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Standard form LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

Strong duality: If a LP has an optimal solution, so does its dual,
and their objective fun. are equal.
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Geometry of the feasible set

Assume that A ∈ Rm×n has full row rank. Let Ai be the ith
column of A:

A =
(
A1 A2 . . . An

)
A vector x is a basic feasible solution (BFS) if x is feasible and
there exists a subset B ⊂ {1, 2, . . . , n} such that

B contains exactly m indices
i /∈ B =⇒ xi = 0
The m× m submatrix B = [Ai]i∈B is nonsingular

B is called a basis and B is called the basis matrix

Properties:
If (P) has a nonempty feasible region, then there is at least one
basic feasible point;
If (P) has solutions, then at least one such solution is a basic
optimal point.
If (P) is feasible and bounded, then it has an optimal solution.
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If (P) has a nonempty feasible region, then there is at least one BFS;

Choose a feasible x with the minimal number (p) of nonzero xi:∑p
i=1 Aixi = b

Suppose that A1, . . . ,Ap are linearly dependent Ap =
∑p−1

i=1 ziAi.
Let x(ε) = x + ε(z1, . . . , zp−1,−1, 0, . . . , 0)> = x + εz. Then
Ax(ε) = b, xi(ε) > 0, i = 1, . . . , p, for ε sufficiently small. There
exists ε̄ such that xi(ε̄) = 0 for some i = 1, . . . , p. Contradiction to
the choice of x.

If p = m, done. Otherwise, choose m− p columns from among
Ap+1, . . . ,An to build up a set set of m linearly independent
vectors.
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Polyhedra, extreme points, vertex, BFS

A Polyhedra is a set that can be described in the form
{x ∈ Rn | Ax ≥ b}

Let P be a polyhedra. A vector x ∈ P is an extreme point if we
cannot find two vectors y, z ∈ P (both different from x) such that
x = λy + (1− λ)z for λ ∈ [0, 1]

Let P be a polyhedra. A vector x ∈ P is a vertex if there exists
some c such that c>x < c>y for all y ∈ P and y 6= x

Let P be a nonempty polyhedra. Let x ∈ P. The following
statements are equivalent: (i) x is vertex; (ii) x is an extreme
point; (iii) x is a BFS

A basis B is said to be degenerate if xi = 0 for some i ∈ B,
where x is the BFS corresponding to B. A linear program (P) is
said to be degenerate if it has at least one degenerate basis.
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Vertices of a three-dimensional polyhedron (indicated by ∗)
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The Simplex Method For LP

Basic Principle
Move from a BFS to its adjacent BFS unitil convergence (either
optimal or unbounded)

Let x be a BFS and B be the corresponding basis

Let N = {1, 2, . . . , n}\B, N = [Ai]i∈N , xB = [xi]i∈B and xN = [xi]i∈N

Since x is a BFS, then xN = 0 and Ax = BxB + NxN = b:

xB = B−1b

Find exactly one q ∈ N and exactly one p ∈ B such that

B+ = {q} ∪ (B\{p})
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Finding q ∈ N to enter the basis

Let x+ be the new BFS:

x+ =

(
x+
B

x+
N

)
, Ax+ = b =⇒ x+

B = B−1b− B−1Nx+
N

The cost at x+ is

c>x+ = c>B x+
B + c>N x+

N
= c>B B−1b− c>B B−1Nx+

N + c>N x+
N

= c>x + (c>N − c>B B−1N)x+
N

= c>x +
∑
j∈N

(cj − c>B B−1Aj︸ ︷︷ ︸
sj

)x+
j

sj is also called reduced cost. It is actually the dual slackness

If sj ≥ 0, ∀j ∈ N , then x is optimal as c>x+ ≥ c>x

Otherwise, find q such that sq < 0. Then c>x+ = c>x + sqx+
q ≤ c>x
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Finding p ∈ B to exit the basis

What is x+: select q ∈ N and p ∈ B such that

x+
B = B−1b− B−1Aqx+

q , x+
q ≥ 0, x+

p = 0, x+
j = 0, j ∈ N\{q}

Let u = B−1Aq. Then x+
B = xB − ux+

q

If u ≤ 0, then c>x+ = c>x + sqx+
q → −∞ as x+

q → +∞ and x+ is
feasible. (P) is unbounded

If ∃uk > 0, then find x+
q and p such that

x+
B = xB − ux+

q ≥ 0, x+
p = 0

Let p be the index corresponding to

x+
q = min

i=1,...,m|ui>0

xB(i)

ui
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An iteration of the simplex method

Typically, we start from a BFS x and its associate basis B such that
xB = B−1b and xN = 0.

Solve y> = c>B B−1 and then the reduced costs sN = cN − N>y

If sN ≥ 0, x is optimal and stop; Else, choose q ∈ N with sq < 0.

Compute u = B−1Aq. If u ≤ 0, then (P) is unbounded and stop.

If ∃uk > 0, then find x+
q = min

i=1,...,m|ui>0

xB(i)
ui

and use p to denote

the minimizing i. Set x+
B = xB − ux+

q .

Change B by adding q and removing the basic variable
corresponding to column p of B.
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Simplex iterates for a two-dimensional problem
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Finite Termination of the simplex method

Theorem
Suppose that the LP (P) is nondegenerate and bounded, the simplex
method terminates at a basic optimal point.

nondegenerate: xB > 0 and c>x is bounded

A strict reduction of c>x at each iteration

There are only a finite number of BFS since the number of
possible bases B is finite (there are only a finite number of ways
to choose a subset of m indices from {1, 2, . . . , n}), and since
each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm
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Linear algebra in the simplex method

Given B−1, we need to compute B̄−1, where

B = [A1, . . . ,Am], B̄ := B+ = [A1, . . . ,Ap−1,Aq,Ap+1, . . . ,Am]

the cost of inversion B̄−1 from scratch is O(m3)

Since BB−1 = I, we have

B−1B̄ = [e1, . . . ep−1, u, ep+1, . . . , em]

=


1 u1

. . .
...

up
...

. . .
um 1

 ,

where ei is the ith column of I and u = B−1Aq
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Linear algebra in the simplex method

Apply a sequence of “elementary row operation”
For each j 6= p, we add the p-th row times − uj

up
to the jth row. This

replaces uj by zero.
We divide the pth row by up. This replaces up by one.

Qip = I + Dip, (Dip)jl =

{
− uj

up
, (j, l) = (i, p)

0, otherwise
, for i 6= p

Find Q such that QB−1B̄ = I. Computing B̄−1 needs only O(m2)

What if B−1 is computed by the LU factorization, i.e., B = LU?
L is is unit lower triangular, U is upper triangular.
Read section 13.4 in “Numerical Optimization”, Jorge Nocedal
and Stephen Wright,
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An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis B such that
xB = B−1b and xN = 0.

Solve y> = c>B B−1 and then the reduced costs sN = cN − N>y

If sN ≥ 0, x is optimal and stop; Else, choose q ∈ N with sq < 0.

Compute u = B−1Aq. If u ≤ 0, then (P) is unbounded and stop.

If ∃uk > 0, then find x+
q = min

i=1,...,m|ui>0

xB(i)
ui

and use p to denote

the minimizing i. Set x+
B = xB − ux+

q .

Form the m× (m + 1) matrix [B−1 | u]. Add to each one of its rows
a multiple of the pth row to make the last column equal to the unit
vector ep. The first m columns of the result is the matrix B̄−1.
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Selection of the entering index (pivoting rule)

Reduced costs sN = cN − N>y, c>x+ = c>x + sqx+
q

Dantzig: chooses q ∈ N such that sq is the most negative
component

Bland’s rule: choose the smallest j ∈ N such that sj < 0; out of
all variables xi that are tied in the test for choosing an exiting
variable, select the one with with the smallest value i.

Steepest-edge: choose q ∈ N such that c>ηq
‖ηq‖ is minimized, where

x+ =

(
x+

B
x+

N

)
=

(
xB

xN

)
+

(
−B−1Aq

eq

)
xq = x + ηqx+

q

efficient computation of this rule is available
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Degenerate steps and cycling

Let q be the entering variable:

x+
B = B−1b− B−1Aqx+

q = xB − x+
q u, where u = B−1Aq

Degenerate step: there exists i ∈ B such that xi = 0 and ui > 0.
Then x+

i < 0 if x+
q > 0. Hence, x+

q = 0 and do the pivoting

Degenerate step may still be useful because they change the
basis B, and the updated B may be closer to the optimal basis.

cycling: after a number of successive degenerate steps, we may
return to an earlier basis B

Cycling has been observed frequently in the large LPs that arise
as relaxations of integer programming problems

Avoid cycling: Bland’s rule and Lexicographically pivoting rule
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Finding an initial BFS

The two-phase simplex method

(P) min c>x

s.t. Ax = b

x ≥ 0

(P0) f̃ = min z1 + z2 + . . .+ zm

s.t. Ax + z = b

x ≥ 0, z ≥ 0

A BFS to (P0): x = 0 and z = b

If x is feasible to (P), then (x, 0) is feasible to (P0)

If the optimal cost f̃ of (P0) is nonzero, then (P) is infeasible

If f̃ = 0, then its optimal solution must satisfies: z = 0 and x is
feasible to (P)

An optimal basis B to (P0) may contain some components of z
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Finding an initial BFS

(x, z) is optimal to (P0) with some components of z in the basis
Assume A1, . . . ,Ak are in the basis matrix with k < m. Then

B = [A1, . . . ,Ak | some columns of I]

B−1A = [e1, . . . , ek,B−1Ak+1, . . . ,B−1An]

Suppose that `th basic variable is an artificial variable

If the `th row of B−1A is zero, then g>A = 0>, where g> is the `th
row of B−1. If g>b 6= 0, (P) is infeasible. Otherwise, A has linearly
dependent rows. Remove the `th row.

There exists j such that the `th entry of B−1Aj is nonzero. Then Aj

is linearly independent to A1, . . . ,Ak. Perform elementary row
operation to replace B−1Aj to be the `th unit vector. Driving one
of z out of the basis
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The primal simplex method for LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

The primal simplex method generates

xB = B−1b ≥ 0, xN = 0,

y = B−TcB,

sB = cB − B>y = 0, sN = cN − N>y?0
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The dual simplex method for LP

The dual simplex method generates

xB = B−1b?0, xN = 0,

y = B−TcB,

sB = cB − B>y = 0, sN = cN − N>y ≥ 0

If xB ≥ 0, then (x, y, s) is optimal

Otherwise, select q ∈ B such that xq < 0 to exit the basis,
select r ∈ N to enter the basis, i.e., s+

r = 0

The update is of the form

s+
B = sB + αeq obvious

y+ = y + αv requirement
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The dual simplex method for LP

What is v? Since A>y+ + s+ = c, it holds

s+
B = cB − B>y+

=⇒ sB + αeq = cB − B>(y + αv) =⇒ eq = −B>v

The update of the dual objective function

b>y+ = b>y + αb>v

= b>y− αb>B−Teq

= b>y− αx>B eq

= b>y− αxq

Since xq < 0 and we maximize b>y+, we choose α as large as
possible, but require s+

N ≥ 0
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The dual simplex method for LP

Let w = N>v = −N>B−Teq. Since Ay + s = c and A>y+ + s+ = c,
it holds

s+
N = cN − N>y+ = sN − αN>v = sN − αw ≥ 0

The largest α is
α = min

j∈N ,wj>0

sj

wj
.

Let r be the index at which the minimum is achieved.

s+
r = 0, wr = A>r v > 0

(D) is unbounded if w ≤ 0
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The dual simplex method for LP: update of x+

We have: BxB = b, x+
q = 0, x+

r = γ and Ax+ = b, i.e.,

Bx+
B + γAr = b =⇒ x+

B = B−1b− γB−1Ar,

where Bd = Ar. Then Ax+ = b gives

B(xB − γd) + γAr = b for any γ.

Since it is required x+
q = 0, we set

γ =
xq

dq
, where dq = d>eq = A>r B−Teq = −A>r v = −wr < 0.

Therefore

x+
i =


xi − γdi, for i ∈ B with i 6= q,
0, i = q,
0, i ∈ N with i 6= r,
γ, i = r
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An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis B
such that xB = B−1b and xN = 0.

If xB ≥ 0, then x is optimal and stop. Else, choose q such that
xq < 0.

Compute v = −B−Teq and w = N>v. If w ≤ 0, then (D) is
unbounded and stop.

If ∃wk > 0, then find α = min
j∈N ,wj>0

sj
wj

and use r to denote the

minimizing j. Set s+
B = sB + αeq, s+

N = sN − αw and y+ = y + αv.

Change B by adding r and removing the basic variable
corresponding to column q of B.
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Primal-Dual Methods for LP

(P) min c>x

s.t. Ax = b

x ≥ 0

(D) max b>y

s.t. A>y + s = c

s ≥ 0

KKT condition

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = 0 for i = 1, . . . , n

Perturbed system

Ax = b, x ≥ 0

A>y + s = c, s ≥ 0

xisi = σµ for i = 1, . . . , n
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Newton’s method

Let (x, y, s) be the current estimate with (x, s) > 0

Let (∆x,∆y,∆s) be the search direction

Let µ = 1
n x>s and σ ∈ (0, 1). Hope to find

A(x + ∆x) = b

A>(y + ∆y) + s + ∆s = c

(xi + ∆xi)(si + ∆si) = σµ

dropping the nonlinaer term ∆xi∆si gives

A∆x = rp := b− Ax

A>∆y + ∆s = rd := c− A>y− s

xi∆si + ∆xisi = (rc)i := σµ− xisi
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Newton’s method

Let Lx = Diag(x) and Ls = Diag(s). The matrix form is:A 0 0
0 A> I
Ls 0 Lx

∆x
∆y
∆s

 =

rp

rd

rc


Solving this system we get

∆y = (AL−1
s LxA>)−1(rp + AL−1

s (Lxrd − rc))

∆s = rd − A>∆y

∆x = −L−1
s (Lx∆s− rc)

The matrix AL−1
s LxA> is symmetric and positive definite if A is full

rank
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The Primal-Dual Path-following Method

Given (x0, y0, s0) with (x0, s0) ≥ 0. A typical iteration is
Choose µ = (xk)>sk/n, σ ∈ (0, 1) and solve A 0 0

0 A> I
Lsk 0 Lxk

∆xk

∆yk

∆sk

 =

rk
p

rk
d

rk
c


Set

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk),

choosing αk such that (xk+1, sk+1) > 0

The choices of centering parameter σ and step length αk are crucial
to the performance of the method.
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The Central Path

The primal-dual feasible and strictly feasible sets:

F = {(x, y, s) | Ax = b,A>y + s = c, (x, s) ≥ 0}
Fo = {(x, y, s) | Ax = b,A>y + s = c, (x, s) > 0}

The central path is C = {(xτ , yτ , sτ ) | τ > 0}, where

Axτ = b, xτ > 0

A>yτ + sτ = c, sτ > 0

(xτ )i(sτ )i = τ for i = 1, . . . , n

Central path neighborhoods, for θ, γ ∈ [0, 1):

N2(θ) = {(x, y, s) ∈ Fo | ‖LxLse− µe‖2 ≤ θµ}
N−∞(γ) = {(x, y, s) ∈ Fo | xisi ≥ γµ}

Tyically, θ = 0.5 and γ = 10−3
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Central path, projected into space of primal variables x, showing a
typical neighborhood N
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The Long-Step Path-following Method

Given (x0, y0, s0) ∈ N−∞(γ). A typical iteration is
Choose µ = (xk)>sk/n, σ ∈ (0, 1) and solve A 0 0

0 A> I
Lsk 0 Lxk

∆xk

∆yk

∆sk

 =

rk
p

rk
d

rk
c


Set αk be the largest value of α ∈ [0, 1] such that
(xk+1, yk+1, sk+1) ∈ N−∞(γ) where

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(∆xk,∆yk,∆sk),
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Analysis of Primal-Dual Path-Following

1 If (x, y, s) ∈ N−∞(γ), then ‖∆x ◦∆s‖ ≤ 2−3/2(1 + 1/γ)nµ

2 The long-step path-following method yields

µk+1 ≤
(

1− δ

n

)
µk,

where δ = 23/2γ 1−γ
1+γσ(1− σ)

3 Given ε, γ ∈ (0, 1), suppose that the starting point
(x0, y0, s0) ∈ N−∞(γ). Then there exists K = O(nlog(1/ε)) such
that

µk ≤ εµ0, for all k ≥ K

Proof of 3:

log(µk+1) ≤ log

(
1− δ

n

)
+ log(µk)

log(1 + β) ≤ β, ∀β > −1
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Barrier Methods

A general strategy for solving convex optimization problem:

(P) min c>x

s.t. x ∈ C,

where C is convex. Find a barrier function b(x) : Int C→ R
b(x) is convex on Int C

for any sequence of points {xi} approaching boundary bd(C),
b(xi)→∞

We can replace the problem

(II) min c>x + µb(x)

If xµ is the optimum of (II) and x∗ of (I) then
xµ ∈ IntC
As µ→ 0, xµ → x∗
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For the positive orthant {x | x ≥ 0}, a barrier is

b(x) = −
∑

i

ln(xi)

For the semidefinite cone {X | X � 0}, a barrier is

b(x) = − ln det(X)

We will discuss the second order cone shortly
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Barriers for LP and SDP

Thus LP can be replaced by

Primal (P)µ

min c>x− µ
∑

i

ln xi

s.t. Ax = b

x > 0

Dual (D)µ

max b>y + µ
∑

i

ln si

s.t. A>y + s = c

s > 0

Thus SDP can be replaced by

Primal (P)µ
min 〈C,X〉 − µ ln det(X)

s.t. 〈Ai,X〉 = bi

X � 0

Dual (D)µ
max b>y + µ ln det(S)

s.t.
∑

i

yiAi + S = C

S � 0
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Applying standard optimality condition we get
LP: L(x, y) = c>x− µ

∑
i ln xi − y>(b− Ax)

SDP: L(x, y) = 〈C,X〉 − µ ln det(X)−
∑

i yi(bi − 〈Ai,X〉)
The Karush-Kuhn-Tucker condition requires that at the optimum

∇XL = 0

which translates into

(LP)
∇yL = b− Ax = 0
∂L
∂xi

= ci −
µ

xi
− (y>A)i = 0

(SDP)
∇yL = (bi − 〈Ai,X〉) = 0

∇X = C − µX−1 −
∑

i

yiAi = 0
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In LP: define si = µ
xi

, then s is dual feasible

In SDP: define S = µS−1, then S is dual feasible

The optimality conditions result in the square system

(LP)
Ax = b

A>y + s = c

xi =
µ

si

(SDP)
〈Ai,X〉 = bi∑

i

yiAi + S = C

X = µS−1

In LP: if we write xisi = µ, we get relaxed complementarity

In SDP: if we write XS = µI, we get relaxed complementarity
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Newton’s method for SDP

Let X, y, S be initial estimates Then

If we use XS = µI, ∆X is not symmetric

Since X, S � 0 then XS = µI iff X ◦ S = XS+SX
2 = µI

Now applying Newton, we get

〈Ai,X + ∆X〉 = bi∑
i

(yi + ∆yi)Ai + S + ∆S = C

(X + ∆X) ◦ (S + ∆S) = µI
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Newton’s method

Expanding and throwing out nonlinear terms

〈Ai,∆X〉 = (rp)i∑
i

∆yiAi + ∆S = Rd

S ◦∆X + ∆S ◦ X = Rc

where
(rp)i = bi − 〈Ai,X〉

Rd = C −
∑

i

yiAi − S

Rc = µI − X ◦ S
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In matrix form A 0 0
0 A> I
LS 0 LX

∆x
∆y
∆s

 =

rp

rd

rc


vec(A) is a vector made by stacking columns of a matrix A

A is a matrix whose rows are vec(Ai)

x = vec(X), s = vec(S) . . .

LX (and LS) are matrix representations of LX (and LS) operators

LX = X ⊗ I + I ⊗ X and LS = S⊗ I + I ⊗ S

Kronecker product: A⊗ B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB


http://en.wikipedia.org/wiki/Kronecker_product

http://en.wikipedia.org/wiki/Kronecker_product
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Solving this system we get

∆y = (AL−1
S LXA>)−1(rp +AL−1

S (LXrd − rc))

∆s = rd −A>∆y

∆x = −L−1
S (LX∆s− rc)
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The matrix AL−1
s LxA> is not symmetric because LS and LX do

not commute!

In LP, it is quite easy to compute AL−1
s LxA>

Most computational work in LP involves solving the system

(AL−1
s LxA>)v = u

in SDP even computing AL−1
s LxA> is fairly expensive (in this

form requires solving Lyapunov equations)
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How about SOCP?

What is an appropriate barrier for the convex cone

Q = {x | x0 ≥ ‖x̄‖}?

By analogy we expect relaxed complementary conditions turn
out to be x ◦ s = µe
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Algebra Associated with SOCP

In SDP
The barrier ln det(X) =

∑
i lnλi(X)

For each symmetric n× n matrix X, there is a characteristic
polynomial, such that

p(t) = p0 + p1t + . . .+ pn−1tn−1 + tn

roots of p(t) are eigenvalues of X
Tr(X) = pn−1, det(X) = p0
roots of p(t) are real numbers
p(X) = 0 by Cayley-Hamilton Theorem
There is orthogonal matrix Q: X = QΛQ> = λ1q1q>1 + . . .+ λnqnq>n
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SOCP

Remember

x ◦ s =

(
x>s

x0s̄ + s0x̄

)
Lx = Arw(x) =

(
x0 x̄>

x̄ x0I

)
e =

(
1
0

)
It is easy to verify

x ◦ x− 2x0x + (x2
0 − ‖x̄‖2)e = 0

Define the characteristic polynomial

p(t) = t2 − 2x0t + (x2
0 − ‖x̄‖2) = (t − (x0 + ‖x̄‖)(t − (x0 − ‖x̄‖)

Define eigenvalues of x roots of p(t) : λ1,2 = x0 ± ‖x̄‖

Define Tr(x) = 2x0 and det(x) = x2
0 − ‖x̄‖2
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For each x define

c1 =
1
2

(
1
x̄
‖x̄‖

)
c2 =

1
2

(
1
− x̄
‖x̄‖

)
We can verify

x = λ1c1 + λ2c2

This relation is the spectral decomposition of the vectors in
SOCP Algebra
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to get c1 and c2, (i) project x to x1, . . . , xn plane, (ii) normalize x̄ and −x̄
(iii) lift the normalized vectors up to touch the boundary of the cone
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Define for any real number t, xt = λt
1c1 + λt

2c2 whenever λt
i is

defined

x−1 =
1
λ1

c1 +
1
λ2

c2 =
1

det(x)

(
x0
−x̄

)
Now we can define an appropriate barrier for Q

− ln det(x) = − ln(x2
0 − ‖x̄‖2)

∇x(− ln det x) =
2

det(x)

(
x0
−x̄

)
= 2x−1
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we can replace SOCP problem with

max c>x− µ ln det x

s.t. Ax = b

x �Q 0

The Lagrangian

L(x, y) = c>x− µ ln det x− y>(b− Ax)

Applying KKT

b− Ax = 0

c− µx−1 − A>y = 0

Setting s = µx−1 we can see that s is dual feasible
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Newton’s method

Thus we have to solve the following system

Ax = b

A>y + s = c

x ◦ s = 2µe

Using Newton’s method, we get

A(x + ∆x) = b

A>(y + ∆y) + s + ∆s = c

(xi + ∆xi) ◦ (si + ∆si) = 2µe
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Newton’s method

Now expanding and dropping nonlinear terms

A∆x = b− Ax

A>∆y + ∆s = c− A>y− s

x ◦∆s + ∆x ◦ s = 2µe− x ◦ s nonlinear term ∆x ◦∆s was dropped

In matrix formA 0 0
0 A> I
Ls 0 Lx

∆x
∆y
∆s

 =

rp

rd

rc

 where

rp = b− Ax

rd = c− A>y− s

rc = 2µe− x ◦ s


	Properties of LP
	Primal Simplex method
	Dual Simplex method
	Interior Point method

