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0 Properties of LP
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Standard form LP

(P) min ¢'x (D) max by
st. Ax=b st. Aly+s=c
x>0 s >0

@ KKT condition

Ax = b, x>0
ATy +s5 = ¢, s>0
xisi = 0 fOri:l,...,n
@ Strong duality: If a LP has an optimal solution, so does its dual,
and their objective fun. are equal.

dual primal finite | unbounded | infeasible
finite v X X
unbounded X X Vv
infeasible X Vv v/
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Geometry of the feasible set

@ Assume that A € R™*" has full row rank. Let A; be the ith
column of A:
A= (A Ay ... Ay

@ A vector x is a basic feasible solution (BFS) if x is feasible and
there exists a subset B C {1,2,...,n} such that

e B contains exactly m indices
e i¢B=x=0
e The m x m submatrix B = [A;];c is nonsingular

B is called a basis and B is called the basis matrix

Properties:

@ If (P) has a nonempty feasible region, then there is at least one
basic feasible point;

@ If (P) has solutions, then at least one such solution is a basic
optimal point.

o If (P) is feasible and bounded, then it has an optimal solution.
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If (P) has a nonempty feasible region, then there is at least one BFS;

@ Choose a feasible x with the minimal number (p) of nonzero x;:
Y Axi =D

@ Suppose that Ay, ...,A, are linearly dependent A, =S zA;
Letx(e):x—{—e(zl,...,zp 1,—1,0,...,0)" = x4+ ez Then
Ax(e) = b, xi(e) >0,i=1,...,p, for e sufficiently small. There
exists € such that x;(€) = 0 for some i = 1, ..., p. Contradiction to
the choice of x.

@ If p = m, done. Otherwise, choose m — p columns from among
Ap+i,...,A, to build up a set set of m linearly independent
vectors.
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Polyhedra, extreme points, vertex, BFS

@ A Polyhedra is a set that can be described in the form
{x e R" | Ax > b}

@ Let P be a polyhedra. A vector x € P is an extreme point if we
cannot find two vectors y, z € P (both different from x) such that
x=Ay+ (I = X)zfor A € [0,1]

@ Let P be a polyhedra. A vector x € P is a vertex if there exists
some c suchthatc'x < c'yforally e Pandy # x

@ Let P be a nonempty polyhedra. Let x € P. The following
statements are equivalent: (i) x is vertex; (ii) x is an extreme
point; (iii) x is a BFS

@ A basis B is said to be degenerate if x; = 0 for some i € B,

where x is the BFS corresponding to 5. A linear program (P) is
said to be degenerate if it has at least one degenerate basis.
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Vertices of a three-dimensional polyhedron (indicated by )
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9 Primal Simplex method
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The Simplex Method For LP

Basic Principle

Move from a BFS to its adjacent BFS unitil convergence (either
optimal or unbounded)

@ Let x be a BFS and B be the corresponding basis
o Let NV ={1,2,....n}\B, N = [Ai]ien, x8 = [xi]ic @and xy = [xi|ienr
@ Since x is a BFS, then xy = 0 and Ax = Bxg + Nxy = b:
Xgp = B~ 'b
@ Find exactly one g € A/ and exactly one p € B such that

BT ={q} U (B\{p})
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Finding g € NV to enter the basis

Let x* be the new BFS:

+
xt = (x_lf) , At =b=xf = B~ 'b —B_leX/

N
The cost at xT is

Tyt = c;ng—i—chN

= cpB 'b—cpB” lej\r/—i—c;vrxX/

= ¢ x+(cN—cBB 1N)xN

= c x—l—z —cBB
%,_/

JEN

A5

@ s; is also called reduced cost. It is acfually the dual slackness

@ Ifs; >0,Vj €N, then xis optimal as ¢'x* > ¢Tx

@ Otherwise, find ¢ such that s, < 0. Then cTxt = ch—|—sqx;)‘ <c'x
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Finding p € B to exit the basis

What is x*: select ¢ € N and p € B such that
xg =B 'p— BilAqx;, x;r > O,xp+ = O,JCJTir =0,j € M\{q}

Letu = B~'A,. Thenx} = xp — ux;

@ Ifu<0,thenc'xt =cTx+ sq¥, — —oc as x — +oo and x* is
feasible. (P) is unbounded

@ If 3w > 0, then find x;” and p such that
xg:xlg—ux; >0, x, =0

Let p be the index corresponding to

x;; = min
i=1,...,m|u;>0 Uu;
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An iteration of the simplex method

Typically, we start from a BFS x and its associate basis B such that
Xgp = B~ 'p and xy = 0.
@ Solve y" = ¢4 B~! and then the reduced costs sy = cy — Ny
@ If sy > 0, x is optimal and stop; Else, choose g € N with 5, < 0.
@ Compute u = B~'A,. If u <0, then (P) is unbounded and stop.
@ If Juy > 0, then find x; = 1 miI‘l . B0 and use p to denote
i=1,...,m|u;> !

the minimizing i. Set x3 = xp — ux, .

@ Change B by adding ¢ and removing the basic variable
corresponding to column p of B.
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Simplex iterates for a two-dimensional problem

«0O0>» «F>r» « >

<=
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Finite Termination of the simplex method

Suppose that the LP (P) is nondegenerate and bounded, the simplex
method terminates at a basic optimal point.

@ nondegenerate: xz > 0 and ¢ x is bounded
@ A strict reduction of ¢"x at each iteration

@ There are only a finite number of BFS since the number of
possible bases B is finite (there are only a finite number of ways
to choose a subset of m indices from {1,2,...,n}), and since
each basis defines a single basic feasible point

Finite termination does not mean a polynomial-time algorithm
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Linear algebra in the simplex method

@ Given B~!, we need to compute B~!, where
B=[A1,...,An), B:=B" =[A1, ..., Ay 1,Ap,Aps1, -, An
@ the cost of inversion B~! from scratch is O(m?)
@ Since BB~ =1, we have
B 'B = (€1, .. ep1,Uyepils-- ., e
1 uj

— Up ,

Um 1

where ¢; is the ith column of 7 and u = B4,
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Linear algebra in the simplex method

@ Apply a sequence of “elementary row operation”
e For eachj # p, we add the p-th row times —:—; to the jth row. This

replaces u; by zero.
e We divide the pth row by u,. This replaces u, by one.

_,%7 (j’ l) = (i,p)

, fori
0, otherwise i

Qip =1+Djp, (Dip)ji = {

@ Find Q such that 9B~'B = 1. Computing B~! needs only O(m?)

@ What if B! is computed by the LU factorization, i.e., B = LU?
L is is unit lower triangular, U is upper triangular.
Read section 13.4 in “Numerical Optimization”, Jorge Nocedal
and Stephen Wright,
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An iteration of the revised simplex method

Typically, we start from a BFS x and its associate basis B such that
Xp = B~ 'b and xy = 0.
@ Solve y" = ¢4 B! and then the reduced costs sy =cy — Ny

@ If sy > 0, x is optimal and stop; Else, choose g € N with 5, < 0.
@ Compute u = B~'A,. If u < 0, then (P) is unbounded and stop.

o If Ju > 0, thenfindx] =  min 9 and use p to denote
i=1,...,m|u;>0 !

the minimizing i. Set xj; = x5 — ux.

@ Form the m x (m+ 1) matrix [B~! | u]. Add to each one of its rows
a multiple of the pth row to make the last column equal to the unit
vector e,. The first m columns of the result is the matrix B~

17/57



Selection of the entering index (pivoting rule)

Reduced costs sy =cy —N'y, ¢'xt =cTx+ sqx+
@ Dantzig: chooses g € N such that s, is the most negative
component

@ Bland’s rule: choose the smallest j € A such that s; < 0; out of
all variables x; that are tied in the test for choosing an exiting
variable, select the one with with the smallest value i.

@ Steepest-edge: choose ¢ € A such that | i "l‘lf is minimized, where

+ —1
b XB —BT'A T
xt = ()%) = <XN> + < ¢ q) Xg = X+ 1)gX,

efficient computation of this rule is available
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Degenerate steps and cycling

Let ¢ be the entering variable:

~1 ~1 ~1
x'g:B b—B Aqx;:xlg—x;u, where u = B A,

@ Degenerate step: there exists i € B such that x; = 0 and u; > 0.
Then x;” < 0if x} > 0. Hence, x;” = 0 and do the pivoting

@ Degenerate step may still be useful because they change the
basis B, and the updated B may be closer to the optimal basis.

@ cycling: after a number of successive degenerate steps, we may
return to an earlier basis B

@ Cycling has been observed frequently in the large LPs that arise
as relaxations of integer programming problems

@ Avoid cycling: Bland’s rule and Lexicographically pivoting rule
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Finding an initial BFS

The two-phase simplex method

(P) min c¢'x (PO) f=min zi+z+4...4 zm
st Ax=0b st Ax+z=0b>
x>0 x>0, z>0

@ ABFSto (PO): x=0andz=1"»
@ If x is feasible to (P), then (x,0) is feasible to (PO0)
e If the optimal cost f of (P0) is nonzero, then (P) is infeasible

@ If f =0, then its optimal solution must satisfies: z = 0 and x is
feasible to (P)

@ An optimal basis B to (P0) may contain some components of z
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Finding an initial BFS

(x,z) is optimal to (P0O) with some components of z in the basis
@ Assume A4, ..., A, are in the basis matrix with k£ < m. Then

B =[Ay,...,Ar | some columns of /]
B 'A=le,....ex,B 'Arp1,...,B71A,]
@ Suppose that /th basic variable is an artificial variable

@ If the ¢th row of B~!A is zero, then gTA =0, where g is the ¢th
row of B~1. If gTh +# 0, (P) is infeasible. Otherwise, A has linearly
dependent rows. Remove the /th row.

@ There exists j such that the ¢th entry of B~'4; is nonzero. Then 4;
is linearly independent to Ay, ..., A;. Perform elementary row
operation to replace B~'A; to be the ¢th unit vector. Driving one
of z out of the basis

21/57



The primal simplex method for LP

(P) min c¢'x (D) max by
st. Ax=b st. Aly+s=c
x>0 s>0

@ KKT condition

Ax = b, x>0
ATy+s = ¢, s§>0
xisi = 0 fori=1,...,n

@ The primal simplex method generates

xg = B 'b>0, xy=0,
y = B*TCB,
sg = c— BTy =0,sy =cy — NTy'.’O
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© Dual Simplex method
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The dual simplex method for LP

@ The dual simplex method generates

Xp = B’lb?O, XN = 0,
y = BiTCB7
_ T, _ T
sp = cg—B y=0sy=cv—N y>0

@ Ifxg > 0, then (x,y,s) is optimal

@ Otherwise, select ¢ € B such that x, < 0 to exit the basis,
select r € N to enter the basis, i.e., s} =

@ The update is of the form

sg = sp+ae;, obvious
yt = y+av requirement
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The dual simplex method for LP

@ Whatis v? Since ATyt + 5T = ¢, it holds

+ T
sy =cg—B'yT

— sp+ae, =cp —BT(y +av) = eq = —BTv
@ The update of the dual objective function

'yt = b'y+ably
= bly— abTB*Teq
= bly— ax;eq

+
= b y—ax

@ Since x, < 0 and we maximize b'y™, we choose « as large as
possible, but require s3; > 0
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The dual simplex method for LP

@ Letw=N"v=-NT"BTe,. SinceAy +s=candATy" +st =,
it holds

sf\?:cN—NTy+:sN—aNTv:sN—aw20

@ The largest a is
. S
o = min 7J'
JEN W >0 wj

Let r be the index at which the minimum is achieved.
st=0, w,=Av>0

@ (D) is unbounded if w < 0
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The dual simplex method for LP: update of x™
We have: Bxg = b, x;f =0,xF =yand Axt =b, i.e,,
Bx;g +7A, =b = ng =B 'b— B A,
where Bd = A,. Then Ax™ = b gives
B(xg — vd) + vA, = b for any ~.

Since it is required x;” = 0, we set

v = Z—q, where d, = dTeq = A:—B_Teq = —Alv=—w, <0.
q

Therefore
x; —d;, forie Bwithi#gq,
+ 0, i=gq,
' 0, i € N withi # r,

v, i=r
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An iteration of the dual simplex method

Typically, we start from a dual feasible (y, s) and its associate basis B
such that x3 = B~'b and xy = 0.

@ If xp > 0, then x is optimal and stop. Else, choose ¢ such that
xq < 0.

@ Compute v=—BTe,and w=N"v. If w <0, then (D) is
unbounded and stop.
@ If 3wy > 0,thenfind « = min 2 and use r to denote the
JEN wi>0 Wi
minimizing j. Set s} = sp + ey, sy = sy —aw and y© =y + av.

@ Change B by adding r and removing the basic variable
corresponding to column ¢ of B.
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e Interior Point method
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Primal-Dual Methods for LP

(P) min c¢'x (D) max b'y
st. Ax=0b s.t. ATy +s=c
x>0 s>0

@ KKT condition

Ax = b, x>0
ATy+s = c 520
xisi = 0 forizl,...,n

@ Perturbed system

Ax = b, x>0
ATy—f—s = ¢ 520
xisi = op fori=1,....n
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Newton’s method

@ Let (x,y,s) be the current estimate with (x,s) > 0

@ Let (Ax, Ay, As) be the search direction

o Lety=1xTsand o € (0,1). Hope to find
Ax+Ax) = b

ATy +Ay)+s+As = ¢
(xi + Ax;)(si + As;)) = op

@ dropping the nonlinaer term Ax;As; gives

AAx = r,:=b—Ax
ATAYy+As = rgi=c—ATy—s
XiAs; + Axis; = (re)i = op — x;s;

31/57



Newton’s method

@ Let L, = Diag(x) and L; = Diag(s). The matrix form is:

A 0 O Ax rp
0 AT I Ay | = | rs
L, 0 L, As e

@ Solving this system we get

Ay = (AL'LAT) T (p + AL (Lira — 7))
As = rg—ATAy
Ax = —L7YLAs—r,)

@ The matrix AL;'L,AT is symmetric and positive definite if A is full
rank
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The Primal-Dual Path-following Method

Given (x°,y%,s%) with (x°,5°) > 0. A typical iteration is
@ Choose i = (x*)"s*/n, 0 € (0, 1) and solve

A0 0 /A e
0 AT I A | =
Le O Lu As* rk

(FFE VM) = (5, 5, 5) + a(AXF, AyF, AsY),

choosing oy such that (¥**!, s+1) > 0

ak

@ Set

The choices of centering parameter o and step length «y are crucial
to the performance of the method.
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The Central Path

@ The primal-dual feasible and strictly feasible sets:

F = {(xys) \Ax:b,ATy—i—s:c,(x,s) > 0}

Foo= {(X,y,S) ‘Ax = baATy+S =, (X,S) > 0}

@ The central path is C = {(x;,y-,s:) | 7 > 0}, where

Ax; = b, x>0
ATyT +s = ¢, s:>0
(xT)l-(sT),- = 7 fori= 1,...,n

@ Central path neighborhoods, for 6, € [0, 1):

Na(0) = {(x,y,5) € F’ | |ILilse — pella < Ou}
Nos(v) = {(xy,5) € F|xisi > yu}

Tyically, # = 0.5and vy = 1073
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central path neighborhood

Central path, projected into space of primal variables x, showing a

typical neighborhood A

35/57



The Long-Step Path-following Method

Given (x%,)°,5%) € N_ (7). A typical iteration is
@ Choose i = (x*)"s*/n, 0 € (0, 1) and solve

A 0 O Axk rg
0 AT I A | =+
Le O Lu As* rk

@ Set oy be the largest value of a € [0, 1] such that
(xk—i-l’yk—&-ljskﬂ) c Nfoo(f}/) where

R ALY = (k0K 55) 4 (AR, Ay¥, As¥),
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1 iterates 0

central path C

boundary of neighborhood N
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Analysis of Primal-Dual Path-Following

Q If (x,y,5) € N_oo(7), then ||Ax o As|| < 273/2(1 4 1/y)nu

© The long-step path-following method yields

)
Hk+1 S <1 - ) Mk
n

where § = 23/2y{20(1 - 0)

© Given ¢,y € (0,1), suppose that the starting point
(x2,92,59) € N_oo(). Then there exists K = O(nlog(1/¢)) such
that
e < epo, forallk > K

Proof of 3:

IN

5
log(k+1) log (1 - n) + log ()

log(1+8) < B, VB> I
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Barrier Methods

A general strategy for solving convex optimization problem:
(P) min c¢'x
st xeC,

where C is convex. Find a barrier function b(x) : Int C — R
@ b(x) is convex on Int C

@ for any sequence of points {x;} approaching boundary bd(C),
b(x;) = o0
@ We can replace the problem
(I min ¢ x+ pb(x)

@ If x, is the optimum of (Il) and x* of (l) then
@ x, € IntC
o As pu—0,x, = x*
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@ For the positive orthant {x | x > 0}, a barrier is
b(x) = — Zln(x,-)

@ For the semidefinite cone {X | X = 0}, a barrier is
b(x) = —Indet(X)

@ We will discuss the second order cone shortly

40/57



Barriers for LP and SDP

Thus LP can be replaced by
Primal (P),, Dual (D),
min ¢'x—p Z In x; max bTy + u Z Ins;

l
st. Ax=0b st. Aly+s=c
x>0 s>0

Thus SDP can be replaced by

Primal (P),, DuaTl (D),
min (C,X) — plndet(x) 1o P y+ pln det(S)
st (4,X) =1b; s.t. ZyiAi LS=C
X>0 i

S>=0
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Applying standard optimality condition we get
@ LP: L(x,y)=c'x—pudYInx;—y' (b — Ax)

® SDP: L(x,y) = (C,X) — pIndet(X) = 3=, yi(bi — (A, X))
The Karush-Kuhn-Tucker condition requires that at the optimum

VxL=0
which translates into
(LP) (SDP)
Vyﬁzb—AX:O Vyﬁz(bi—<Ai,X>):0

-1 .
Xi Xi i
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@ In LP: define 5; = £, then s is dual feasible
@ In SDP: define S = ;S~!, then S is dual feasible

The optimality conditions result in the square system

(LP) (SDP)
Ax=1b (A1, X) = b;
ATy—i—s:c ZyiAi—l-S:C
=t o

S X =uS

@ In LP: if we write x;s; = u, we get relaxed complementarity

@ In SDP: if we write XS = ul, we get relaxed complementarity
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Newton’s method for SDP

@ Let X, y, S be initial estimates Then

o If we use XS = ul, AX is not symmetric

@ Since X,S - 0then XS = pl iff X o § = X545 —
@ Now applying Newton, we get

(AnX+AX) = b
D i+ Ay +S+AS = €

1

(X+AX)o (S+AS) =
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Newton’s method

Expanding and throwing out nonlinear terms

(Ai, AX) = ()i
Z Ayl'Ai + AS Rd

1
SoAX+ASoX = R,

where
(rp)i = bi — (A, X)

Rd:C—Zy,'A,'—S
i

R.=pl—XoS
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In matrix form
A 0 0 Ax Ty
0 A" I Ay | =|rs
ﬁg 0 EX As re

vec(A) is a vector made by stacking columns of a matrix A

A is a matrix whose rows are vec(A;)

x =vec(X), s = vec(S) ...
Lyx (and Lg) are matrix representations of Ly (and L) operators
Lx=XI+IxXand Ls=SRI+I®S
anB ... a,B
Kronecker product: A ® B =
anB ... au..B

http://en.wikipedia.org/wiki/Kronecker_product
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@ Solving this system we get

Ay = (ALG'LxAT) ' (ry + AL (Lxra — 1))
As = rd—ATAy
Ax = —Lg'(LxAs—r)
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@ The matrix AL, 'L AT is not symmetric because L5 and Lx do
not commute!

@ In LP, it is quite easy to compute AL, 'L, AT
@ Most computational work in LP involves solving the system
(AL;'L AT Y =u

@ in SDP even computing AL; 'L, AT is fairly expensive (in this
form requires solving Lyapunov equations)
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@ How about SOCP?

@ What is an appropriate barrier for the convex cone
Q= {x|xo > [[x[|}?

@ By analogy we expect relaxed complementary conditions turn
outtobe xos = ue
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Algebra Associated with SOCP

In SDP
@ The barrier Indet(X) = >, In A;i(X)

@ For each symmetric n x n matrix X, there is a characteristic
polynomial, such that
e p(t) =po+pit+...+pup "+ 1"
e roots of p(r) are eigenvalues of X
o Tr(X) = pu_1, det(X) = po
e roots of p(¢) are real numbers
e p(X) = 0 by Cayley-Hamilton Theorem
e There is orthogonal matrix Q: X = QAQ" = \jqiq| + ... + Mg,
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SOCP

@ Remember
x's xo X 1
xos = <x0s+ sox) L, = Arw(x) = (x x01> e= <0>
@ Itis easy to verify
xox—2x0x + (63 — ||x||*)e =0
@ Define the characteristic polynomial

p(t) = 1 = 2xot + (o — |[%11*) = (7 = (xo + ] ( = (xo — [Ix[])

Define eigenvalues of x roots of p(z) : i = xo % |||

Define Tr(x) = 2xo and det(x) = x3 — ||x||?
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@ For each x define

@ We can verify
X = )\161 + )\262

@ This relation is the spectral decomposition of the vectors in
SOCP Algebra
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to get ¢; and ¢, (i) project x to xy, . .., x, plane, (i) normalize x and —x
(iii) lift the normalized vectors up to touch the boundary of the cone

53/57



@ Define for any real number 7, x' = Xj¢; + Xy, whenever X is

defined
x’l—ic —|—ic— ! 0
T T det(x) \—x

@ Now we can define an appropriate barrier for Q

—Indet(x) = — In(x§ — [|%[|*)

2
Vi(—Indetx) = det(x) <f(;_c) =2x!
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@ we can replace SOCP problem with

max ¢ x— plndetx
st. Ax=b
X9 0

@ The Lagrangian
L(x,y) =c'x— plndetx —y' (b — Ax)
@ Applying KKT

b—Ax = 0
c—ux'—=ATy = 0

@ Setting s = ux~—! we can see that s is dual feasible
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Newton’s method

Thus we have to solve the following system

Ax = b
ATy +s = c
xos = 2ue

Using Newton’s method, we get

Alx+Ax) = b
AT (y+Ay) + 5+ As
(xi + Ax;) o (si + As;)) = 2pe

I
o
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Newton’s method

Now expanding and dropping nonlinear terms

AAx = b—Ax
ATAy+As = c—Aly—5
xoAs+ Axos = 2ue—xos nonlinearterm Axo As was dropped

@ In matrix form
A 0 0\ [Ax . p=b—Ax
0 AT 1 Ay | =|rqa| wherer; =c— ATy — 5
Ly 0 L As Te Fe =2ue —xos
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