Lecture: Examples of LP, SOCP and SDP

Zaiwen Wen

Beijing International Center For Mathematical Research Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn

Acknowledgement: this slides is based on Prof. Farid Alizadeh and Prof. Lieven Vandenberghe's lecture notes

Problems with absolute values

$$\label{eq:continuous} \begin{aligned} & \min & & \sum_i c_i |x_i|, & & \text{assume } c \geq 0 \\ & \text{s.t.} & & Ax \geq b \end{aligned}$$

Reformulation 1:

$$\begin{array}{lll} \min & \sum_i c_i z_i & \min & \sum_i c_i z_i \\ \text{s.t.} & Ax \geq b & \Longleftrightarrow & \text{s.t.} & Ax \geq b \\ & |x_i| \leq z_i & -z_i \leq x_i \leq z_i \end{array}$$

s.t. $Ax^+ - Ax^- > b, x^+, x^- > 0$

• Reformulation 2: $x_i = x_i^+ - x_i^-, x_i^+, x_i^- \ge 0$. Then $|x_i| = x_i^+ + x_i^ \min \sum_i c_i(x_i^+ + x_i^-)$

Problems with absolute values

data fitting:

$$\min_{x} \quad ||Ax - b||_{\infty}$$

$$\min_{x} \quad ||Ax - b||_{1}$$

Compressive sensing

min
$$||x||_1$$
, s.t. $Ax = b$ (LP)
min $\mu ||x||_1 + \frac{1}{2} ||Ax + b||^2$ (QP, SOCP)
min $||Ax - b||$, s.t. $||x||_1 \le 1$

Quadratic Programming (QP)

$$\begin{aligned} &\min \quad q(x) = x^\top Q x + a^\top x + \beta & \quad \text{assume} \quad Q \succ 0, Q = Q^\top \\ &\text{s.t.} \quad Ax = b & \\ &\quad x \geq 0 & \end{aligned}$$

- $q(x) = \|\bar{u}\|^2 + \beta \frac{1}{4}a^{\mathsf{T}}Q^{-1}a$, where $\bar{u} = Q^{1/2}x + \frac{1}{2}Q^{-1/2}a$.
- equivalent SOCP

min
$$u_0$$

s.t. $\bar{u} = Q^{1/2}x + \frac{1}{2}Q^{-1/2}a$
 $Ax = b$
 $x \ge 0$, $(u_0, \bar{u}) \succeq_{\mathcal{Q}} 0$

Quadratic constraints

$$q(x) = x^{\top} B^{\top} B x + a^{\top} x + \beta \le 0$$

is equivalent to

$$(u_0, \bar{u}) \succeq_{\mathcal{Q}} 0,$$

where

$$\bar{u} = \begin{pmatrix} Bx \\ \frac{a^{\top}x + \beta + 1}{2} \end{pmatrix}$$
 and $u_0 = \frac{1 - a^{\top}x - \beta}{2}$

Norm minimization problems

Let
$$\bar{v}_i = A_i x + b_i \in \mathbb{R}^{n_i}$$
.

• $\min_{x} \quad \sum_{i} \|\bar{v}_{i}\|$ is equivalent to

$$\begin{aligned} & \min & & \sum_{i} v_{i0} \\ & \text{s.t.} & & \bar{v}_{i} = A_{i}x + b_{i} \\ & & & (v_{i0}, \bar{v}_{i}) \succeq_{\mathcal{Q}} 0 \end{aligned}$$

• $\min_{x} \max_{1 \leq i \leq r} \|\bar{v}_i\|$ is equivalent to

min
$$t$$

s.t. $\bar{v}_i = A_i x + b_i$
 $(t, \bar{v}_i) \succeq_{\mathcal{Q}} 0$

Norm minimization problems

Let
$$\bar{v}_i = A_i x + b_i \in \mathbb{R}^{n_i}$$
.

- $\|\bar{v}_{[1]}\|,\ldots,\|\bar{v}_{[r]}\|$ are the norms $\|\bar{v}_1\|,\ldots,\|\bar{v}_r\|$ sorted in nonincreasing order
- $\min_{x} \sum_{i=1}^{k} \|\bar{v}_{[i]}\|$ is equivalent to

min
$$\sum_{i=1}^{m} u_i + kt$$
s.t.
$$\bar{v}_i = A_i x + b_i, \quad i = 1, \dots, m$$

$$\|\bar{v}_i\| \le u_i + t, \quad i = 1, \dots, m$$

$$u_i > 0, \quad i = 1, \dots, m$$

Rotated Quadratic Cone

• rotated cone $w^{\top}w \leq xy$, where $x, y \geq 0$, is equivalent to

$$\left\| \begin{pmatrix} 2w \\ x - y \end{pmatrix} \right\| \le x + y$$

Minimize the harmonic mean of positive affine functions

$$\min \quad \sum_{i} 1/(a_i^\top x + \beta_i), \text{ s.t.} \quad a_i^\top x + \beta_i > 0$$

is equivalent to

min
$$\sum_{i} u_{i}$$

s.t. $\bar{v}_{i} = a_{i}^{\top} x + \beta_{i}$
 $1 \le u_{i} v_{i}$
 $u_{i} > 0$

Logarithmic Tchebychev approximation

$$\min_{x} \quad \max_{1 \le i \le r} \quad |\ln(a_i^\top x) - \ln b_i|$$

Since $|\ln(a_i^\top x) - \ln b_i| = \ln \max(a_i^\top x/b_i, b_i/a_i^\top x)$, the problem is equivalent to

min
$$t$$

s.t. $1 \le (a_i^\top x/b_i)t$
 $a_i^\top x/b_i \le t$
 $t > 0$

Inequalities involving geometric means

$$\left(\prod_{i=1}^{n} (a_i^{\top} x + b_i)\right)^{1/n} \ge t$$

9/34

n=4

$$\max \quad w_{3}$$
s.t. $a_{i}^{\top}x - b_{i} \ge 0$

$$(a_{1}^{\top}x - b_{1})(a_{2}^{\top}x - b_{2}) \ge w_{1}^{2}$$

$$(a_{3}^{\top}x - b_{3})(a_{4}^{\top}x - b_{4}) \ge w_{2}^{2}$$

$$w_{1}w_{2} \ge w_{3}^{2}$$

$$w_{i} \ge 0$$

 This can be extended to products of rational powers of affine functions

Robust linear programming

the parameters in LP are often uncertain

$$\min \quad c^{\top} x$$

s.t. $a_i^{\top} x \le b_i$

There can be uncertainty in c, a_i, b .

two common approaches to handling uncertainty (in a_i , for simplicity)

ullet deterministic model: constraints must hold for all $a_i \in \mathcal{E}_i$

$$\min \quad c^{\top} x$$

s.t. $a_i^{\top} x \leq b_i$, for all $a_i \in \mathcal{E}_i$

• stochastic model: a_i is random variable; constraints must hold with probability η

min
$$c^{\top}x$$

s.t. $\operatorname{prob}(a_i^{\top}x \leq b_i) \geq \eta$

deterministic approach via SOCP

• Choose an ellipsoid as \mathcal{E}_i :

$$\mathcal{E}_i = \{\bar{a}_i + P_i u \mid ||u||_2 \le 1\}, \quad \bar{a}_i \in \mathbb{R}^n, P_i \in \mathbb{R}^{n \times n}$$

Robust LP

$$\min \quad c^{\top} x$$

s.t. $a_i^{\top} x \le b_i$, for all $a_i \in \mathcal{E}_i$

is equivalent to the SOCP

$$\begin{aligned} & \text{min} \quad c^{\top} x \\ & \text{s.t.} \quad \bar{a}_i^{\top} x + \|P_i^{\top} x\|_2 \le b_i \end{aligned}$$

since

$$\sup_{\|u\|_2 \le 1} (\bar{a}_i + P_i u)^\top x = \bar{a}_i^\top x + \|P_i^\top x\|_2$$

stochastic approach via SOCP

- a_i is Gaussian with mean \bar{a}_i , covariance Σ_i ($a_i \sim \mathcal{N}(\bar{a}_i, \Sigma_i)$
- $a_i^{\top} x$ is Gaussian r.v. with mean $\bar{a}_i^{\top} x$, variance $x^{\top} \Sigma_i x$; hence

$$\operatorname{prob}(a_i^{\top} x \le b_i) = \Phi\left(\frac{b_i - \bar{a}_i^{\top} x}{\|\Sigma^{1/2} x\|_2}\right)$$

where $\Phi(x) = (1/\sqrt{2\pi}) \int_{-\infty}^{x} e^{-t^2/2} dt$ is CDF of $\mathcal{N}(0,1)$

robust LP

min
$$c^{\top}x$$

s.t. $\operatorname{prob}(a_i^{\top}x \leq b_i) \geq \eta$

is equivalent to the SOCP

min
$$c^{\top} x$$

s.t. $\bar{a}_i^{\top} x + \Phi^{-1}(\eta) \|\Sigma^{1/2} x\|_2 \le b_i$

SDP Standard Form

- $S^n = \{ X \in \mathbb{R}^{n \times n} \mid X^\top = X \}, S^n_+ = \{ X \in S^n \mid X \succeq 0 \}, S^n_{++} = \{ X \in S^n \mid X \succ 0 \}$
- Define linear operator $\mathcal{A}: \mathcal{S}^n \to \mathbb{R}^m$:

$$\mathcal{A}(X) = (\langle A_1, X \rangle, \dots, \langle A_m, X \rangle)^{\top}, \quad X \in \mathcal{S}^n.$$

Since $\mathcal{A}(X)^{\top}y = \sum_{i=1}^{m} y_i \langle A_i, X \rangle = \langle \sum_{i=1}^{m} y_i A_i, X \rangle$, the adjoint of \mathcal{A} :

$$\mathcal{A}^*(y) = \sum_{i=1}^m y_i A_i$$

• The SDP standard form:

(P) min
$$\langle C, X \rangle$$
 (D) max $b^{\top}y$
s.t. $\mathcal{A}(X) = b$ s.t. $\mathcal{A}^*(y) + S = C$
 $X \succeq 0$ $S \succeq 0$

Facts on matrix calcuation

- If $A, B \in \mathbb{R}^{m \times n}$, then $\operatorname{Tr}(AB^{\top}) = \operatorname{Tr}(B^{\top}A)$
- ullet If $U,V\in\mathcal{S}^n$ and Q is orthogonal, then $\langle U,V \rangle = \left\langle Q^ op UQ,Q^ op UQ \right
 angle$
- If $X \in \mathcal{S}^n$, then $U = Q^{\top} \Lambda Q$, where $Q^{\top} Q = I$ and Λ is diagonal.
- Matrix norms: $\|X\|_F = \|\lambda(X)\|_2$, $\|X\|_2 = \|\lambda(X)\|_\infty$, $\lambda(X) = \operatorname{diag}(\Lambda)$
- $X \succeq 0 \Longleftrightarrow v^{\top} X v \ge \text{for all } v \in \mathbb{R}^n \Longleftrightarrow \lambda(X) \ge 0 \Longleftrightarrow X = B^{\top} B$
- The dual cone of \mathcal{S}^n_+ is \mathcal{S}^n_+
- If $X \succeq 0$, then $X_{ii} \geq 0$. If $X_{ii} = 0$, then $X_{ik} = X_{ki} = 0$ for all k.
- If $X \succeq 0$, then $PXP^{\top} \succeq 0$ for any P of approxiate dimensions
- If $X = \begin{pmatrix} X_{11} & X_{12} \\ X_{12}^\top & X_{22} \end{pmatrix} \succeq 0$, then $X_{11} \succeq 0$.
- $X \succeq 0$ iff every principal submatrix is positive semidefinite (psd).

Facts on matrix calcuation

• Let $U = \begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix}$ with A and C symmetric and $A \succ 0$. Then

$$U \succeq 0 \text{ (or } \succ 0) \iff C - B^{\top} A^{-1} B \succeq 0 \text{ (or } \succ 0).$$

The matrix $C - B^{T}A^{-1}B$ is the **Schur complement** of A in U:

$$\begin{pmatrix} A & B \\ B^{\top} & C \end{pmatrix} = \begin{pmatrix} I & 0 \\ B^{\top}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & C - B^{\top}A^{-1}B \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix}$$

- If $A \in \mathcal{S}^n$, then $x^{\top}Ax = \langle A, xx^{\top} \rangle$
- If $A \succ 0$, then $\langle A, B \rangle > 0$ for every nonzero $B \succeq 0$ and $\{B \succeq 0 \mid \langle A, B \rangle \leq \beta\}$ is bounded for $\beta > 0$
- If $A, B \succeq 0$, then $\langle A, B \rangle = 0$ iff AB = 0
- $A, B \in S^n$, then A and B are commute iff AB is symmetric, iff A and B can be simultaneously diagonalized

Eigenvalue optimization

• minimizing the largest eigenvalue $\lambda_{\max}(A_0 + \sum_i x_i A_i)$:

$$\min \quad \lambda_{\max}(A_0 + \sum_i x_i A_i)$$

can be expressed as an SDP

and its dual is

min
$$z$$
 max $\langle A_0, Y \rangle$
s.t. $zI - \sum_i x_i A_i \succeq A_0$ s.t. $\langle A_i, Y \rangle = k$
 $\langle I, Y \rangle = 1$
 $Y \succeq 0$

follows from

$$\lambda_{\max}(A) \le t \iff A \le tI$$

Eigenvalue optimization

• Let $A_i \in \mathbb{R}^{m \times n}$. Minimizing the 2-norm of $A(x) = A_0 + \sum_i x_i A_i$:

$$\min_{x} \quad ||A(x)||_2$$

can be expressed as an SDP

$$\min_{x,t} \quad t$$
s.t.
$$\begin{pmatrix} tI & A(x) \\ A(x)^{\top} & tI \end{pmatrix} \succeq 0$$

Constraint follows from

$$||A||_2 \le t \iff A^\top A \le t^2 I, \quad t \ge 0$$
$$\iff \begin{pmatrix} tI & A(x) \\ A(x)^\top & tI \end{pmatrix} \succeq 0$$

18/34

Eigenvalue optimization

• Let $\Lambda_k(A)$ indicate sum of the k largest eigenvalues of A. Then minimizing $\Lambda_k(A_0 + \sum_i x_i A_i)$:

$$\min \quad \Lambda_k(A_0 + \sum_i x_i A_i)$$

can be expressed as an SDP

min
$$kz + \text{Tr}(X)$$

s.t. $zI + X - \sum_{i} x_{i}A_{i} \succeq A_{0}$
 $X \succeq 0$

since

$$\Lambda_k(A) \le t \iff t - kz - \operatorname{Tr}(X) \ge 0, zI + X \succeq A, X \succeq 0$$

The following problems can be expressed as SDP

- maximizing sum of the k smallest eigenvalues of $A_0 + \sum_i x_i A_i$
- minimizing sum of the k absolute-value-wise largest eigenvalues
- minimizing sum of the k largest singular values of $A_0 + \sum_i x_i A_i$

Quadratically Constrained Quadratic Programming

Consider QCQP

min
$$x^{\top}A_0x + 2b_0^{\top}x + c_0$$
 assume $A_i \in \mathcal{S}^n$
s.t. $x^{\top}A_ix + 2b_i^{\top}x + c_i \leq 0, \quad i = 1, \dots, m$

- If $A_0 \succ 0$ and $A_i = B_i^\top B_i$, i = 1, ..., m, then it is a SOCP
- If $A_i \in \mathcal{S}^n$ but may be indefinite

$$x^{\mathsf{T}}A_{i}x + 2b_{i}^{\mathsf{T}}x + c_{i} = \left\langle A_{i}, xx^{\mathsf{T}} \right\rangle + 2b_{i}^{\mathsf{T}}x + c_{i}$$

The original problem is equivalent to

min
$$\operatorname{Tr} A_0 X + 2b_0^{\top} x + c_0$$

s.t. $\operatorname{Tr} A_i X + 2b_i^{\top} x + c_i \leq 0, \quad i = 1, \dots, m$
 $X = xx^{\top}$

QCQP

• If $A_i \in \mathcal{S}^n$ but may be indefinite

$$x^{\top}A_{i}x + 2b_{i}^{\top}x + c_{i} = \left\langle \begin{pmatrix} A_{i} & b_{i} \\ b_{i}^{\top} & c_{i} \end{pmatrix}, \begin{pmatrix} X & x \\ x^{\top} & 1 \end{pmatrix} \right\rangle := \left\langle \bar{A}_{i}, \bar{X} \right\rangle$$

 $\bar{X} \succeq 0$ is equivalent to $X \succeq xx^{\top}$

The SDP relaxation is

min
$$\operatorname{Tr} A_0 X + 2b_0^{\top} x + c_0$$

s.t. $\operatorname{Tr} A_i X + 2b_i^{\top} x + c_i \leq 0, \quad i = 1, \dots, m$
 $X \succeq x x^{\top}$

- Maxcut: $\max x^{\top} Wx$, s.t. $x_i^2 = 1$
- Phase retrieval: $|a_i^\top x| = b_i$, the value of $a_i^\top x$ is complex

Max cut

• For graph (V, E) and weights $w_{ij} = w_{ji} \ge 0$, the maxcut problem is

(Q)
$$\max_{x} \frac{1}{2} \sum_{i < j} w_{ij} (1 - x_i x_j), \text{ s.t. } x_i \in \{-1, 1\}$$

Relaxation:

$$(P) \quad \max_{v_i \in \mathbb{R}^n} \frac{1}{2} \sum_{i < j} w_{ij} (1 - v_i^\top v_j), \quad \text{s.t.} \quad \|v_i\|_2 = 1$$

Equivalent SDP of (P):

$$(SDP) \quad \max_{X \in S^n} \frac{1}{2} \sum_{i < j} w_{ij} (1 - X_{ij}), \text{ s.t. } X_{ii} = 1, X \succeq 0$$

23/34

Max cut: rounding procedure

Goemans and Williamson's randomized approach

• Solve (SDP) to obtain an optimal solution X. Compute the decomposition $X = V^{\top}V$, where

$$V = [v_1, v_2, \dots, v_n]$$

- Generate a vector r uniformly distributed on the unit sphere, i.e., $||r||_2 = 1$
- Set

$$x_i = \begin{cases} 1 & v_i^\top r \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Max cut: theoretical results

• Let W be the objective function value of x and E(W) be the expected value. Then

$$E(W) = \frac{1}{\pi} \sum_{i < j} w_{ij} \arccos(v_i^{\top} v_j)$$

Goemans and Williamson showed:

$$E(W) \ge \alpha \frac{1}{2} \sum_{i \le j} w_{ij} (1 - v_i^\top v_j)$$

where

$$\alpha = \min_{0 \le \theta \pi} \frac{2}{\pi} \frac{\theta}{1 - \cos \theta} > 0.878$$

• Let $Z_{(SDP)}^*$ and $Z_{(O)}^*$ be the optimal values of (SDP) and (Q)

$$E(W) \ge \alpha Z_{(SDP)}^* \ge \alpha Z_{(Q)}^*$$

SDP-Representablity

What kind of problems can be expressed by SDP and SOCP?

• Definition: A set $X \subseteq R^n$ is SDP-representable (or SDP-Rep for short) if it can be expressed linearly as the feasible region of an SDP

 $X = \{x \mid \text{there exist } u \in \mathbb{R}^k \text{ such that for some } \}$

$$A_i, B_j, C \in \mathbb{R}^{m \times m} : \sum_i x_i A_i + \sum_j u_j B_j + C \succeq 0$$

SDP-Representablity

• Definition: A function f(x) is SDP-Rep if its epigraph

$$epi(f) = \{(x_0, x) \mid f(x) \le x_0\}$$

is SDP-representable

- If X is SDP-Rep, then $\min_{x \in X} c^{\top}x$ is an SDP
- If f(x) is SDP-Rep, then $\min_x f(x)$ is an SDP

A "calculus" of SDP-Rep sets and functions

SDP-Rep sets and functions remain so under finitely many applications of most convex-preserving operations. If X and Y are SDP-Rep then so are

- Minkowski sum X + Y
- intersection $X \cap Y$
- Affine pre-image $A^{-1}(X)$ if A is affine
- Affine map A(X) if A is affine
- Cartesian Product: $X \times Y = \{(x, y) \mid x \in X, y \in Y\}$

SDP-Rep Functions

If functions f_i , $i=1,\ldots,m$ and g are SDP-Rep. Then the following are SDP-Rep

- nonnegative sum $\sum_i \alpha_i f_i$ for $\alpha_i \geq 0$
- maximum $\max_i f_i$
- composition: $g(f_1(x), \dots, f_m(x))$ if $f_i : \mathbb{R}^n \to R$ and $g : \mathbb{R}^m \to \mathbb{R}$
- Legendre transform

$$f^*(y) = \max_{x} \quad y^{\top} x - f(x)$$

Positive Polynomials

 The set of nonnegative polynomials of a given degree forms a proper cone

$$\mathcal{P}_n = \{(p_0, \dots, p_n) \mid p_0 + p_1 t + \dots + p_n t^t > 0 \text{ for all } t \in I\}$$
 where I is any of $[a, b], [a, \infty)$ or $(-\infty, \infty)$

- Important fact: The cone of positive polynomials is SDP-Rep
- To see this we need to introduce another problem

The Moment cone

The Moment space and Moment cone

• Let $(c_0, c_1, \dots, c_n)^{\top}$ be such that there is a probability measure F where

$$c_i = \int_I t^i dF$$
, for $i = 0, \dots, n$.

The set of such vectors is the Moment space

The Moment cone

$$\mathcal{M}_n = \{ac \mid \text{There is a distribution } F : c_i = \int_I t^i dF \text{ and } a \geq 0\}$$

The Moment cone

The moment cone is also SDP-Rep:

• The discrete Hamburger moment problem:

$$I = \mathbb{R}, \quad c \in \mathcal{M}_{2n+1} \Longleftrightarrow$$

$$\begin{pmatrix} c_0 & c_1 & \dots & c_n \\ c_1 & c_2 & \dots & c_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \dots & c_{2n} \end{pmatrix} \succeq 0$$

This is the Hankel matrix

The Moment cone

The discrete Stieltjes moment problem

$$I = [0, \infty), \quad c \in \mathcal{M}_m \Longleftrightarrow$$

$$\begin{pmatrix} c_0 & c_1 & \dots & c_n \\ c_1 & c_2 & \dots & c_{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n+1} & \dots & c_{2n} \end{pmatrix} \succeq 0, \text{ and } \begin{pmatrix} c_1 & c_2 & \dots & c_{n-1} \\ c_2 & c_3 & \dots & c_n \\ \vdots & \vdots & \ddots & \vdots \\ c_{n-1} & c_n & \dots & c_{2n-1} \end{pmatrix} \succeq 0$$
 where $m = \lfloor \frac{n}{2} \rfloor$

• The Hausdorff moment problem where I=[0,1] is similarly SDP-Rep

Moment and positive polynomial cones

- $\mathcal{P}_n^* = \mathcal{M}_n$, i.e., i.e. moment cones and nonnegative polynomials are dual of each other
- If $\{u_0(x), \ldots, u_n(x)\}$, $x \in I$ are linearly independent functions (possibly of several variables)
- The cone of polynomials that can be expressed as sum of squares is SDP-Rep.
- if I is a one dimensional set then positive polynomials and sum of square polynomials coincide
- In general except for I one-dimensional positive polynomials properly include sum of square polynomials