Lecture: Algorithms for LP, SOCP and SDP

Zaiwen Wen

Beijing International Center For Mathematical Research Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2023.html wenzw@pku.edu.cn

Acknowledgement: this slides is based on chapters 13 and 14 of "Numerical Optimization", Jorge Nocedal and Stephen Wright, Springer some parts are based on Prof. Farid Alizadeh lecture notes

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

1/38

Outline

Properties of LP

- 2 Primal Simplex method
- 3 Dual Simplex method
- Interior Point method

Standard form LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i s_i = 0 \quad \text{for } i = 1, \dots, n$$

 Strong duality: If a LP has an optimal solution, so does its dual, and their objective fun. are equal.

primal dual	finite	unbounded	infeasible
finite		×	×
unbounded	×	×	\checkmark
infeasible	×	\checkmark	\checkmark

3/38

Geometry of the feasible set

• Assume that $A \in \mathbb{R}^{m \times n}$ has **full row rank**. Let A_i be the *i*th column of A:

$$A = \begin{pmatrix} A_1 & A_2 & \dots & A_n \end{pmatrix}$$

- A vector *x* is a **basic feasible solution (BFS)** if *x* is feasible and there exists a subset *B* ⊂ {1, 2, ..., *n*} such that
 - B contains exactly m indices
 - $i \notin \mathcal{B} \Longrightarrow x_i = 0$
 - The $m \times m$ submatrix $B = [A_i]_{i \in B}$ is nonsingular

 \mathcal{B} is called a basis and B is called the basis matrix

Properties:

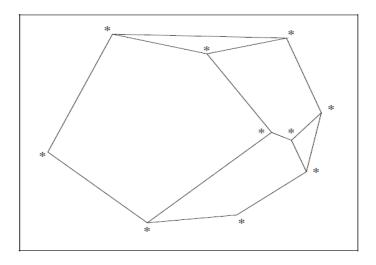
- If (P) has a nonempty feasible region, then there is at least one basic feasible point;
- If (P) has solutions, then at least one such solution is a basic optimal point.
- If (P) is feasible and bounded, then it has an optimal solution.

If (P) has a nonempty feasible region, then there is at least one BFS;

- Choose a feasible *x* with the minimal number (*p*) of nonzero x_i : $\sum_{i=1}^{p} A_i x_i = b$
- Suppose that A_1, \ldots, A_p are linearly dependent $A_p = \sum_{i=1}^{p-1} z_i A_i$. Let $x(\epsilon) = x + \epsilon(z_1, \ldots, z_{p-1}, -1, 0, \ldots, 0)^\top = x + \epsilon z$. Then $Ax(\epsilon) = b, x_i(\epsilon) > 0, i = 1, \ldots, p$, for ϵ sufficiently small. There exists $\overline{\epsilon}$ such that $x_i(\overline{\epsilon}) = 0$ for some $i = 1, \ldots, p$. Contradiction to the choice of x.
- If p = m, done. Otherwise, choose m p columns from among A_{p+1},...,A_n to build up a set set of m linearly independent vectors.

Polyhedra, extreme points, vertex, BFS

- A **Polyhedra** is a set that can be described in the form $\{x \in \mathbb{R}^n \mid Ax \ge b\}$
- Let *P* be a polyhedra. A vector *x* ∈ *P* is an **extreme point** if we cannot find two vectors *y*, *z* ∈ *P* (both different from *x*) such that *x* = λ*y* + (1 − λ)*z* for λ ∈ [0, 1]
- Let P be a polyhedra. A vector x ∈ P is a vertex if there exists some c such that c[⊤]x < c[⊤]y for all y ∈ P and y ≠ x
- Let *P* be a nonempty polyhedra. Let *x* ∈ *P*. The following statements are equivalent: (i) *x* is vertex; (ii) *x* is an extreme point; (iii) *x* is a BFS
- A basis B is said to be **degenerate** if x_i = 0 for some i ∈ B, where x is the BFS corresponding to B. A linear program (P) is said to be degenerate if it has at least one degenerate basis.



Vertices of a three-dimensional polyhedron (indicated by *)

Outline

Primal Simplex method

The Simplex Method For LP

Basic Principle

Move from a BFS to its adjacent BFS unitil convergence (either optimal or unbounded)

• Let *x* be a BFS and *B* be the corresponding basis

• Let
$$\mathcal{N} = \{1, 2, \dots, n\} \setminus \mathcal{B}$$
, $N = [A_i]_{i \in \mathcal{N}}$, $x_B = [x_i]_{i \in \mathcal{B}}$ and $x_N = [x_i]_{i \in \mathcal{N}}$

• Since x is a BFS, then $x_N = 0$ and $Ax = Bx_B + Nx_N = b$:

$$x_B = B^{-1}b$$

• Find exactly one $q \in \mathcal{N}$ and exactly one $p \in \mathcal{B}$ such that

$$\mathcal{B}^+ = \{q\} \cup (\mathcal{B} \setminus \{p\})$$

Finding $q \in \mathcal{N}$ to enter the basis

Let x^+ be the new BFS:

$$x^+ = \begin{pmatrix} x^+_{\mathcal{B}} \\ x^+_{\mathcal{N}} \end{pmatrix}, \quad Ax^+ = b \Longrightarrow x^+_{\mathcal{B}} = B^{-1}b - B^{-1}Nx^+_{\mathcal{N}}$$

The cost at x^+ is

$$c^{\top}x^{+} = c_{B}^{\top}x_{B}^{+} + c_{N}^{\top}x_{N}^{+}$$

$$= c_{B}^{\top}B^{-1}b - c_{B}^{\top}B^{-1}Nx_{N}^{+} + c_{N}^{\top}x_{N}^{+}$$

$$= c^{\top}x + (c_{N}^{\top} - c_{B}^{\top}B^{-1}N)x_{N}^{+}$$

$$= c^{\top}x + \sum_{j \in \mathcal{N}} (\underbrace{c_{j} - c_{B}^{\top}B^{-1}A_{j}}_{s_{i}})x_{j}^{+}$$

• s_j is also called **reduced cost**. It is actually the dual slackness

• If $s_j \ge 0$, $\forall j \in \mathcal{N}$, then x is optimal as $c^{\top}x^+ \ge c^{\top}x$

• Otherwise, find q such that $s_q < 0$. Then $c^{\top}x^+ = c^{\top}x + s_q x_q^+ \le c^{\top}x$

Finding $p \in \mathcal{B}$ to exit the basis

What is x^+ : select $q \in \mathcal{N}$ and $p \in \mathcal{B}$ such that

$$x^+_{\mathcal{B}} = B^{-1}b - B^{-1}A_q x^+_q, \quad x^+_q \ge 0, x^+_p = 0, x^+_j = 0, j \in \mathcal{N} \setminus \{q\}$$

Let $u = B^{-1}A_q$. Then $x_{\mathcal{B}}^+ = x_{\mathcal{B}} - ux_q^+$

- If u ≤ 0, then c^Tx⁺ = c^Tx + s_qx_q⁺ → -∞ as x_q⁺ → +∞ and x⁺ is feasible. (P) is unbounded
- If $\exists u_k > 0$, then find x_q^+ and p such that

$$x_{\mathcal{B}}^+ = x_{\mathcal{B}} - ux_q^+ \ge 0, \quad x_p^+ = 0$$

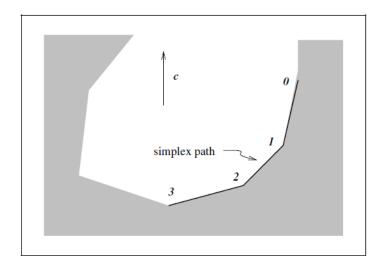
Let *p* be the index corresponding to

$$x_q^+ = \min_{i=1,\dots,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$$

An iteration of the simplex method

Typically, we start from a BFS *x* and its associate basis B such that $x_B = B^{-1}b$ and $x_N = 0$.

- Solve $y^{\top} = c_B^{\top} B^{-1}$ and then the reduced costs $s_N = c_N N^{\top} y$
- If $s_N \ge 0$, x is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_q < 0$.
- Compute $u = B^{-1}A_q$. If $u \le 0$, then (P) is unbounded and stop.
- If $\exists u_k > 0$, then find $x_q^+ = \min_{i=1,...,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^+ = x_{\mathcal{B}} ux_q^+$.
- Change *B* by adding *q* and removing the basic variable corresponding to column *p* of *B*.



Simplex iterates for a two-dimensional problem

Finite Termination of the simplex method

Theorem

Suppose that the LP (P) is nondegenerate and bounded, the simplex method terminates at a basic optimal point.

- nondegenerate: $x_{\mathcal{B}} > 0$ and $c^{\top}x$ is bounded
- A strict reduction of $c^{\top}x$ at each iteration
- There are only a finite number of BFS since the number of possible bases B is finite (there are only a finite number of ways to choose a subset of m indices from {1,2,...,n}), and since each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm

Linear algebra in the simplex method

• Given B^{-1} , we need to compute \overline{B}^{-1} , where

$$B = [A_1, \dots, A_m], \quad \bar{B} := B^+ = [A_1, \dots, A_{p-1}, A_q, A_{p+1}, \dots, A_m]$$

- the cost of inversion \overline{B}^{-1} from scratch is $O(m^3)$
- Since $BB^{-1} = I$, we have

$$B^{-1}\bar{B} = [e_1, \dots e_{p-1}, u, e_{p+1}, \dots, e_m] \\ = \begin{pmatrix} 1 & u_1 \\ & \ddots & \vdots \\ & u_p \\ & \vdots & \ddots \\ & u_m & 1 \end{pmatrix},$$

where e_i is the *i*th column of *I* and $u = B^{-1}A_q$

Linear algebra in the simplex method

- Apply a sequence of "elementary row operation"
 - For each *j* ≠ *p*, we add the *p*-th row times ^{*uj*}/_{*up*} to the *j*th row. This replaces *u_j* by zero.
 - We divide the *p*th row by u_p . This replaces u_p by one.

$$Q_{ip} = I + D_{ip}, \quad (D_{ip})_{jl} = \begin{cases} -\frac{u_j}{u_p}, & (j,l) = (i,p) \\ 0, & \text{otherwise} \end{cases}, \text{ for } i \neq p$$

- Find *Q* such that $QB^{-1}\overline{B} = I$. Computing \overline{B}^{-1} needs only $O(m^2)$
- What if B⁻¹ is computed by the LU factorization, i.e., B = LU? L is is unit lower triangular, U is upper triangular. Read section 13.4 in "Numerical Optimization", Jorge Nocedal and Stephen Wright,

An iteration of the revised simplex method

Typically, we start from a BFS *x* and its associate basis B such that $x_B = B^{-1}b$ and $x_N = 0$.

- Solve $y^{\top} = c_B^{\top} B^{-1}$ and then the reduced costs $s_N = c_N N^{\top} y$
- If $s_N \ge 0$, x is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_q < 0$.
- Compute $u = B^{-1}A_q$. If $u \le 0$, then (P) is unbounded and stop.
- If $\exists u_k > 0$, then find $x_q^+ = \min_{i=1,...,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^+ = x_{\mathcal{B}} ux_q^+$.
- Form the $m \times (m+1)$ matrix $[B^{-1} | u]$. Add to each one of its rows a multiple of the *p*th row to make the last column equal to the unit vector e_p . The first *m* columns of the result is the matrix \overline{B}^{-1} .

Selection of the entering index (pivoting rule)

Reduced costs $s_N = c_N - N^{\top}y$, $c^{\top}x^+ = c^{\top}x + s_q x_q^+$

- Dantzig: chooses $q \in \mathcal{N}$ such that s_q is the most negative component
- Bland's rule: choose the smallest *j* ∈ N such that *s_j* < 0; out of all variables *x_i* that are tied in the test for choosing an exiting variable, select the one with with the smallest value *i*.
- Steepest-edge: choose $q \in \mathcal{N}$ such that $rac{c^{ op}\eta_q}{\|\eta_q\|}$ is minimized, where

$$x^{+} = \begin{pmatrix} x_{B}^{+} \\ x_{N}^{+} \end{pmatrix} = \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} + \begin{pmatrix} -B^{-1}A_{q} \\ e_{q} \end{pmatrix} x_{q} = x + \eta_{q}x_{q}^{+}$$

efficient computation of this rule is available

Degenerate steps and cycling

Let q be the entering variable:

$$x_{\mathcal{B}}^{+} = B^{-1}b - B^{-1}A_{q}x_{q}^{+} = x_{B} - x_{q}^{+}u$$
, where $u = B^{-1}A_{q}$

- Degenerate step: there exists $i \in \mathcal{B}$ such that $x_i = 0$ and $u_i > 0$. Then $x_i^+ < 0$ if $x_q^+ > 0$. Hence, $x_q^+ = 0$ and do the pivoting
- Degenerate step may still be useful because they change the basis B, and the updated B may be closer to the optimal basis.
- cycling: after a number of successive degenerate steps, we may return to an earlier basis B
- Cycling has been observed frequently in the large LPs that arise as relaxations of integer programming problems
- Avoid cycling: Bland's rule and Lexicographically pivoting rule

Finding an initial BFS

The two-phase simplex method

(P) min
$$c^{\top}x$$
 (P0) $\tilde{f} = \min \ z_1 + z_2 + ... + z_m$
s.t. $Ax = b$ s.t. $Ax + z = b$
 $x \ge 0$ $x \ge 0, z \ge 0$

• A BFS to (P0):
$$x = 0$$
 and $z = b$

- If *x* is feasible to (P), then (*x*, 0) is feasible to (P0)
- If the optimal cost \tilde{f} of (P0) is nonzero, then (P) is infeasible
- If *f* = 0, then its optimal solution must satisfies: *z* = 0 and *x* is feasible to (P)
- An optimal basis B to (P0) may contain some components of z

Finding an initial BFS

(*x*, *z*) is optimal to (P0) with some components of *z* in the basis
Assume *A*₁,...,*A_k* are in the basis matrix with *k* < *m*. Then

 $B = [A_1, \ldots, A_k \mid \text{ some columns of } I]$

$$B^{-1}A = [e_1, \ldots, e_k, B^{-1}A_{k+1}, \ldots, B^{-1}A_n]$$

• Suppose that *l*th basic variable is an artificial variable

- If the *l*th row of *B*⁻¹*A* is zero, then *g*^T*A* = 0^T, where *g*^T is the *l*th row of *B*⁻¹. If *g*^T*b* ≠ 0, (P) is infeasible. Otherwise, *A* has linearly dependent rows. Remove the *l*th row.
- There exists *j* such that the ℓth entry of B⁻¹A_j is nonzero. Then A_j is linearly independent to A₁,..., A_k. Perform elementary row operation to replace B⁻¹A_j to be the ℓth unit vector. Driving one of *z* out of the basis

The primal simplex method for LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i s_i = 0 \quad \text{for } i = 1, \dots, n$$

• The primal simplex method generates

$$x_{B} = B^{-1}b \ge 0, \quad x_{N} = 0,$$

$$y = B^{-T}c_{B},$$

$$s_{B} = c_{B} - B^{\top}y = 0, s_{N} = c_{N} - N^{\top}y?0$$

22/38

Outline

<ロ>< □>< □>< □>< □>< □>< □>< □>< □>< □>< 0< 0 23/38

The dual simplex method for LP

The dual simplex method generates

$$x_B = B^{-1}b?0, \quad x_N = 0,$$

 $y = B^{-T}c_B,$
 $s_B = c_B - B^{\top}y = 0, s_N = c_N - N^{\top}y \ge 0$

• If $x_B \ge 0$, then (x, y, s) is optimal

- Otherwise, select *q* ∈ B such that *x_q* < 0 to exit the basis, select *r* ∈ N to enter the basis, i.e., *s_r⁺* = 0
- The update is of the form

$$s_B^+ = s_B + \alpha e_q$$
 obvious
 $y^+ = y + \alpha v$ requirement

The dual simplex method for LP

• What is *v*? Since $A^{\top}y^+ + s^+ = c$, it holds

$$s_B^+ = c_B - B^\top y^+$$
$$\implies s_B + \alpha e_q = c_B - B^\top (y + \alpha v) \Longrightarrow e_q = -B^\top v$$

The update of the dual objective function

$$b^{\top}y^{+} = b^{\top}y + \alpha b^{\top}v$$
$$= b^{\top}y - \alpha b^{\top}B^{-T}e_{q}$$
$$= b^{\top}y - \alpha x_{B}^{\top}e_{q}$$
$$= b^{\top}y - \alpha x_{q}$$

Since x_q < 0 and we maximize b^Ty⁺, we choose α as large as possible, but require s⁺_N ≥ 0

The dual simplex method for LP

• Let $w = N^{\top}v = -N^{\top}B^{-T}e_q$. Since Ay + s = c and $A^{\top}y^+ + s^+ = c$, it holds

$$s_N^+ = c_N - N^\top y^+ = s_N - \alpha N^\top v = s_N - \alpha w \ge 0$$

• The largest α is

$$\alpha = \min_{j \in \mathcal{N}, w_j > 0} \quad \frac{s_j}{w_j}$$

Let *r* be the index at which the minimum is achieved.

$$s_r^+ = 0, \quad w_r = A_r^\top v > 0$$

• (D) is unbounded if $w \leq 0$

The dual simplex method for LP: update of x^+

We have:
$$Bx_B = b$$
, $x_q^+ = 0$, $x_r^+ = \gamma$ and $Ax^+ = b$, i.e.,

$$Bx_{\mathcal{B}}^{+} + \gamma A_{r} = b \Longrightarrow x_{\mathcal{B}}^{+} = B^{-1}b - \gamma B^{-1}A_{r},$$

where $Bd = A_r$. Then $Ax^+ = b$ gives

$$B(x_{\mathcal{B}} - \gamma d) + \gamma A_r = b$$
 for any γ .

Since it is required $x_q^+ = 0$, we set

1

$$\gamma = \frac{x_q}{d_q}$$
, where $d_q = d^\top e_q = A_r^\top B^{-T} e_q = -A_r^\top v = -w_r < 0$.

Therefore

$$x_i^+ = \begin{cases} x_i - \gamma d_i, & \text{for } i \in \mathcal{B} \text{ with } i \neq q, \\ 0, & i = q, \\ 0, & i \in \mathcal{N} \text{ with } i \neq r, \\ \gamma, & i = r \end{cases}$$

27/38

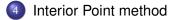
An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis \mathcal{B} such that $x_B = B^{-1}b$ and $x_N = 0$.

- If $x_B \ge 0$, then x is optimal and stop. Else, choose q such that $x_q < 0$.
- Compute $v = -B^{-T}e_q$ and $w = N^{\top}v$. If $w \le 0$, then (D) is unbounded and stop.
- If $\exists w_k > 0$, then find $\alpha = \min_{j \in \mathcal{N}, w_j > 0} \frac{s_j}{w_j}$ and use *r* to denote the minimizing *j*. Set $s_B^+ = s_B + \alpha e_q$, $s_N^+ = s_N \alpha w$ and $y^+ = y + \alpha v$.
- Change *B* by adding *r* and removing the basic variable corresponding to column *q* of *B*.

Outline

- 2 Primal Simplex method
- 3 Dual Simplex method



Primal-Dual Methods for LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i s_i = 0 \quad \text{for } i = 1, \dots, n$$

Perturbed system

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_is_i = \sigma\mu \quad \text{for } i = 1, \dots, n$$

30/38

Newton's method

- Let (*x*, *y*, *s*) be the current estimate with (*x*, *s*) > 0
- Let $(\Delta x, \Delta y, \Delta s)$ be the search direction
- Let $\mu = \frac{1}{n}x^{\top}s$ and $\sigma \in (0, 1)$. Hope to find

$$A(x + \Delta x) = b$$

$$A^{\top}(y + \Delta y) + s + \Delta s = c$$

$$(x_i + \Delta x_i)(s_i + \Delta s_i) = \sigma \mu$$

• dropping the nonlinaer term $\Delta x_i \Delta s_i$ gives

$$A\Delta x = r_p := b - Ax$$

$$A^{\top}\Delta y + \Delta s = r_d := c - A^{\top}y - s$$

$$x_i\Delta s_i + \Delta x_i s_i = (r_c)_i := \sigma \mu - x_i s_i$$

Newton's method

• Let $L_x = Diag(x)$ and $L_s = Diag(s)$. The matrix form is:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_s & 0 & \mathsf{L}_x \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} r_p \\ r_d \\ r_c \end{pmatrix}$$

Solving this system we get

$$\Delta y = (AL_s^{-1}L_xA^{\top})^{-1}(r_p + AL_s^{-1}(L_xr_d - r_c))$$

$$\Delta s = r_d - A^{\top}\Delta y$$

$$\Delta x = -L_s^{-1}(L_x\Delta s - r_c)$$

• The matrix $AL_s^{-1}L_xA^{\top}$ is symmetric and positive definite if A is full rank

The Primal-Dual Path-following Method

Given (x^0, y^0, s^0) with $(x^0, s^0) \ge 0$. A typical iteration is • Choose $\mu = (x^k)^{\top} s^k / n, \sigma \in (0, 1)$ and solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_{s^k} & 0 & \mathsf{L}_{x^k} \end{pmatrix} \begin{pmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{pmatrix} = \begin{pmatrix} r_p^k \\ r_d^k \\ r_c^k \end{pmatrix}$$

Set

$$(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k, y^k, s^k) + \alpha_k(\Delta x^k, \Delta y^k, \Delta s^k),$$

choosing α_k such that $(x^{k+1}, s^{k+1}) > 0$

The choices of centering parameter σ and step length α_k are crucial to the performance of the method.

The Central Path

• The primal-dual feasible and strictly feasible sets:

$$\mathcal{F} = \{ (x, y, s) \mid Ax = b, A^{\top}y + s = c, (x, s) \ge 0 \}$$

$$\mathcal{F}^{o} = \{ (x, y, s) \mid Ax = b, A^{\top}y + s = c, (x, s) > 0 \}$$

• The central path is $C = \{(x_{\tau}, y_{\tau}, s_{\tau}) \mid \tau > 0\}$, where

$$Ax_{\tau} = b, \quad x_{\tau} > 0$$

$$A^{\top}y_{\tau} + s_{\tau} = c, \quad s_{\tau} > 0$$

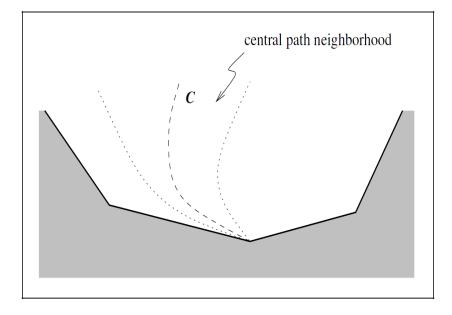
$$(x_{\tau})_i(s_{\tau})_i = \tau \quad \text{for } i = 1, \dots, n$$

• Central path neighborhoods, for $\theta, \gamma \in [0, 1)$:

$$\mathcal{N}_{2}(\theta) = \{(x, y, s) \in \mathcal{F}^{o} \mid \|\mathbf{L}_{x}\mathbf{L}_{s}e - \mu e\|_{2} \le \theta \mu\}$$
$$\mathcal{N}_{-\infty}(\gamma) = \{(x, y, s) \in \mathcal{F}^{o} \mid x_{i}s_{i} \ge \gamma \mu\}$$

Tyically, $\theta = 0.5$ and $\gamma = 10^{-3}$

<ロト < 回 ト < 臣 ト < 臣 ト 三 の < で 34/38



Central path, projected into space of primal variables *x*, showing a typical neighborhood \mathcal{N}

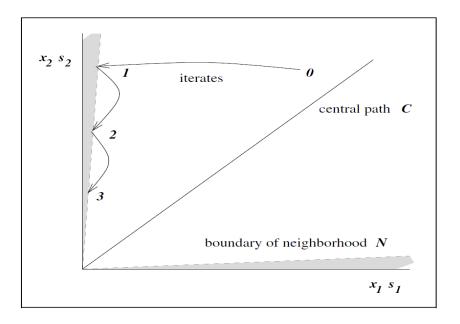
The Long-Step Path-following Method

Given $(x^0, y^0, s^0) \in \mathcal{N}_{-\infty}(\gamma)$. A typical iteration is • Choose $\mu = (x^k)^{\top} s^k / n, \sigma \in (0, 1)$ and solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_{s^k} & 0 & \mathsf{L}_{x^k} \end{pmatrix} \begin{pmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{pmatrix} = \begin{pmatrix} r_p^k \\ r_d^k \\ r_c^k \end{pmatrix}$$

• Set α_k be the largest value of $\alpha \in [0, 1]$ such that $(x^{k+1}, y^{k+1}, s^{k+1}) \in \mathcal{N}_{-\infty}(\gamma)$ where

$$(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k, y^k, s^k) + \alpha_k(\Delta x^k, \Delta y^k, \Delta s^k),$$



Analysis of Primal-Dual Path-Following

If $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma)$, then $\|\Delta x \circ \Delta s\| \le 2^{-3/2}(1+1/\gamma)n\mu$

The long-step path-following method yields

$$\mu_{k+1} \le \left(1 - \frac{\delta}{n}\right) \mu_k,$$

where $\delta = 2^{3/2} \gamma \frac{1-\gamma}{1+\gamma} \sigma (1-\sigma)$

Siven $\epsilon, \gamma \in (0, 1)$, suppose that the starting point $(x^0, y^0, s^0) \in \mathcal{N}_{-\infty}(\gamma)$. Then there exists $K = O(nlog(1/\epsilon))$ such that

$$\mu_k \le \epsilon \mu_0$$
, for all $k \ge K$

Proof of 3:

$$\log(\mu_{k+1}) \leq \log\left(1 - \frac{\delta}{n}\right) + \log(\mu_k)$$

$$\log(1 + \beta) \leq \beta, \quad \forall \beta > -1$$

38/38