Lecture: Algorithms for LP, SOCP and SDP

Zaiwen Wen

Beijing International Center For Mathematical Research Peking University

```
http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html
    wenzw@pku.edu.cn
```

Acknowledgement: this slides is based on chapters 13 and 14 of "Numerical Optimization", Jorge Nocedal and Stephen Wright, Springer some parts are based on Prof. Farid Alizadeh lecture notes

Outline

(1) Properties of LP

(2) Primal Simplex method

(3) Dual Simplex method

4 Interior Point method

Standard form LP

(P) $\min c^{\top} x$
(D) $\max b^{\top} y$

$$
\begin{array}{lll}
\text { s.t. } & A x=b & \text { s.t. }
\end{array} A^{\top} y+s=c
$$

- KKT condition

$$
\begin{aligned}
A x & =b, \quad x \geq 0 \\
A^{\top} y+s & =c, \quad s \geq 0 \\
x_{i} s_{i} & =0 \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

- Strong duality: If a LP has an optimal solution, so does its dual, and their objective fun. are equal.

dual primal	finite	unbounded	infeasible
finite	\checkmark	\times	\times
unbounded	\times	\times	\checkmark
infeasible	\times	\checkmark	\checkmark

Geometry of the feasible set

- Assume that $A \in \mathbb{R}^{m \times n}$ has full row rank. Let A_{i} be the i th column of A :

$$
A=\left(\begin{array}{llll}
A_{1} & A_{2} & \ldots & A_{n}
\end{array}\right)
$$

- A vector x is a basic feasible solution (BFS) if x is feasible and there exists a subset $\mathcal{B} \subset\{1,2, \ldots, n\}$ such that
- \mathcal{B} contains exactly m indices
- $i \notin \mathcal{B} \Longrightarrow x_{i}=0$
- The $m \times m$ submatrix $B=\left[A_{i}\right]_{i \in \mathcal{B}}$ is nonsingular \mathcal{B} is called a basis and B is called the basis matrix

Properties:

- If (P) has a nonempty feasible region, then there is at least one basic feasible point;
- If (P) has solutions, then at least one such solution is a basic optimal point.
- If (P) is feasible and bounded, then it has an optimal solution.

If (P) has a nonempty feasible region, then there is at least one BFS;

- Choose a feasible x with the minimal number (p) of nonzero x_{i} : $\sum_{i=1}^{p} A_{i} x_{i}=b$
- Suppose that A_{1}, \ldots, A_{p} are linearly dependent $A_{p}=\sum_{i=1}^{p-1} z_{i} A_{i}$. Let $x(\epsilon)=x+\epsilon\left(z_{1}, \ldots, z_{p-1},-1,0, \ldots, 0\right)^{\top}=x+\epsilon z$. Then $A x(\epsilon)=b, x_{i}(\epsilon)>0, i=1, \ldots, p$, for ϵ sufficiently small. There exists $\bar{\epsilon}$ such that $x_{i}(\bar{\epsilon})=0$ for some $i=1, \ldots, p$. Contradiction to the choice of x.
- If $p=m$, done. Otherwise, choose $m-p$ columns from among A_{p+1}, \ldots, A_{n} to build up a set set of m linearly independent vectors.

Polyhedra, extreme points, vertex, BFS

- A Polyhedra is a set that can be described in the form $\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$
- Let P be a polyhedra. A vector $x \in P$ is an extreme point if we cannot find two vectors $y, z \in P$ (both different from x) such that $x=\lambda y+(1-\lambda) z$ for $\lambda \in[0,1]$
- Let P be a polyhedra. A vector $x \in P$ is a vertex if there exists some c such that $c^{\top} x<c^{\top} y$ for all $y \in P$ and $y \neq x$
- Let P be a nonempty polyhedra. Let $x \in P$. The following statements are equivalent: (i) x is vertex; (ii) x is an extreme point; (iii) x is a BFS
- A basis \mathcal{B} is said to be degenerate if $x_{i}=0$ for some $i \in \mathcal{B}$, where x is the BFS corresponding to \mathcal{B}. A linear program (P) is said to be degenerate if it has at least one degenerate basis.

Vertices of a three-dimensional polyhedron (indicated by *)

Outline

(1) Properties of LP

(2) Primal Simplex method

(3) Dual Simplex method

4 Interior Point method

The Simplex Method For LP

Basic Principle

Move from a BFS to its adjacent BFS unitil convergence (either optimal or unbounded)

- Let x be a BFS and \mathcal{B} be the corresponding basis
- Let $\mathcal{N}=\{1,2, \ldots, n\} \backslash \mathcal{B}, N=\left[A_{i}\right]_{i \in \mathcal{N}}, x_{B}=\left[x_{i}\right]_{i \in \mathcal{B}}$ and $x_{N}=\left[x_{i}\right]_{i \in \mathcal{N}}$
- Since x is a BFS, then $x_{N}=0$ and $A x=B x_{B}+N x_{N}=b$:

$$
x_{B}=B^{-1} b
$$

- Find exactly one $q \in \mathcal{N}$ and exactly one $p \in \mathcal{B}$ such that

$$
\mathcal{B}^{+}=\{q\} \cup(\mathcal{B} \backslash\{p\})
$$

Finding $q \in \mathcal{N}$ to enter the basis

Let x^{+}be the new BFS:

$$
x^{+}=\binom{x_{\mathcal{B}}^{+}}{x_{\mathcal{N}}^{+}}, \quad A x^{+}=b \Longrightarrow x_{\mathcal{B}}^{+}=B^{-1} b-B^{-1} N x_{\mathcal{N}}^{+}
$$

The cost at x^{+}is

$$
\begin{aligned}
c^{\top} x^{+} & =c_{B}^{\top} x_{\mathcal{B}}^{+}+c_{N}^{\top} x_{\mathcal{N}}^{+} \\
& =c_{B}^{\top} B^{-1} b-c_{B}^{\top} B^{-1} N x_{\mathcal{N}}^{+}+c_{N}^{\top} x_{\mathcal{N}}^{+} \\
& =c^{\top} x+\left(c_{N}^{\top}-c_{B}^{\top} B^{-1} N\right) x_{\mathcal{N}}^{+} \\
& =c^{\top} x+\sum_{j \in \mathcal{N}}(\underbrace{c_{j}-c_{B}^{\top} B^{-1} A_{j}}_{s_{j}} x_{j}^{+}
\end{aligned}
$$

- s_{j} is also called reduced cost. It is actually the dual slackness
- If $s_{j} \geq 0, \forall j \in \mathcal{N}$, then x is optimal as $c^{\top} x^{+} \geq c^{\top} x$
- Otherwise, find q such that $s_{q}<0$. Then $c^{\top} x^{+}=c^{\top} x+s_{q} x_{q}^{+} \leq c^{\top} x$

Finding $p \in \mathcal{B}$ to exit the basis

What is x^{+}: select $q \in \mathcal{N}$ and $p \in \mathcal{B}$ such that

$$
x_{\mathcal{B}}^{+}=B^{-1} b-B^{-1} A_{q} x_{q}^{+}, \quad x_{q}^{+} \geq 0, x_{p}^{+}=0, x_{j}^{+}=0, j \in \mathcal{N} \backslash\{q\}
$$

Let $u=B^{-1} A_{q}$. Then $x_{\mathcal{B}}^{+}=x_{\mathcal{B}}-u x_{q}^{+}$

- If $u \leq 0$, then $c^{\top} x^{+}=c^{\top} x+s_{q} x_{q}^{+} \rightarrow-\infty$ as $x_{q}^{+} \rightarrow+\infty$ and x^{+}is feasible. (P) is unbounded
- If $\exists u_{k}>0$, then find x_{q}^{+}and p such that

$$
x_{\mathcal{B}}^{+}=x_{\mathcal{B}}-u x_{q}^{+} \geq 0, \quad x_{p}^{+}=0
$$

Let p be the index corresponding to

$$
x_{q}^{+}=\min _{i=1, \ldots, m \mid u_{i}>0} \frac{x_{\mathcal{B}(i)}}{u_{i}}
$$

An iteration of the simplex method

Typically, we start from a BFS x and its associate basis \mathcal{B} such that $x_{B}=B^{-1} b$ and $x_{N}=0$.

- Solve $y^{\top}=c_{B}^{\top} B^{-1}$ and then the reduced costs $s_{N}=c_{N}-N^{\top} y$
- If $s_{N} \geq 0, x$ is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_{q}<0$.
- Compute $u=B^{-1} A_{q}$. If $u \leq 0$, then (P) is unbounded and stop.
- If $\exists u_{k}>0$, then find $x_{q}^{+}=\min _{i=1, \ldots, m \mid u_{i}>0} \frac{x_{\mathcal{B}(i)}}{u_{i}}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^{+}=x_{\mathcal{B}}-u x_{q}^{+}$.
- Change \mathcal{B} by adding q and removing the basic variable corresponding to column p of B.

Simplex iterates for a two-dimensional problem

Finite Termination of the simplex method

Theorem

Suppose that the LP (P) is nondegenerate and bounded, the simplex method terminates at a basic optimal point.

- nondegenerate: $x_{\mathcal{B}}>0$ and $c^{\top} x$ is bounded
- A strict reduction of $c^{\top} x$ at each iteration
- There are only a finite number of BFS since the number of possible bases \mathcal{B} is finite (there are only a finite number of ways to choose a subset of m indices from $\{1,2, \ldots, n\}$), and since each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm

Linear algebra in the simplex method

- Given B^{-1}, we need to compute \bar{B}^{-1}, where

$$
B=\left[A_{1}, \ldots, A_{m}\right], \quad \bar{B}:=B^{+}=\left[A_{1}, \ldots, A_{p-1}, A_{q}, A_{p+1}, \ldots, A_{m}\right]
$$

- the cost of inversion \bar{B}^{-1} from scratch is $O\left(m^{3}\right)$
- Since $B B^{-1}=I$, we have

$$
\begin{aligned}
B^{-1} \bar{B} & =\left[e_{1}, \ldots e_{p-1}, u, e_{p+1}, \ldots, e_{m}\right] \\
& =\left(\begin{array}{ccccc}
1 & & u_{1} & & \\
& \ddots & \vdots & & \\
& & u_{p} & & \\
& & \vdots & \ddots & \\
& & u_{m} & & 1
\end{array}\right),
\end{aligned}
$$

where e_{i} is the i th column of I and $u=B^{-1} A_{q}$

Linear algebra in the simplex method

- Apply a sequence of "elementary row operation"
- For each $j \neq p$, we add the p-th row times $-\frac{u_{j}}{u_{p}}$ to the j th row. This replaces u_{j} by zero.
- We divide the p th row by u_{p}. This replaces u_{p} by one.

$$
Q_{i p}=I+D_{i p}, \quad\left(D_{i p}\right)_{j l}=\left\{\begin{array}{ll}
-\frac{u_{j}}{u_{p}}, & (j, l)=(i, p) \\
0, & \text { otherwise }
\end{array}, \text { for } i \neq p\right.
$$

- Find Q such that $Q B^{-1} \bar{B}=I$. Computing \bar{B}^{-1} needs only $O\left(m^{2}\right)$
- What if B^{-1} is computed by the LU factorization, i.e., $B=L U$?
L is is unit lower triangular, U is upper triangular. Read section 13.4 in "Numerical Optimization", Jorge Nocedal and Stephen Wright,

An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis \mathcal{B} such that $x_{B}=B^{-1} b$ and $x_{N}=0$.

- Solve $y^{\top}=c_{B}^{\top} B^{-1}$ and then the reduced costs $s_{N}=c_{N}-N^{\top} y$
- If $s_{N} \geq 0, x$ is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_{q}<0$.
- Compute $u=B^{-1} A_{q}$. If $u \leq 0$, then (P) is unbounded and stop.
- If $\exists u_{k}>0$, then find $x_{q}^{+}=\min _{i=1, \ldots, m \mid u_{i}>0} \frac{x_{\mathcal{B}(i)}}{u_{i}}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^{+}=x_{\mathcal{B}}-u x_{q}^{+}$.
- Form the $m \times(m+1)$ matrix $\left[B^{-1} \mid u\right]$. Add to each one of its rows a multiple of the p th row to make the last column equal to the unit vector e_{p}. The first m columns of the result is the matrix \bar{B}^{-1}.

Selection of the entering index (pivoting rule)

Reduced costs $s_{N}=c_{N}-N^{\top} y, c^{\top} x^{+}=c^{\top} x+s_{q} x_{q}^{+}$

- Dantzig: chooses $q \in \mathcal{N}$ such that s_{q} is the most negative component
- Bland's rule: choose the smallest $j \in \mathcal{N}$ such that $s_{j}<0$; out of all variables x_{i} that are tied in the test for choosing an exiting variable, select the one with with the smallest value i.
- Steepest-edge: choose $q \in \mathcal{N}$ such that $\frac{c^{\top} \eta_{q}}{\left\|\eta_{q}\right\|}$ is minimized, where

$$
x^{+}=\binom{x_{B}^{+}}{x_{N}^{+}}=\binom{x_{B}}{x_{N}}+\binom{-B^{-1} A_{q}}{e_{q}} x_{q}=x+\eta_{q} x_{q}^{+}
$$

efficient computation of this rule is available

Degenerate steps and cycling

Let q be the entering variable:

$$
x_{\mathcal{B}}^{+}=B^{-1} b-B^{-1} A_{q} x_{q}^{+}=x_{B}-x_{q}^{+} u, \text { where } u=B^{-1} A_{q}
$$

- Degenerate step: there exists $i \in \mathcal{B}$ such that $x_{i}=0$ and $u_{i}>0$. Then $x_{i}^{+}<0$ if $x_{q}^{+}>0$. Hence, $x_{q}^{+}=0$ and do the pivoting
- Degenerate step may still be useful because they change the basis \mathcal{B}, and the updated \mathcal{B} may be closer to the optimal basis.
- cycling: after a number of successive degenerate steps, we may return to an earlier basis \mathcal{B}
- Cycling has been observed frequently in the large LPs that arise as relaxations of integer programming problems
- Avoid cycling: Bland's rule and Lexicographically pivoting rule

Finding an initial BFS

The two-phase simplex method

$$
\begin{array}{llrl}
\text { (P) } \begin{array}{llrl}
\min & c^{\top} x & \text { (P0) } \tilde{f}=\min & z_{1}+z_{2}+\ldots+z_{m} \\
\mathrm{s.t.} & A x=b & \text { s.t. } & A x+z=b \\
& x \geq 0 & & x \geq 0, \quad z \geq 0
\end{array}, ~
\end{array}
$$

- A BFS to (PO): $x=0$ and $z=b$
- If x is feasible to (P), then $(x, 0)$ is feasible to (PO)
- If the optimal cost \tilde{f} of (PO) is nonzero, then (P) is infeasible
- If $\tilde{f}=0$, then its optimal solution must satisfies: $z=0$ and x is feasible to (P)
- An optimal basis \mathcal{B} to (P0) may contain some components of z

Finding an initial BFS

(x, z) is optimal to (PO) with some components of z in the basis

- Assume A_{1}, \ldots, A_{k} are in the basis matrix with $k<m$. Then

$$
\begin{gathered}
B=\left[A_{1}, \ldots, A_{k} \mid \text { some columns of } I\right] \\
B^{-1} A=\left[e_{1}, \ldots, e_{k}, B^{-1} A_{k+1}, \ldots, B^{-1} A_{n}\right]
\end{gathered}
$$

- Suppose that ℓ th basic variable is an artificial variable
- If the ℓ th row of $B^{-1} A$ is zero, then $g^{\top} A=0^{\top}$, where g^{\top} is the ℓ th row of B^{-1}. If $g^{\top} b \neq 0,(\mathrm{P})$ is infeasible. Otherwise, A has linearly dependent rows. Remove the ℓ th row.
- There exists j such that the ℓ th entry of $B^{-1} A_{j}$ is nonzero. Then A_{j} is linearly independent to A_{1}, \ldots, A_{k}. Perform elementary row operation to replace $B^{-1} A_{j}$ to be the ℓ th unit vector. Driving one of z out of the basis

The primal simplex method for LP

$$
\begin{array}{lllcl}
\text { (P) } \begin{array}{llll}
\min & c^{\top} x & \text { (D) } & \max
\end{array} b^{\top} y \\
\text { s.t. } & A x=b & & \text { s.t. } & A^{\top} y+s=c \\
& x \geq 0 & & & s \geq 0
\end{array}
$$

- KKT condition

$$
\begin{aligned}
A x & =b, \quad x \geq 0 \\
A^{\top} y+s & =c, \quad s \geq 0 \\
x_{i} s_{i} & =0 \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

- The primal simplex method generates

$$
\begin{aligned}
x_{B} & =B^{-1} b \geq 0, \quad x_{N}=0, \\
y & =B^{-T} c_{B} \\
s_{B} & =c_{B}-B^{\top} y=0, s_{N}=c_{N}-N^{\top} y ? 0
\end{aligned}
$$

Outline

(1) Properties of LP

(2) Primal Simplex method

(3) Dual Simplex method

4 Interior Point method

The dual simplex method for LP

- The dual simplex method generates

$$
\begin{aligned}
x_{B} & =B^{-1} b ? 0, \quad x_{N}=0 \\
y & =B^{-T} c_{B}, \\
s_{B} & =c_{B}-B^{\top} y=0, s_{N}=c_{N}-N^{\top} y \geq 0
\end{aligned}
$$

- If $x_{B} \geq 0$, then (x, y, s) is optimal
- Otherwise, select $q \in \mathcal{B}$ such that $x_{q}<0$ to exit the basis, select $r \in \mathcal{N}$ to enter the basis, i.e., $s_{r}^{+}=0$
- The update is of the form

$$
\begin{aligned}
& s_{B}^{+}=s_{B}+\alpha e_{q} \quad \text { obvious } \\
& y^{+}=y+\alpha v \quad \text { requirement }
\end{aligned}
$$

The dual simplex method for LP

- What is v ? Since $A^{\top} y^{+}+s^{+}=c$, it holds

$$
\begin{gathered}
s_{B}^{+}=c_{B}-B^{\top} y^{+} \\
\Longrightarrow s_{B}+\alpha e_{q}=c_{B}-B^{\top}(y+\alpha v) \Longrightarrow e_{q}=-B^{\top} v
\end{gathered}
$$

- The update of the dual objective function

$$
\begin{aligned}
b^{\top} y^{+} & =b^{\top} y+\alpha b^{\top} v \\
& =b^{\top} y-\alpha b^{\top} B^{-T} e_{q} \\
& =b^{\top} y-\alpha x_{B}^{\top} e_{q} \\
& =b^{\top} y-\alpha x_{q}
\end{aligned}
$$

- Since $x_{q}<0$ and we maximize $b^{\top} y^{+}$, we choose α as large as possible, but require $s_{N}^{+} \geq 0$

The dual simplex method for LP

- Let $w=N^{\top} v=-N^{\top} B^{-T} e_{q}$. Since $A y+s=c$ and $A^{\top} y^{+}+s^{+}=c$, it holds

$$
s_{N}^{+}=c_{N}-N^{\top} y^{+}=s_{N}-\alpha N^{\top} v=s_{N}-\alpha w \geq 0
$$

- The largest α is

$$
\alpha=\min _{j \in \mathcal{N}, w_{j}>0} \frac{s_{j}}{w_{j}} .
$$

Let r be the index at which the minimum is achieved.

$$
s_{r}^{+}=0, \quad w_{r}=A_{r}^{\top} v>0
$$

- (D) is unbounded if $w \leq 0$

The dual simplex method for LP: update of x^{+}

We have: $B x_{B}=b, x_{q}^{+}=0, x_{r}^{+}=\gamma$ and $A x^{+}=b$, i.e.,

$$
B x_{\mathcal{B}}^{+}+\gamma A_{r}=b \Longrightarrow x_{\mathcal{B}}^{+}=B^{-1} b-\gamma B^{-1} A_{r},
$$

where $B d=A_{r}$. Then $A x^{+}=b$ gives

$$
B\left(x_{\mathcal{B}}-\gamma d\right)+\gamma A_{r}=b \text { for any } \gamma
$$

Since it is required $x_{q}^{+}=0$, we set

$$
\gamma=\frac{x_{q}}{d_{q}}, \text { where } d_{q}=d^{\top} e_{q}=A_{r}^{\top} B^{-T} e_{q}=-A_{r}^{\top} v=-w_{r}<0
$$

Therefore

$$
x_{i}^{+}= \begin{cases}x_{i}-\gamma d_{i}, & \text { for } i \in \mathcal{B} \text { with } i \neq q, \\ 0, & i=q, \\ 0, & i \in \mathcal{N} \text { with } i \neq r, \\ \gamma, & i=r\end{cases}
$$

An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis \mathcal{B} such that $x_{B}=B^{-1} b$ and $x_{N}=0$.

- If $x_{B} \geq 0$, then x is optimal and stop. Else, choose q such that $x_{q}<0$.
- Compute $v=-B^{-T} e_{q}$ and $w=N^{\top} v$. If $w \leq 0$, then (D) is unbounded and stop.
- If $\exists w_{k}>0$, then find $\alpha=\min _{j \in \mathcal{N}, w_{j}>0} \frac{s_{j}}{w_{j}}$ and use r to denote the minimizing j. Set $s_{B}^{+}=s_{B}+\alpha e_{q}, s_{N}^{+}=s_{N}-\alpha w$ and $y^{+}=y+\alpha v$.
- Change \mathcal{B} by adding r and removing the basic variable corresponding to column q of B.

Outline

(1) Properties of LP

(2) Primal Simplex method

(3) Dual Simplex method

4 Interior Point method

Primal-Dual Methods for LP

(P) $\min c^{\top} x$
(D) $\max b^{\top} y$
s.t. $\quad A x=b$
$x \geq 0$

$$
\begin{array}{ll}
\text { s.t. } & A^{\top} y+s=c \\
& s \geq 0
\end{array}
$$

- KKT condition

$$
\begin{aligned}
A x & =b, \quad x \geq 0 \\
A^{\top} y+s & =c, \quad s \geq 0 \\
x_{i} s_{i} & =0 \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

- Perturbed system

$$
\begin{aligned}
A x & =b, \quad x \geq 0 \\
A^{\top} y+s & =c, \quad s \geq 0 \\
x_{i} s_{i} & =\sigma \mu \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

Newton's method

- Let (x, y, s) be the current estimate with $(x, s)>0$
- Let $(\Delta x, \Delta y, \Delta s)$ be the search direction
- Let $\mu=\frac{1}{n} x^{\top} s$ and $\sigma \in(0,1)$. Hope to find

$$
\begin{aligned}
A(x+\Delta x) & =b \\
A^{\top}(y+\Delta y)+s+\Delta s & =c \\
\left(x_{i}+\Delta x_{i}\right)\left(s_{i}+\Delta s_{i}\right) & =\sigma \mu
\end{aligned}
$$

- dropping the nonlinaer term $\Delta x_{i} \Delta s_{i}$ gives

$$
\begin{aligned}
A \Delta x & =r_{p}:=b-A x \\
A^{\top} \Delta y+\Delta s & =r_{d}:=c-A^{\top} y-s \\
x_{i} \Delta s_{i}+\Delta x_{i} s_{i} & =\left(r_{c}\right)_{i}:=\sigma \mu-x_{i} s_{i}
\end{aligned}
$$

Newton's method

- Let $\mathrm{L}_{x}=\operatorname{Diag}(x)$ and $\mathrm{L}_{s}=\operatorname{Diag}(s)$. The matrix form is:

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
\mathrm{~L}_{s} & 0 & \mathrm{~L}_{x}
\end{array}\right)\left(\begin{array}{c}
\Delta x \\
\Delta y \\
\Delta s
\end{array}\right)=\left(\begin{array}{l}
r_{p} \\
r_{d} \\
r_{c}
\end{array}\right)
$$

- Solving this system we get

$$
\begin{aligned}
\Delta y & =\left(A \mathrm{~L}_{s}^{-1} \mathrm{~L}_{x} A^{\top}\right)^{-1}\left(r_{p}+A \mathrm{~L}_{s}^{-1}\left(\mathrm{~L}_{x} r_{d}-r_{c}\right)\right) \\
\Delta s & =r_{d}-A^{\top} \Delta y \\
\Delta x & =-\mathrm{L}_{s}^{-1}\left(\mathrm{~L}_{x} \Delta s-r_{c}\right)
\end{aligned}
$$

- The matrix $A \mathrm{~L}_{s}^{-1} \mathrm{~L}_{x} A^{\top}$ is symmetric and positive definite if A is full rank

The Primal-Dual Path-following Method

Given $\left(x^{0}, y^{0}, s^{0}\right)$ with $\left(x^{0}, s^{0}\right) \geq 0$. A typical iteration is

- Choose $\mu=\left(x^{k}\right)^{\top} s^{k} / n, \sigma \in(0,1)$ and solve

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
\mathrm{~L}_{s^{k}} & 0 & \mathrm{~L}_{x^{k}}
\end{array}\right)\left(\begin{array}{l}
\Delta x^{k} \\
\Delta y^{k} \\
\Delta s^{k}
\end{array}\right)=\left(\begin{array}{l}
r_{p}^{k} \\
r_{d}^{k} \\
r_{c}^{k}
\end{array}\right)
$$

- Set

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha_{k}\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

choosing α_{k} such that $\left(x^{k+1}, s^{k+1}\right)>0$

The choices of centering parameter σ and step length α_{k} are crucial to the performance of the method.

The Central Path

- The primal-dual feasible and strictly feasible sets:

$$
\begin{aligned}
\mathcal{F} & =\left\{(x, y, s) \mid A x=b, A^{\top} y+s=c,(x, s) \geq 0\right\} \\
\mathcal{F}^{o} & =\left\{(x, y, s) \mid A x=b, A^{\top} y+s=c,(x, s)>0\right\}
\end{aligned}
$$

- The central path is $\mathcal{C}=\left\{\left(x_{\tau}, y_{\tau}, s_{\tau}\right) \mid \tau>0\right\}$, where

$$
\begin{aligned}
A x_{\tau} & =b, \quad x_{\tau}>0 \\
A^{\top} y_{\tau}+s_{\tau} & =c, \quad s_{\tau}>0 \\
\left(x_{\tau}\right)_{i}\left(s_{\tau}\right)_{i} & =\tau \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

- Central path neighborhoods, for $\theta, \gamma \in[0,1)$:

$$
\begin{aligned}
\mathcal{N}_{2}(\theta) & =\left\{(x, y, s) \in \mathcal{F}^{o} \mid\left\|\mathrm{L}_{x} \mathrm{~L}_{s} e-\mu e\right\|_{2} \leq \theta \mu\right\} \\
\mathcal{N}_{-\infty}(\gamma) & =\left\{(x, y, s) \in \mathcal{F}^{o} \mid x_{i} s_{i} \geq \gamma \mu\right\}
\end{aligned}
$$

Tyically, $\theta=0.5$ and $\gamma=10^{-3}$

Central path, projected into space of primal variables x, showing a typical neighborhood \mathcal{N}

The Long-Step Path-following Method

Given $\left(x^{0}, y^{0}, s^{0}\right) \in \mathcal{N}_{-\infty}(\gamma)$. A typical iteration is

- Choose $\mu=\left(x^{k}\right)^{\top} s^{k} / n, \sigma \in(0,1)$ and solve

$$
\left(\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{\top} & I \\
\mathrm{~L}_{s^{k}} & 0 & \mathrm{~L}_{x^{k}}
\end{array}\right)\left(\begin{array}{l}
\Delta x^{k} \\
\Delta y^{k} \\
\Delta s^{k}
\end{array}\right)=\left(\begin{array}{c}
r_{p}^{k} \\
r_{d}^{k} \\
r_{c}^{k}
\end{array}\right)
$$

- Set α_{k} be the largest value of $\alpha \in[0,1]$ such that $\left(x^{k+1}, y^{k+1}, s^{k+1}\right) \in \mathcal{N}_{-\infty}(\gamma)$ where

$$
\left(x^{k+1}, y^{k+1}, s^{k+1}\right)=\left(x^{k}, y^{k}, s^{k}\right)+\alpha_{k}\left(\Delta x^{k}, \Delta y^{k}, \Delta s^{k}\right)
$$

Analysis of Primal-Dual Path-Following

(1) If $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma)$, then $\|\Delta x \circ \Delta s\| \leq 2^{-3 / 2}(1+1 / \gamma) n \mu$
(2) The long-step path-following method yields

$$
\mu_{k+1} \leq\left(1-\frac{\delta}{n}\right) \mu_{k}
$$

where $\delta=2^{3 / 2} \gamma \frac{1-\gamma}{1+\gamma} \sigma(1-\sigma)$
(3) Given $\epsilon, \gamma \in(0,1)$, suppose that the starting point $\left(x^{0}, y^{0}, s^{0}\right) \in \mathcal{N}_{-\infty}(\gamma)$. Then there exists $K=O(n \log (1 / \epsilon))$ such that

$$
\mu_{k} \leq \epsilon \mu_{0}, \quad \text { for all } k \geq K
$$

Proof of 3:

$$
\begin{aligned}
\log \left(\mu_{k+1}\right) & \leq \log \left(1-\frac{\delta}{n}\right)+\log \left(\mu_{k}\right) \\
\log (1+\beta) & \leq \beta, \quad \forall \beta>-1
\end{aligned}
$$

