'x+ [P x| < b
since
sup (a; + Piu)Tx = Zz;rx + HP;—tz

[[ull2<1
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stochastic approach via SOCP

@ g, is Gaussian with mean a;, covariance %; (a; ~ N (a;, ;)
@ a/ x is Gaussian r.v. with mean g, x, variance x' %;x; hence

b, —alx
T N — L
prob(a; x < b;)) = ® <H21/2xH2>

where ®(x) = (1/v2x) [*__e"/?dris CDF of N'(0, 1)

@ robust LP

min c¢'x

s.t.  prob(a] x < b)) > 17
is equivalent to the SOCP

min ¢ x

st @ x+ @71 (n)|=V x|, < by
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SDP Standard Form

@ S"={XeR X" =X},S1 ={Xe8"|X =0},
S, ={Xe8"|X~0}

@ Define linear operator A : S" — R™:
A(X): (<A17X>77<Am7X>)T7 XES”

Since AX)Ty =" vi (Ai, X) = O, vidi, X), the adjoint of A:

A'(y) =Y vidi
i=1
@ The SDP standard form:
(P) min (C,X) (D) max b'y
st. AX)=b st. A*(y)+S=C

X=0 S=0
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Facts on matrix calcuation

@ IfA,B € R™" then Tr(AB") = Tr(B'A)
e If U,V € 8" and Q is orthogonal, then (U, V) = (0T UQ, Q" UQ)
@ If X € S",then U = Q" AQ, where Q" Q =1 and A is diagonal.

Matrix norms: [[X|[r = [[A(X)|2, [[X]l2 = [A(X)lcos A(X) = diag(A)

@ X>0= v Xv>forallveR" <= \X)>0+=X=B'B

The dual cone of &% is S}

If X =0, then X;;i > 0. If X;i=0, then X=X, =0 for all .

If X > 0, then PXP" > 0 for any P of approriate dimensions

X1 X2
If X = = 0, then X;; = 0.
<xg X22> = =

@ X = 0 iff every principal submatrix is positive semidefinite (psd).
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Facts on matrix calcuation

A B
c;LetU-(BT C

> with A and C symmetric and A >~ 0. Then
U=0(or =0) <= C-B'A"'B=0(or ~0).

The matrix C — B"A~!'B is the Schur complement of A in U:

A B\ (I 0\/A 0 I A™'B
B" ¢/ \B'A7' 1)\0 C-B"A"'B)J\0 I

@ IfAc 8" thenx'Ax = <A,xxT>

@ If A > 0, then (A, B) > 0 for every nonzero B = 0 and
{B>0|(A,B) < 3} is bounded for g > 0

@ IfA,B >~ 0,then (A,B) =0iff AB=0

@ A, B € 8" then A and B are commute iff AB is symmetric, iff A

and B can be simultaneously diagonalized
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Eigenvalue optimization
@ minimizing the largest eigenvalue \yax (Ao + >, xiA;):
min - Apax(Ao + inAi)

can be expressed as an SDP
and its dual is

min z max (Ao, Y)
st 2= xAi = Ag st (ALY) =
' (1Y) =
Y >0

@ follows from
Amax(A) <t<= A=t
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Eigenvalue optimization

@ LetA; € R™". Minimizing the 2-norm of A(x) = Ag + ), xiA;:
min  A()]2
can be expressed as an SDP

min t
Xt

s.t. (A(;I)T At(;‘)> =0

@ Constraint follows from

|Al <t = ATA<AI, >0
a Ax)
-
= <A(x)T t ) =0
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Eigenvalue optimization

@ Let A4(A) indicate sum of the k largest eigenvalues of A. Then
minimizing Ax(Ao + Y _; xiA;):

min Ak(Ao + inAi)

1
can be expressed as an SDP
min  kz + Tr(X)
st d+X-) xAi=A
i
X>0
since

MA) <t<—=1t—kz—Tr(X) > 0,2 + X = A, X =0
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The following problems can be expressed as SDP
@ maximizing sum of the k smallest eigenvalues of A + ), x;A;

@ minimizing sum of the k absolute-value-wise largest eigenvalues

@ minimizing sum of the k largest singular values of Ay + ) _, x;A;
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Quadratically Constrained Quadratic Programming
Consider QCQP

min x'Apx+2bjx+cy  assumeA; € S"
st x'Ax+2b/x+¢; <0, i=1,....m

@ IfAy~0andA; =B/B;,i=1,...,m, thenitis a SOCP
@ If A; € S" but may be indefinite

xTAix + Zb,-Tx +¢ = <A,~,xxT> + 2b,-Tx + ¢
@ The original problem is equivalent to

min  TrAoX + 2bJ x + ¢o
st. TAX+2b/x+¢ <0, i=1,...,m
X =xx'
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QCQP

@ If A; € S" but may be indefinite

A; b; X x - 5
— (A, X
xAix+2bl-x+c,- = <(bl~l c;>’< 1)>.—< iy >

X > 0is equivalentto X > xx"
@ The SDP relaxation is

min TrAoX + 2b3— x4+ co
st. TAX+2b/x+¢ <0, i=1,...,m
X = xx !

@ Maxcut: max x' Wx, st x2=1

1

@ Phase retrieval: |a,' x| = b;, the value of 4, x is complex
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Max cut

@ For graph (V, E) and weights w;; = w;; > 0, the maxcut problem is

max = E W,j

1<j
@ Relaxation:
max 2 S w1
viER"
i<j

@ Equivalent SDP of (P):

DP) =
(0P a3 vl

—xixj), st x;e{-1,1}

V Vj s.t. HV,‘HZ =1

X,, st. X; =1,X>0
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Max cut: rounding procedure

Goemans and Williamson’s randomized approach

@ Solve (SDP) to obtain an optimal solution X. Compute the
decomposition X = VTV, where

V=1[1,v2,..., V]

@ Generate a vector r uniformly distributed on the unit sphere, i.e.,
Irfl2 =1

@ Set

1 vr>0
X, =
' —1 otherwise
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Max cut: theoretical results

@ Let W be the objective function value of x and E(W) be the
expected value. Then

1
E(W) = - Z wy arccos(v; v;)
i<j

@ Goemans and Williamson showed:

>a EwU vvj

1<j

where 5 9
a=min ——— > 0.878
0<fr w1 — cos
@ Let Z(SDP) and Z(*Q) be the optimal values of (SDP) and (Q)

E(W) > oZiyyp) > aZiy,
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SDP-Representablity

What kind of problems can be expressed by SDP and SOCP?

@ Definition: A set X C R" is SDP-representable (or SDP-Rep for
short) if it can be expressed linearly as the feasible region of an
SDP

X = {x | there exist u € R* such that for some

Ai,B]-,C e R™*m . inAi + ZMJB]' +C > 0}
i J
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SDP-Representablity

@ Definition: A function f(x) is SDP-Rep if its epigraph
epi(f) = {(xo,x) [ f(x) < x0}

is SDP-representable
@ If X is SDP-Rep, then min,cx ¢’ x is an SDP
@ If f(x) is SDP-Rep, then min, f(x) is an SDP
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A “calculus” of SDP-Rep sets and functions

SDP-Rep sets and functions remain so under finitely many
applications of most convex-preserving operations.
If X and Y are SDP-Rep then so are

@ Minkowski sum X + Y

@ intersection X NY

@ Affine pre-image A~!(X) if A is affine
@ Affine map A(X) if A is affine

@ Cartesian Product: X x Y = {(x,y) | x€ X,y € Y}
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SDP-Rep Functions

If functions f;, i = 1,...,m and g are SDP-Rep. Then the following are
SDP-Rep

@ nonnegative sum ), of; for a; > 0
@ maximum max; f;
@ composition: g(fi(x),....fm(x)) iffi: R" - Rand g : R" -+ R

@ Legendre transform

f0)=max yTx—f(x)
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Positive Polynomials

@ The set of nonnegative polynomials of a given degree forms a
proper cone

Pu=A{(Po:---sn) | Po+prt+...+pat' >0forallzel}
where I is any of [a, b], [a, 00) or (—o0, 00)
@ Important fact: The cone of positive polynomials is SDP-Rep

@ To see this we need to introduce another problem
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The Moment cone

The Moment space and Moment cone

@ Let (co,c1,...,c,) " be such that there is a probability measure F
where

ci:/tidF, fori=0,...,n.
1
The set of such vectors is the Moment space

@ The Moment cone

M, = {ac | There is a distribution F : ¢; = /tidF anda > 0}
1
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The Moment cone

The moment cone is also SDP-Rep:
@ The discrete Hamburger moment problem:

I=R, ce€ My <—

() C1 Cp
1 (&) Cnt1

=0
Cn Cptl - Con

@ This is the Hankel matrix
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The Moment cone

@ The discrete Stielties moment problem

I=[0,0), ceM, <=

co €1 ... Cy cT

C1l (6) e Cptl 2 Cc3
=0, and

Cn Cpn+l .-+ Cop Cn—1 Cn

where m = | 5

@ The Hausdorff moment problem where I = [0, 1] is similarly

SDP-Rep
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Moment and positive polynomial cones

@ Pr=M,,ie.,ie. moment cones and nonnegative polynomials
are dual of each other

@ If {up(x),...,uy(x)}, x € I are linearly independent functions
(possibly of several variables)

@ The cone of polynomials that can be expressed as sum of
squares is SDP-Rep.

@ if | is a one dimensional set then positive polynomials and sum of
square polynomials coincide

@ In general except for I one-dimensional positive polynomials
properly include sum of square polynomials
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