Lecture: Algorithms for LP, SOCP and SDP

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn

Acknowledgement: this slides is based on chapters 13 and 14 of "Numerical Optimization",
Jorge Nocedal and Stephen Wright, Springer
some parts are based on Prof. Farid Alizadeh lecture notes

1/57

Outline

- Properties of LP
- Primal Simplex method
- 3 Dual Simplex method
- Interior Point method

Standard form LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

 $A^{\top}y + s = c, \quad s \ge 0$
 $x_is_i = 0 \quad \text{for } i = 1, \dots, n$

 Strong duality: If a LP has an optimal solution, so does its dual, and their objective fun. are equal.

primal dual	finite	unbounded	infeasible
finite		×	×
unbounded	×	×	√
infeasible	×		

Geometry of the feasible set

• Assume that $A \in \mathbb{R}^{m \times n}$ has **full row rank**. Let A_i be the ith column of A:

$$A = \begin{pmatrix} A_1 & A_2 & \dots & A_n \end{pmatrix}$$

- A vector x is a **basic feasible solution (BFS)** if x is feasible and there exists a subset $\mathcal{B} \subset \{1, 2, ..., n\}$ such that
 - \mathcal{B} contains exactly m indices
 - $i \notin \mathcal{B} \Longrightarrow x_i = 0$
 - The $m \times m$ submatrix $B = [A_i]_{i \in \mathcal{B}}$ is nonsingular

 \mathcal{B} is called a basis and \mathcal{B} is called the basis matrix

Properties:

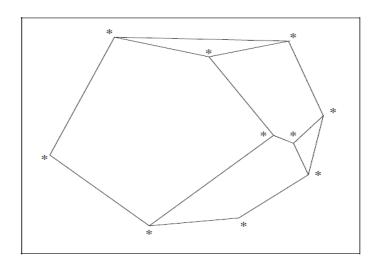
- If (P) has a nonempty feasible region, then there is at least one basic feasible point;
- If (P) has solutions, then at least one such solution is a basic optimal point.
- If (P) is feasible and bounded, then it has an optimal solution.

If (P) has a nonempty feasible region, then there is at least one BFS;

- Choose a feasible x with the minimal number (p) of nonzero x_i : $\sum_{i=1}^{p} A_i x_i = b$
- Suppose that A_1,\ldots,A_p are linearly dependent $A_p=\sum_{i=1}^{p-1}z_iA_i$. Let $x(\epsilon)=x+\epsilon(z_1,\ldots,z_{p-1},-1,0,\ldots,0)^{\top}=x+\epsilon z$. Then $Ax(\epsilon)=b,\,x_i(\epsilon)>0,\,i=1,\ldots,p,$ for ϵ sufficiently small. There exists $\bar{\epsilon}$ such that $x_i(\bar{\epsilon})=0$ for some $i=1,\ldots,p$. Contradiction to the choice of x.
- If p = m, done. Otherwise, choose m p columns from among A_{p+1}, \ldots, A_n to build up a set set of m linearly independent vectors.

Polyhedra, extreme points, vertex, BFS

- A **Polyhedra** is a set that can be described in the form $\{x \in \mathbb{R}^n \mid Ax \geq b\}$
- Let P be a polyhedra. A vector $x \in P$ is an **extreme point** if we cannot find two vectors $y, z \in P$ (both different from x) such that $x = \lambda y + (1 \lambda)z$ for $\lambda \in [0, 1]$
- Let P be a polyhedra. A vector $x \in P$ is a **vertex** if there exists some c such that $c^{\top}x < c^{\top}y$ for all $y \in P$ and $y \neq x$
- Let P be a nonempty polyhedra. Let x ∈ P. The following statements are equivalent: (i) x is vertex; (ii) x is an extreme point; (iii) x is a BFS
- A basis \mathcal{B} is said to be **degenerate** if $x_i = 0$ for some $i \in \mathcal{B}$, where x is the BFS corresponding to \mathcal{B} . A linear program (P) is said to be degenerate if it has at least one degenerate basis.



Vertices of a three-dimensional polyhedron (indicated by *)

Outline

- Properties of LP
- Primal Simplex method
- 3 Dual Simplex method
- 4 Interior Point method

The Simplex Method For LP

Basic Principle

Move from a BFS to its adjacent BFS unitil convergence (either optimal or unbounded)

- Let x be a BFS and \mathcal{B} be the corresponding basis
- Let $\mathcal{N} = \{1, 2, \dots, n\} \setminus \mathcal{B}$, $N = [A_i]_{i \in \mathcal{N}}$, $x_B = [x_i]_{i \in \mathcal{B}}$ and $x_N = [x_i]_{i \in \mathcal{N}}$
- Since x is a BFS, then $x_N = 0$ and $Ax = Bx_B + Nx_N = b$:

$$x_B = B^{-1}b$$

• Find exactly one $q \in \mathcal{N}$ and exactly one $p \in \mathcal{B}$ such that

$$\mathcal{B}^+ = \{q\} \cup (\mathcal{B} \setminus \{p\})$$

Finding $q \in \mathcal{N}$ to enter the basis

Let x^+ be the new BFS:

$$x^+ = \begin{pmatrix} x_{\mathcal{B}}^+ \\ x_{\mathcal{N}}^+ \end{pmatrix}, \quad Ax^+ = b \Longrightarrow x_{\mathcal{B}}^+ = B^{-1}b - B^{-1}Nx_{\mathcal{N}}^+$$

The cost at x^+ is

$$c^{\top}x^{+} = c_{B}^{\top}x_{\mathcal{B}}^{+} + c_{N}^{\top}x_{\mathcal{N}}^{+}$$

$$= c_{B}^{\top}B^{-1}b - c_{B}^{\top}B^{-1}Nx_{\mathcal{N}}^{+} + c_{N}^{\top}x_{\mathcal{N}}^{+}$$

$$= c^{\top}x + (c_{N}^{\top} - c_{B}^{\top}B^{-1}N)x_{\mathcal{N}}^{+}$$

$$= c^{\top}x + \sum_{j \in \mathcal{N}} (c_{j} - c_{B}^{\top}B^{-1}A_{j})x_{j}^{+}$$

- s_i is also called **reduced cost**. It is actually the dual slackness
- If $s_i \geq 0$, $\forall j \in \mathcal{N}$, then x is optimal as $c^{\top}x^+ \geq c^{\top}x$
- Otherwise, find q such that $s_q < 0$. Then $c^\top x^+ = c^\top x + s_q x_q^+ \le c^\top x$

Finding $p \in \mathcal{B}$ to exit the basis

What is x^+ : select $q \in \mathcal{N}$ and $p \in \mathcal{B}$ such that

$$x_{\mathcal{B}}^{+} = B^{-1}b - B^{-1}A_{q}x_{q}^{+}, \quad x_{q}^{+} \ge 0, x_{p}^{+} = 0, x_{j}^{+} = 0, j \in \mathcal{N} \setminus \{q\}$$

Let $u = B^{-1}A_q$. Then $x_{\mathcal{B}}^+ = x_{\mathcal{B}} - ux_q^+$

- If $u \le 0$, then $c^{\top}x^{+} = c^{\top}x + s_{q}x_{q}^{+} \to -\infty$ as $x_{q}^{+} \to +\infty$ and x^{+} is feasible. (P) is unbounded
- If $\exists u_k > 0$, then find x_q^+ and p such that

$$x_{\mathcal{B}}^{+} = x_{\mathcal{B}} - ux_{q}^{+} \ge 0, \quad x_{p}^{+} = 0$$

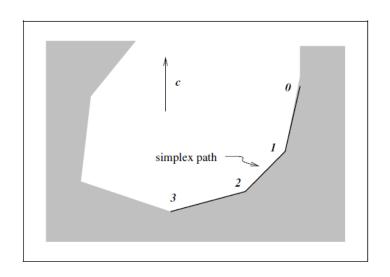
Let p be the index corresponding to

$$x_q^+ = \min_{i=1,\dots,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$$

An iteration of the simplex method

Typically, we start from a BFS x and its associate basis \mathcal{B} such that $x_B = B^{-1}b$ and $x_N = 0$.

- Solve $y^{\top} = c_B^{\top} B^{-1}$ and then the reduced costs $s_N = c_N N^{\top} y$
- If $s_N \ge 0$, x is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_q < 0$.
- Compute $u = B^{-1}A_q$. If $u \le 0$, then (P) is unbounded and stop.
- If $\exists u_k > 0$, then find $x_q^+ = \min_{i=1,\dots,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^+ = x_{\mathcal{B}} ux_q^+$.
- Change \mathcal{B} by adding q and removing the basic variable corresponding to column p of B.



Simplex iterates for a two-dimensional problem

Finite Termination of the simplex method

Theorem

Suppose that the LP (P) is nondegenerate and bounded, the simplex method terminates at a basic optimal point.

- nondegenerate: $x_{\mathcal{B}} > 0$ and $c^{\top}x$ is bounded
- A strict reduction of $c^{T}x$ at each iteration
- There are only a finite number of BFS since the number of possible bases \mathcal{B} is finite (there are only a finite number of ways to choose a subset of m indices from $\{1, 2, \ldots, n\}$), and since each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm

Linear algebra in the simplex method

• Given B^{-1} , we need to compute \bar{B}^{-1} , where

$$B = [A_1, \dots, A_m], \quad \bar{B} := B^+ = [A_1, \dots, A_{p-1}, A_q, A_{p+1}, \dots, A_m]$$

- the cost of inversion \bar{B}^{-1} from scratch is $O(m^3)$
- Since $BB^{-1} = I$, we have

$$B^{-1}\bar{B} = [e_1, \dots e_{p-1}, \underbrace{u}, e_{p+1}, \dots, e_m]$$

$$= \begin{pmatrix} 1 & u_1 \\ & \ddots & \vdots \\ & u_p \\ & \vdots & \ddots \\ & u_m & 1 \end{pmatrix},$$

where e_i is the *i*th column of I and $u = B^{-1}A_q$

Linear algebra in the simplex method

- Apply a sequence of "elementary row operation"
 - For each $j \neq p$, we add the p-th row times $-\frac{u_j}{u_p}$ to the jth row. This replaces u_j by zero.
 - We divide the pth row by u_p . This replaces u_p by one.

$$Q_{ip} = I + D_{ip}, \quad (D_{ip})_{jl} = \begin{cases} -\frac{u_j}{u_p}, & (j,l) = (i,p) \\ 0, & \text{otherwise} \end{cases}, \text{ for } i \neq p$$

- Find Q such that $QB^{-1}\bar{B}=I$. Computing \bar{B}^{-1} needs only $O(m^2)$
- What if B⁻¹ is computed by the LU factorization, i.e., B = LU?
 L is is unit lower triangular, U is upper triangular.

 Read section 13.4 in "Numerical Optimization", Jorge Nocedal and Stephen Wright,

An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis \mathcal{B} such that $x_B = B^{-1}b$ and $x_N = 0$.

- Solve $y^{\top} = c_B^{\top} B^{-1}$ and then the reduced costs $s_N = c_N N^{\top} y$
- If $s_N \ge 0$, x is optimal and stop; Else, choose $q \in \mathcal{N}$ with $s_q < 0$.
- Compute $u = B^{-1}A_q$. If $u \le 0$, then (P) is unbounded and stop.
- If $\exists u_k > 0$, then find $x_q^+ = \min_{i=1,...,m|u_i>0} \frac{x_{\mathcal{B}(i)}}{u_i}$ and use p to denote the minimizing i. Set $x_{\mathcal{B}}^+ = x_{\mathcal{B}} ux_q^+$.
- Form the $m \times (m+1)$ matrix $[B^{-1} \mid u]$. Add to each one of its rows a multiple of the pth row to make the last column equal to the unit vector e_p . The first m columns of the result is the matrix \bar{B}^{-1} .

Selection of the entering index (pivoting rule)

Reduced costs
$$s_N = c_N - N^{\top} y$$
, $c^{\top} x^+ = c^{\top} x + s_q x_q^+$

- Dantzig: chooses $q \in \mathcal{N}$ such that s_q is the most negative component
- Bland's rule: choose the smallest $j \in \mathcal{N}$ such that $s_j < 0$; out of all variables x_i that are tied in the test for choosing an exiting variable, select the one with with the smallest value i.
- ullet Steepest-edge: choose $q\in\mathcal{N}$ such that $\frac{c^{ op}\eta_q}{\|\eta_q\|}$ is minimized, where

$$x^{+} = \begin{pmatrix} x_{B}^{+} \\ x_{N}^{+} \end{pmatrix} = \begin{pmatrix} x_{B} \\ x_{N} \end{pmatrix} + \begin{pmatrix} -B^{-1}A_{q} \\ e_{q} \end{pmatrix} x_{q} = x + \eta_{q}x_{q}^{+}$$

efficient computation of this rule is available

Degenerate steps and cycling

Let q be the entering variable:

$$x_{\mathcal{B}}^{+} = B^{-1}b - B^{-1}A_{q}x_{q}^{+} = x_{B} - x_{q}^{+}u$$
, where $u = B^{-1}A_{q}$

- Degenerate step: there exists $i \in \mathcal{B}$ such that $x_i = 0$ and $u_i > 0$. Then $x_i^+ < 0$ if $x_q^+ > 0$. Hence, $x_q^+ = 0$ and do the pivoting
- Degenerate step may still be useful because they change the basis \mathcal{B} , and the updated \mathcal{B} may be closer to the optimal basis.
- \bullet cycling: after a number of successive degenerate steps, we may return to an earlier basis ${\cal B}$
- Cycling has been observed frequently in the large LPs that arise as relaxations of integer programming problems
- Avoid cycling: Bland's rule and Lexicographically pivoting rule

Finding an initial BFS

The two-phase simplex method

(P) min
$$c^{\top}x$$
 (P0) $\tilde{f} = \min z_1 + z_2 + \ldots + z_m$
s.t. $Ax = b$ s.t. $Ax + z = b$
 $x \ge 0$ $x \ge 0$, $z \ge 0$

- A BFS to (P0): x = 0 and z = b
- If x is feasible to (P), then (x, 0) is feasible to (P0)
- If the optimal cost \tilde{f} of (P0) is nonzero, then (P) is infeasible
- If $\tilde{f}=0$, then its optimal solution must satisfies: z=0 and x is feasible to (P)
- ullet An optimal basis ${\cal B}$ to (P0) may contain some components of z

Finding an initial BFS

(x, z) is optimal to (P0) with some components of z in the basis

• Assume A_1, \ldots, A_k are in the basis matrix with k < m. Then

$$B = [A_1, \dots, A_k \mid \text{ some columns of } I]$$

 $B^{-1}A = [e_1, \dots, e_k, B^{-1}A_{k+1}, \dots, B^{-1}A_n]$

- Suppose that ℓ th basic variable is an artificial variable
- If the ℓ th row of $B^{-1}A$ is zero, then $g^{\top}A = 0^{\top}$, where g^{\top} is the ℓ th row of B^{-1} . If $g^{\top}b \neq 0$, (P) is infeasible. Otherwise, A has linearly dependent rows. Remove the ℓ th row.
- There exists j such that the ℓ th entry of $B^{-1}A_j$ is nonzero. Then A_j is linearly independent to A_1, \ldots, A_k . Perform elementary row operation to replace $B^{-1}A_j$ to be the ℓ th unit vector. Driving one of z out of the basis

The primal simplex method for LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i s_i = 0 \quad \text{for } i = 1, \dots, n$$

The primal simplex method generates

$$x_B = B^{-1}b \ge 0, \quad x_N = 0,$$

 $y = B^{-T}c_B,$
 $s_B = c_B - B^{\top}y = 0, s_N = c_N - N^{\top}y$?0

Outline

- Properties of LP
- Primal Simplex method
- Oual Simplex method
- Interior Point method

The dual simplex method for LP

The dual simplex method generates

$$x_B = B^{-1}b?0, \quad x_N = 0,$$

 $y = B^{-T}c_B,$
 $s_B = c_B - B^{\top}y = 0, s_N = c_N - N^{\top}y \ge 0$

- If $x_B \ge 0$, then (x, y, s) is optimal
- Otherwise, select $q \in \mathcal{B}$ such that $x_q < 0$ to exit the basis, select $r \in \mathcal{N}$ to enter the basis, i.e., $s_r^+ = 0$
- The update is of the form

$$s_B^+ = s_B + \alpha e_q$$
 obvious
 $y^+ = y + \alpha v$ requirement

The dual simplex method for LP

• What is v? Since $A^{\top}y^+ + s^+ = c$, it holds

$$s_B^+ = c_B - B^\top y^+$$

$$\implies s_B + \alpha e_q = c_B - B^\top (y + \alpha v) \Longrightarrow e_q = -B^\top v$$

The update of the dual objective function

$$b^{\top}y^{+} = b^{\top}y + \alpha b^{\top}v$$

$$= b^{\top}y - \alpha b^{\top}B^{-T}e_{q}$$

$$= b^{\top}y - \alpha x_{B}^{\top}e_{q}$$

$$= b^{\top}y - \alpha x_{q}$$

• Since $x_q < 0$ and we maximize $b^\top y^+$, we choose α as large as possible, but require $s_N^+ \geq 0$

The dual simplex method for LP

• Let $w = N^\top v = -N^\top B^{-T} e_q$. Since Ay + s = c and $A^\top y^+ + s^+ = c$, it holds

$$s_N^+ = c_N - N^\top y^+ = s_N - \alpha N^\top v = s_N - \alpha w \ge 0$$

• The largest α is

$$\alpha = \min_{j \in \mathcal{N}, w_j > 0} \quad \frac{s_j}{w_j}.$$

Let *r* be the index at which the minimum is achieved.

$$s_r^+ = 0, \quad w_r = A_r^\top v > 0$$

• (D) is unbounded if $w \le 0$

The dual simplex method for LP: update of x^+

We have: $Bx_B=b, x_q^+=0, x_r^+=\gamma$ and $Ax^+=b$, i.e.,

$$Bx_{\mathcal{B}}^+ + \gamma A_r = b \Longrightarrow x_{\mathcal{B}}^+ = B^{-1}b - \gamma B^{-1}A_r,$$

where $Bd = A_r$. Then $Ax^+ = b$ gives

$$B(x_{\mathcal{B}} - \gamma d) + \gamma A_r = b$$
 for any γ .

Since it is required $x_q^+ = 0$, we set

$$\gamma = rac{x_q}{d_q}, ext{ where } d_q = d^ op e_q = A_r^ op B^{-T} e_q = -A_r^ op v = -w_r < 0.$$

Therefore

$$x_i^+ = egin{cases} x_i - \gamma d_i, & ext{for } i \in \mathcal{B} ext{ with } i
eq q, \ 0, & i = q, \ 0, & i \in \mathcal{N} ext{ with } i
eq r, \ \gamma, & i = r \end{cases}$$

An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis \mathcal{B} such that $x_B = B^{-1}b$ and $x_N = 0$.

- If $x_B \ge 0$, then x is optimal and stop. Else, choose q such that $x_q < 0$.
- Compute $v = -B^{-T}e_q$ and $w = N^{\top}v$. If $w \le 0$, then (D) is unbounded and stop.
- If $\exists w_k > 0$, then find $\alpha = \min_{j \in \mathcal{N}, w_j > 0} \frac{s_j}{w_j}$ and use r to denote the minimizing j. Set $s_B^+ = s_B + \alpha e_q$, $s_N^+ = s_N \alpha w$ and $y^+ = y + \alpha v$.
- Change \mathcal{B} by adding r and removing the basic variable corresponding to column q of B.

Outline

- Properties of LP
- Primal Simplex method
- 3 Dual Simplex method
- Interior Point method

Primal-Dual Methods for LP

(P) min
$$c^{\top}x$$
 (D) max $b^{\top}y$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x \ge 0$ $s \ge 0$

KKT condition

$$Ax = b, \quad x \ge 0$$

 $A^{\top}y + s = c, \quad s \ge 0$
 $x_is_i = 0 \quad \text{for } i = 1, \dots, n$

Perturbed system

$$Ax = b, \quad x \ge 0$$

$$A^{\top}y + s = c, \quad s \ge 0$$

$$x_i s_i = \sigma \mu \quad \text{for } i = 1, \dots, n$$

Newton's method

- Let (x, y, s) be the current estimate with (x, s) > 0
- Let $(\Delta x, \Delta y, \Delta s)$ be the search direction
- Let $\mu = \frac{1}{n}x^{\top}s$ and $\sigma \in (0,1)$. Hope to find

$$A(x + \Delta x) = b$$

$$A^{\top}(y + \Delta y) + s + \Delta s = c$$

$$(x_i + \Delta x_i)(s_i + \Delta s_i) = \sigma \mu$$

• dropping the nonlinaer term $\Delta x_i \Delta s_i$ gives

$$A\Delta x = r_p := b - Ax$$

$$A^{\top} \Delta y + \Delta s = r_d := c - A^{\top} y - s$$

$$x_i \Delta s_i + \Delta x_i s_i = (r_c)_i := \sigma \mu - x_i s_i$$

Newton's method

• Let $L_x = \text{Diag}(x)$ and $L_s = \text{Diag}(s)$. The matrix form is:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_s & 0 & \mathsf{L}_x \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} r_p \\ r_d \\ r_c \end{pmatrix}$$

Solving this system we get

$$\Delta y = (A\mathsf{L}_s^{-1}\mathsf{L}_xA^{\top})^{-1}(r_p + A\mathsf{L}_s^{-1}(\mathsf{L}_xr_d - r_c))$$

$$\Delta s = r_d - A^{\top}\Delta y$$

$$\Delta x = -\mathsf{L}_s^{-1}(\mathsf{L}_x\Delta s - r_c)$$

• The matrix $A\mathsf{L}_s^{-1}\mathsf{L}_xA^{\top}$ is symmetric and positive definite if A is full rank

The Primal-Dual Path-following Method

Given (x^0, y^0, s^0) with $(x^0, s^0) \ge 0$. A typical iteration is

• Choose $\mu = (x^k)^{\top} s^k / n$, $\sigma \in (0,1)$ and solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_{s^k} & 0 & \mathsf{L}_{x^k} \end{pmatrix} \begin{pmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{pmatrix} = \begin{pmatrix} r_p^k \\ r_d^k \\ r_c^k \end{pmatrix}$$

Set

$$(x^{k+1},y^{k+1},s^{k+1})=(x^k,y^k,s^k)+\alpha_k(\Delta x^k,\Delta y^k,\Delta s^k),$$
 choosing α_k such that $(x^{k+1},s^{k+1})>0$

The choices of centering parameter σ and step length α_k are crucial to the performance of the method.

The Central Path

The primal-dual feasible and strictly feasible sets:

$$\mathcal{F} = \{(x, y, s) \mid Ax = b, A^{\top}y + s = c, (x, s) \ge 0\}$$

$$\mathcal{F}^{o} = \{(x, y, s) \mid Ax = b, A^{\top}y + s = c, (x, s) > 0\}$$

• The central path is $\mathcal{C} = \{(x_{\tau}, y_{\tau}, s_{\tau}) \mid \tau > 0\}$, where

$$Ax_{\tau} = b, \quad x_{\tau} > 0$$

$$A^{\top}y_{\tau} + s_{\tau} = c, \quad s_{\tau} > 0$$

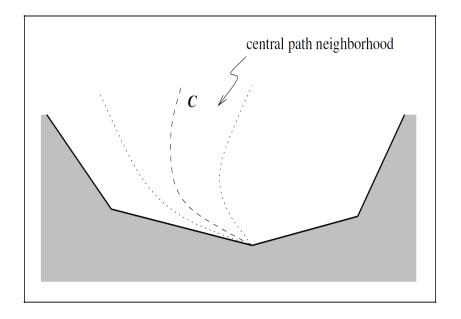
$$(x_{\tau})_{i}(s_{\tau})_{i} = \tau \quad \text{for } i = 1, \dots, n$$

• Central path neighborhoods, for $\theta, \gamma \in [0, 1)$:

$$\mathcal{N}_{2}(\theta) = \{(x, y, s) \in \mathcal{F}^{o} \mid \|\mathsf{L}_{x}\mathsf{L}_{s}e - \mu e\|_{2} \leq \theta \mu\}$$

$$\mathcal{N}_{-\infty}(\gamma) = \{(x, y, s) \in \mathcal{F}^{o} \mid x_{i}s_{i} \geq \gamma \mu\}$$

Tyically, $\theta = 0.5$ and $\gamma = 10^{-3}$



Central path, projected into space of primal variables x, showing a typical neighborhood \mathcal{N}

The Long-Step Path-following Method

Given $(x^0, y^0, s^0) \in \mathcal{N}_{-\infty}(\gamma)$. A typical iteration is

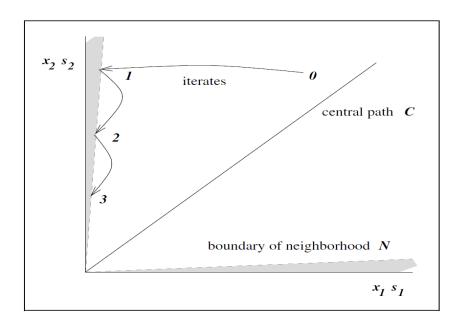
• Choose $\mu = (x^k)^{\top} s^k / n, \, \sigma \in (0,1)$ and solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_{s^k} & 0 & \mathsf{L}_{x^k} \end{pmatrix} \begin{pmatrix} \Delta x^k \\ \Delta y^k \\ \Delta s^k \end{pmatrix} = \begin{pmatrix} r_p^k \\ r_d^k \\ r_c^k \end{pmatrix}$$

• Set α_k be the largest value of $\alpha \in [0, 1]$ such that $(x^{k+1}, y^{k+1}, s^{k+1}) \in \mathcal{N}_{-\infty}(\gamma)$ where

$$(x^{k+1}, y^{k+1}, s^{k+1}) = (x^k, y^k, s^k) + \alpha_k(\Delta x^k, \Delta y^k, \Delta s^k),$$

36/57



Analysis of Primal-Dual Path-Following

- If $(x, y, s) \in \mathcal{N}_{-\infty}(\gamma)$, then $\|\Delta x \circ \Delta s\| \le 2^{-3/2} (1 + 1/\gamma) n\mu$
- The long-step path-following method yields

$$\mu_{k+1} \leq \left(1 - \frac{\delta}{n}\right) \mu_k,$$

where
$$\delta = 2^{3/2} \gamma \frac{1-\gamma}{1+\gamma} \sigma (1-\sigma)$$

3 Given $\epsilon, \gamma \in (0, 1)$, suppose that the starting point $(x^0, y^0, s^0) \in \mathcal{N}_{-\infty}(\gamma)$. Then there exists $K = O(nlog(1/\epsilon))$ such that

$$\mu_k \le \epsilon \mu_0$$
, for all $k \ge K$

Proof of 3:

$$\log(\mu_{k+1}) \leq \log\left(1 - \frac{\delta}{n}\right) + \log(\mu_k)$$
$$\log(1 + \beta) \leq \beta, \quad \forall \beta > -1$$

Barrier Methods

A general strategy for solving convex optimization problem:

$$(P) \quad \min \quad c^{\top} x$$
s.t. $x \in C$,

where *C* is convex. Find a barrier function b(x): Int $C \to \mathbb{R}$

- b(x) is convex on Int C
- for any sequence of points $\{x_i\}$ approaching boundary bd(C), $b(x_i) \to \infty$
- We can replace the problem

$$(II)$$
 min $c^{\top}x + \mu b(x)$

- If x_{μ} is the optimum of (II) and x^* of (I) then
 - $x_{\mu} \in IntC$
 - As $\mu \to 0$, $x_{\mu} \to x^*$

• For the positive orthant $\{x \mid x \ge 0\}$, a barrier is

$$b(x) = -\sum_{i} \ln(x_i)$$

• For the semidefinite cone $\{X \mid X \succeq 0\}$, a barrier is

$$b(x) = -\ln \det(X)$$

We will discuss the second order cone shortly

Barriers for LP and SDP

Thus LP can be replaced by

Primal (P)_{$$\mu$$} Dual (D) _{μ}
min $c^{\top}x - \mu \sum_{i} \ln x_{i}$ max $b^{\top}y + \mu \sum_{i} \ln s_{i}$
s.t. $Ax = b$ s.t. $A^{\top}y + s = c$
 $x > 0$ $s > 0$

Thus SDP can be replaced by

$$\begin{aligned} & \textbf{Primal (P)}_{\mu} \\ & \min \quad \langle C, X \rangle - \mu \ln \det(X) \\ & \textbf{s.t.} \quad \langle A_i, X \rangle = b_i \\ & X \succ 0 \end{aligned}$$

Dual $(D)_{\mu}$

s.t.
$$A^{\top}y + s = c$$

 $s > 0$

Dual (D)_{$$\mu$$}
max $b^{\top}y + \mu \ln \det(S)$
s.t. $\sum_{i} y_{i}A_{i} + S = C$
 $S \succeq 0$

Applying standard optimality condition we get

• LP:
$$\mathcal{L}(x, y) = c^{\top} x - \mu \sum_{i} \ln x_i - y^{\top} (b - Ax)$$

• SDP:
$$\mathcal{L}(x, y) = \langle C, X \rangle - \mu \ln \det(X) - \sum_i y_i (b_i - \langle A_i, X \rangle)$$

The Karush-Kuhn-Tucker condition requires that at the optimum

$$\nabla_X \mathcal{L} = 0$$

which translates into

(LP) (SDP)
$$\nabla_{y}\mathcal{L} = b - Ax = 0 \qquad \nabla_{y}\mathcal{L} = (b_{i} - \langle A_{i}, X \rangle) = 0$$
$$\frac{\partial \mathcal{L}}{\partial x_{i}} = c_{i} - \frac{\mu}{x_{i}} - (y^{\top}A)_{i} = 0 \qquad \nabla_{X} = C - \mu X^{-1} - \sum_{i} y_{i}A_{i} = 0$$

- In LP: define $s_i = \frac{\mu}{x_i}$, then s is dual feasible
- In SDP: define $S = \mu S^{-1}$, then S is dual feasible

The optimality conditions result in the square system

(LP) (SDP)

$$Ax = b$$
 $\langle A_i, X \rangle = b_i$
 $A^{\top}y + s = c$ $\sum_i y_i A_i + S = C$
 $x_i = \frac{\mu}{s_i}$ $X = \mu S^{-1}$

- In LP: if we write $x_i s_i = \mu$, we get relaxed complementarity
- In SDP: if we write $XS = \mu I$, we get relaxed complementarity

Newton's method for SDP

- Let X, y, S be initial estimates Then
- If we use $XS = \mu I$, ΔX is not symmetric
- Since $X, S \succ 0$ then $XS = \mu I$ iff $X \circ S = \frac{XS + SX}{2} = \mu I$
- Now applying Newton, we get

$$\langle A_i, X + \Delta X \rangle = b_i$$

 $\sum_i (y_i + \Delta y_i) A_i + S + \Delta S = C$
 $(X + \Delta X) \circ (S + \Delta S) = \mu I$

Newton's method

Expanding and throwing out nonlinear terms

$$\langle A_i, \Delta X \rangle = (r_p)_i$$

 $\sum_i \Delta y_i A_i + \Delta S = R_d$
 $S \circ \Delta X + \Delta S \circ X = R_c$

where

$$(r_p)_i = b_i - \langle A_i, X \rangle$$
 $R_d = C - \sum_i y_i A_i - S$
 $R_C = \mu I - X \circ S$

In matrix form

$$\begin{pmatrix} \mathcal{A} & 0 & 0 \\ 0 & \mathcal{A}^{\top} & I \\ \mathcal{L}_{S} & 0 & \mathcal{L}_{X} \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} r_{p} \\ r_{d} \\ r_{c} \end{pmatrix}$$

- vec(A) is a vector made by stacking columns of a matrix A
- A is a matrix whose rows are $vec(A_i)$
- x = vec(X), s = vec(S) ...
- \mathcal{L}_X (and \mathcal{L}_S) are matrix representations of L_X (and L_S) operators
- $\mathcal{L}_X = X \otimes I + I \otimes X$ and $\mathcal{L}_S = S \otimes I + I \otimes S$
- Kronecker product: $A \otimes B = \begin{pmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \dots & a_{mn}B \end{pmatrix}$

http://en.wikipedia.org/wiki/Kronecker_product

Solving this system we get

$$\Delta y = (\mathcal{A}\mathcal{L}_{S}^{-1}\mathcal{L}_{X}\mathcal{A}^{\top})^{-1}(r_{p} + \mathcal{A}\mathcal{L}_{S}^{-1}(\mathcal{L}_{X}r_{d} - r_{c}))$$

$$\Delta s = r_{d} - \mathcal{A}^{\top}\Delta y$$

$$\Delta x = -\mathcal{L}_{S}^{-1}(\mathcal{L}_{X}\Delta s - r_{c})$$

- The matrix $\mathcal{AL}_s^{-1}\mathcal{L}_x\mathcal{A}^{\top}$ is not symmetric because \mathcal{L}_S and \mathcal{L}_X do not commute!
- In LP, it is quite easy to compute $AL_s^{-1}L_xA^{\top}$
- Most computational work in LP involves solving the system

$$(A\mathsf{L}_s^{-1}\mathsf{L}_xA^\top)v=u$$

• in SDP even computing $\mathcal{AL}_s^{-1}\mathcal{L}_x\mathcal{A}^{\top}$ is fairly expensive (in this form requires solving Lyapunov equations)

- How about SOCP?
- What is an appropriate barrier for the convex cone

$$\mathcal{Q} = \{x \mid x_0 \ge ||\bar{x}||\}?$$

• By analogy we expect relaxed complementary conditions turn out to be $x\circ s=\mu e$

Algebra Associated with SOCP

In SDP

- The barrier $\ln \det(X) = \sum_{i} \ln \lambda_{i}(X)$
- For each symmetric $n \times n$ matrix X, there is a characteristic polynomial, such that
 - $p(t) = p_0 + p_1 t + \ldots + p_{n-1} t^{n-1} + t^n$
 - roots of p(t) are eigenvalues of X
 - $Tr(X) = p_{n-1}, det(X) = p_0$
 - roots of p(t) are real numbers
 - p(X) = 0 by Cayley-Hamilton Theorem
 - There is orthogonal matrix $Q: X = Q\Lambda Q^{\top} = \lambda_1 q_1 q_1^{\top} + \ldots + \lambda_n q_n q_n^{\top}$

SOCP

Remember

$$x \circ s = \begin{pmatrix} x^{\top} s \\ x_0 \overline{s} + s_0 \overline{x} \end{pmatrix} \quad \mathsf{L}_x = \mathrm{Arw}(x) = \begin{pmatrix} x_0 & \overline{x}^{\top} \\ \overline{x} & x_0 I \end{pmatrix} \quad e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

It is easy to verify

$$x \circ x - 2x_0x + (x_0^2 - ||\bar{x}||^2)e = 0$$

Define the characteristic polynomial

$$p(t) = t^2 - 2x_0t + (x_0^2 - \|\bar{x}\|^2) = (t - (x_0 + \|\bar{x}\|)(t - (x_0 - \|\bar{x}\|))$$

- Define eigenvalues of x roots of p(t) : $\lambda_{1,2} = x_0 \pm ||\bar{x}||$
- Define $Tr(x) = 2x_0$ and $det(x) = x_0^2 ||\bar{x}||^2$

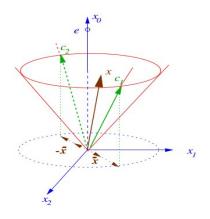
For each x define

$$c_1 = \frac{1}{2} \begin{pmatrix} 1 \\ \frac{\bar{x}}{\|\bar{x}\|} \end{pmatrix} \quad c_2 = \frac{1}{2} \begin{pmatrix} 1 \\ -\frac{\bar{x}}{\|\bar{x}\|} \end{pmatrix}$$

We can verify

$$x = \lambda_1 c_1 + \lambda_2 c_2$$

 This relation is the spectral decomposition of the vectors in SOCP Algebra



to get c_1 and c_2 , (i) project x to x_1, \ldots, x_n plane, (ii) normalize \bar{x} and $-\bar{x}$ (iii) lift the normalized vectors up to touch the boundary of the cone

• Define for any real number t, $x^t = \lambda_1^t c_1 + \lambda_2^t c_2$ whenever λ_i^t is defined

$$x^{-1} = \frac{1}{\lambda_1}c_1 + \frac{1}{\lambda_2}c_2 = \frac{1}{\det(x)} \begin{pmatrix} x_0 \\ -\bar{x} \end{pmatrix}$$

ullet Now we can define an appropriate barrier for ${\cal Q}$

$$-\ln \det(x) = -\ln(x_0^2 - \|\bar{x}\|^2)$$

$$\nabla_x(-\ln \det x) = \frac{2}{\det(x)} \begin{pmatrix} x_0 \\ -\bar{x} \end{pmatrix} = 2x^{-1}$$

we can replace SOCP problem with

$$\max \quad c^{\top} x - \mu \ln \det x$$

s.t.
$$Ax = b$$

$$x \succ_{\mathcal{O}} 0$$

The Lagrangian

$$\mathcal{L}(x, y) = c^{\top} x - \mu \ln \det x - y^{\top} (b - Ax)$$

Applying KKT

$$b - Ax = 0$$

$$c - \mu x^{-1} - A^{\mathsf{T}} y = 0$$

• Setting $s = \mu x^{-1}$ we can see that s is dual feasible

Newton's method

Thus we have to solve the following system

$$Ax = b$$

$$A^{\top}y + s = c$$

$$x \circ s = 2\mu e$$

Using Newton's method, we get

$$A(x + \Delta x) = b$$

$$A^{\top}(y + \Delta y) + s + \Delta s = c$$

$$(x_i + \Delta x_i) \circ (s_i + \Delta s_i) = 2\mu e$$

Newton's method

Now expanding and dropping nonlinear terms

$$\begin{array}{rcl} A\Delta x &=& b-Ax\\ A^\top \Delta y + \Delta s &=& c-A^\top y - s\\ x\circ \Delta s + \Delta x\circ s &=& 2\mu e - x\circ s \quad \text{nonlinear term } \Delta x\circ \Delta s \text{ was dropped} \end{array}$$

In matrix form

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\top} & I \\ \mathsf{L}_s & 0 & \mathsf{L}_x \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} r_p \\ r_d \\ r_c \end{pmatrix} \text{ where } r_d = c - A^{\top} y - s$$
$$r_c = 2\mu e - x \circ s$$