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Outline

6 Stochastic Quasi-Newton Methods
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Why Optimization in Machine Learning?

Many problems in ML can be written as

N

. 1, T 9 . .
“Na' x — b; linear regression
min > zllal x — bil[3 + pp(x) g

i=1

1 b; logistic regression
min Zog + exp(—bia] x)) + pp(x)  log 9

i L(h( eneral formulation
min Z (h(x,ai), bi) + pep(x) @

@ The pairs (a;, b;) are given data, b; is the label of the data point ;
@ /;(-): measures model fit for data point i (avoids under-fitting)
@ o(x): regularization avoids over-fitting: ||x||3 or ||x||1, etc

@ h(x,a): linear function or models constructed from deep neural
networks
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Sparse Logistic Regression

The /; logistic regression problem.

N
1
min Zl log(1 + exp(—bia] x)) + pup(x).

@ The data pair {a;,b;} € R" x {—1,1},i € [N],

Data Set | #dataN  #featuresn sparsity(%)
cina 16,033 132 70.49
ad%a 32,561 123 88.72

ijcnn1 49,990 22 40.91
covtype 581,012 54 77.88
url 2,396,130 3,231,961 99.99
susy 5,000,000 18 1.18
higgs 11,000,000 28 7.89

news20 19,996 1,355,191 99.97
rcvi 20,242 47,236 99.84
kdda 8,407,752 20,216,830 99.99
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Deep Learning

The objective function is the CrossEntropy function plus ¢; term:

S N op [ EXP(h(x,a)[bi]) .
w2 1g<zjexp<h<x,ai>v]>> Fhet

where h(x, a;) is output from network, and (a;, b;) are data points.

| Cifar-10  Cifar-100

# num_class 10 100
# number per class (training set) 5,000 500
# number per class (testing set) 1,000 100

# Total parametes of VGG-16 15,253,578 15,299,748
# Total parameters of ResNet-18 11,173,962 11,220,132

Table: A description of datasets used in the neural network experiments
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ResNet Architecture

@ Kaiming He, Xiangyu Zhang,
Shaoqing Ren, Jian Sun, Cited by
44889 (2015-2020/5) at Google
scholar

@ Stack residual blocks. Every residual Fo0+ x [ ot
block has two 3x3 conv layers. 6?

@ Make networks from shallow to deep. ¢,

@ Fancy network architecture. Many
Applications. .
Residual block

@ High-computationally-cost! _

@ ResNet-50 on ImageNet, 29 hours
using 8 Tesla P100 GPUs

‘relu X
identity

9/53



Stochatic optimization problem

@ Consider

min W(x) :=£(x) + (x)

@ Expected and Empirical Risk Minimization:
1 N
f) =E[Fx ],  fix)=y > filw)
i=1

@ Assume f(x) is smooth but ¢(x) is convex and non-smooth.

@ Large-scale machine learning problems: both the number of data
samples N and dimension » are very large

@ Full evaluation of f(x) and Vf(x) is not tractable or simply too
expansive.
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Stochastic Gradient Algorithms in Deep learning

Consider problem min cpa 1 7% £i(x)
References: chapter 8 in www.deeplearningbook.org

@ Gradient descent
ol <&
A =X — - Z; Vfi(x')
=

@ Stochastic gradient descent
AT =X — V()
@ Adaptive Subgradient Methods (Adagrad): let g, = Vf;(x),
g? = diag[g,g”] € RY, and initial G, = g2. At step ¢
t

NS a Vi (x
Vo )

G =G +gy

where we use element-wise vector-vector multiplication.
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www.deeplearningbook.org

The KFAC Method

@ Take an L-layer feed-forward neural network for example
sj = Winj—1,  uw; = ¢;(s)),

where ug = a is the input, uz(a) € R™ is the output, W; is the
weight matrix and ¢; is the block-wise activation function.

@ KFAC approximates FIM by a block-diagonal matrix.
F =0 1,1® G,

where g]( 7)== (h(gi,“l) and

Qj—1j-1 = Z W ()", Gy = ZEM dean|81(2)80(2) T,
’ |t€B ‘ |t€B

@ KFAC update: & = —(F)~!g;
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Hessian of Smooth Problem (o (x) = 0)

The Hessian matrix V2¥(x) can be divided into two different parts:

V20 (x) = H(x) + II(x),

where H(x) is relatively cheap, II(x) is expensive.
@ Subsampled Hessian matrix

VSH : | Z v ﬁ
i€SH
@ Deep learning
s . 1 &
H) = 3§ S AVEGWUDT, T = 3 3030 Vb
i=1 i=1 =1

@ KFAC Approximation

)V hi(x
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Structured Stochastic Quasi-Newton (QN) Methods

@ Quasi-Newton direction:
(By + Ml)d* = —gi
@ Approximation to the Hessian
By = Hy + Ay,
where H; = H(x*) and A, is a quasi-Newton refinement to IT(x*)
Ay := LBFGS(U, i) = A} — GP'C)

@ Explicit computation:

B+ M) =(H - ) =B v B \ar ol B!

@ Explicit Inverse by Low-Rank Structures

14/53



Composite optimization problem

Consider min,cre V(x) := f(x) + ¢(x)
@ Proximal gradient method
A= prox]) (F = VA()/A) k=0,1,-- -,
where the proximal mapping is:

. A
prox:)(x) := argmin {p(u) + §||u —x|j3}.
uceR?

@ Basic idea is to solve the equivalent nonlinear equation:
F(x) :=x— prox;}(x — Vf(x)/A) =0.

a) Fis directionally differentiable at x; and
b) foranyd € R" and J € OF(x + d),

|F(x +d) — F(x) — Jd||2 = o(|d|) asd — 0.

@ Apply semi-smooth Newton-type method !

@ F(x) is nondifferentiable, but semi-smooth in many applications.
(
(
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Semi-smooth Newton-type method

@ Denote J* as the generalized Jacobian (Hessian) matrix oF (x*).
@ Construct a “Newton” direction:

d" = —W'F (),

where W* is exact or approximation of inverse of J.
@ Employ the Newton step

H =3k 4 dh.

@ However, there exists some bottleneck:
(a) a suitable globalization strategy

(b) the computation of W* and F(x*) for very high dimensional
problem.
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Stochastic Approximation and Extragradient Strategy

@ Use stochastic approximation technique!
Estimate v* ~ V£ (x*) from stochastic oracle and set

Fu(x*) = — prox;\,(xk —vk/N).

Example: Assume the samples s are chosen independently, then
a possible estimate of Vf(x) is V/i(x*) := § 2, V().
@ Use extra-gradient step for globalization!
(a) First employ the “Newton” step:

& =+ pid,
where d* = —W*F . (x%).
(b) Perform an extra gradient step:
X = prox) (¥ + apdt — VA /N), W& VF().

The choice of g, and «y are very flexible !
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Convergence Assumption

Basic Assumption

A.1 The gradient mapping V7 is Lipschitz continuous on R" with modulus L; > 1.
A.2 The objective function ¢ is bounded from below on dom .

A3 ¢:R" — (—o0,00] is convex, lower semicontinuous, and proper.

Stochastic Assumption

B.1 The mapping D* : © — R" is an F*-measurable function for all .

B.2 There is v > 0 such that we have E[||D*||* | 747" < 17 - E[||Fye (X9 | ']
a.e. and for all k € N.

B.3 Forallk € N, it holds E[V* | Fi~'] = V£ (X"), E[V4 | F'] = Vf(Z") a.e. and
there exists o, ox,+ > 0 such that a.e.

E[|VF(X) = V¥ | Fi'l <ot and  E[|VA(Z") — ViI* | F] < ok,
where

Fr=o(V,V,...,V" and FL=c(FUa(VL)).
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Theorem 1

Suppose that the assumptions (A.1)—(A.3) and (B.1)—<B.3) are
satisfied and we have
1 (1 = P) e+

Mo < — M <
Sl P

)

where . = vi(ow + LeBx Ak +). Then, under the additional conditions

Z)\k = 00, Z)\kO']% < 00, Z)\k7+01%7+ < 00

it follows lim inf;_,« E[||F(X¥)||?] = 0 and lim inf;_,o, F(X¥) = 0 a.s.
and ((X*)), a.s. converges to some random variable Y* with
limy o0 E[p(X5)] = E[Y*].

Locally, if we further assume the function satisfy KL-property and
some mild assumption, we can show then (X*), converges almost
surely to a crit v-valued random variable X*.
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Deep learning: ResNet-18 on Cifar10. ¢(x) =0

105 T T T T T T T T T 105 T T T T T T T T T
100 - 100 |-
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20 90 -
3
8 2
5 8 el
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< 8
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z 80 B 80
5 8
g
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Deep learning: ResNet-18 on Cifar10, p(x) = ||x|;
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Outline

e A stochastic trust region method for deep reinforcement learning
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Reinforcement learning

23/53



Preliminaries

@ Consider an infinite-horizon discounted Markov decision process
(MDP), usually defined by a tuple (S, A, P, R, po,7);

Agent .
@ po: the distribution of s

state reward action .
S| | A, e ~: discount factor € (0, 1)

R
S| Environment [e—— e P: transition probability

@ Atrajectory: 7 = {s0,ao, r(so,a0), 51, .-, s,,at, F(S1,Q1), St1y e}
@ At a given state, choose action from = (:|s): [, 7w (als)da = 1.

@ The policy is supposed to maximize the total expected reward:

max n(mw [Z’Y r\Ss, ay ] )

with 5o ~ po, ar ~ m(-[sr), sr41 ~ P(:|st, ar).
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Preliminaries
@ State-action value function:

Qﬂ'(sv Ll) = E7T [Z ’Ytr(staat)

t=0

0. (s.a) = r(s,a) +7 Y P(s'ls.a) 3 (e[ 0x ("),

a’

5025;30:a17

Q*(s,a) = r(s,a) +~ ZP(S/|S, a)max Q*(s',d’).

s

@ State value function:

)

a a

Va(s) = Zw(a|s)Qﬁ(s, a) = Zﬂ(ab) [r(s, a) + ’yZP(s’Lv,a)VW(S')

V*(s) = max Q*(s,a) = max [r(s7 a) +y Z P(s'|s,a)V*(s)

s’

@ Advantage function: A, (s,a) = Ox(s,a) — Vx(s), > w(a|s)A(s,a) = 0.

a
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Deep reinforcement learning

@ In real-world tasks: high dimensionality, limited observations,...

@ In deep reinforcement learning, the policy = and/or value
functions are usually parameterized with differentiable neural
networks.

@ The policy-based optimization:

).
max n(0)

@ The value-based optimization:

2
m(gn Es {Q¢(s,a) — By op(sa) |7(5,a) + ¥ max 0u(s',d)]s, a} } .

@ Challenges: theoretical analysis; generalization; stability; trade
off between exploration and exploitation...
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VPG, NPG

@ Policy gradient: Vn(0) = E,, =, [V log mg(als)Ag (s, a)].

@ py(s) = ioj ~v'P(s; = s|mg) is the (unnormalized) discounted
visitatioﬁzgrequencies.

@ Vanilla'/Natural® policy gradient: 6; 1 = 6; + aM(6;)Ven(6%).

o M(6) ! = E o, .ma, [Vologmg,(s,a)Velogma,(s,a)'] .

@ A local approximation of #:

= 1(6k) + Z po(s) Z mo(als)Ag, (s, a),
L (0) = (6 +Zﬂek Zﬂe (als)Ag, (s, a).

@ 1(6k) = Ly, (6k), Vn(6k) = VLo, (k).
'R. S. Sutton, el al., Policy gradient methods for reinforcement learning with

function approximation.
2S. M. Kakade, A natural policy gradient. 27/53
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TRPO, PPO
@ Trust region policy optimization (TRPO)3:
max Ly, (0), s.t., Dxr(mg, ||7m9) <6,
max gh (0 — ), st %(0 — 0)THL (0 — 6;) < 6.
® g = VLo, (0)|o=0,, Hx = V>Dgr(mg,||70)|o=0,-
@ Ok =0+ aH,:lgk, essentially a natural gradient update.

@ Proximal policy gradient (PPO) method*, denote

re(s,a) = 72;}(“0'\?) :

Lo, (0> - 77(9/() + Epekﬂrek [rk<s7a)A9k (S,(l)] )

max Epy, mo, (min [ri(s, a)Ag, (s, a), clip(rk(s,a), 1 — €, 1 4 €)Ag, (s, a)]] -

8J. Schulman, et al., Trust region policy optimization.

4J. Schulman, et al., Proximal policy optimization algorithms 28/53



Stochastic Trust Region Algorithm

@ The objective function
max n(6).

@ At k-th iteration, obtain a trail point 6, from the subproblem:

max Lo, (8), 5.t Bynpy, [D(ma,(15), molC[5))] < .

@ Compute the ratio r;, = %
k k

9 > ,
@ Update 0,1 = {9"“’ = 60’, with 8y > 0.

ks 0.W.,
(] Update 5k+1 = Uk—l—lHVL9k+1(9k+1)” with 1> 12 v > s,

Yk, Tk > P,
M1 = § V2pks Tk € [Bo, B1), -
Y3 Lk, o.w.,
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Convergence Results

Lemma 2 (Lower bound of AL;,)

Suppose {m} is the sequence generated by our trust region method,
then we have Ly, (my+1) — Ly, (mc) = min(1, (1 —)dx) A7, .

Lemma 3 (Lower bound of r;)

. T . 4epy6? 4e,~vO
The ratio r, satisfies that r, > min | 1 — K% ] — a0
k k= py(1=7)2A7,0 ~ p(1—7)%Az, )”

where py = ming po(s) and ¢; = max; 4 |Ar, (s, a)l.

Theorem 4 (Convergence)
Suppose {;} is the sequence generated by our trust region method,
then we have the following conclusions
Q@ lim A} =0.
k—o0
Q klggo n(my) = n(7*), where * is the optimal policy.
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Empirical algorithm

@ Terminate condition:

!iek(Qk,zﬂ) — Lo, (6k1)| <c or |Ent(6k14.1) — Ent(6;)] > e
1+ | Lo, (6xy)| 1 + [Ent(6y)|
@ Ratio:
- 0(Ohes1) — n(6k) = 7?(51«+1)~— 7(0k) .
Lo, (Ox+1) — Lo, (0k) 07(0k) + Lo, (Or1) — Lo, (0x)

@ 7,(0) is the empirical standard deviation of 7(6).

Ok+1, 1 > Bo,

9 , with a small
ks O0.W.

@ Acceptance criteria: Oy =

negative constant 5, < 0.

@ Mandatory acceptance: after several consecutive rejections,
force to accept the best performed point among the past

rejections.
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Atari games

Table: Max Average Reward (100 episodes) + standard deviation over 5
trails of 1e7 time steps.

Environment PPO TRPO STRO
Pong 20+0 3+7 20+0
MsPacman | 21254322 | 15384159 | 24524-487
Seaquest 10044141 692+92 | 11721346
Bowling 50+17 38+15 10546
Freeway 30+0 28+3 31+0
PrivateEye 10040 88+16 100+0
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Outline

Q State Aggregation For Markov chain
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Model Reduction by State Aggregation

pj=PX =51X=s5)

2 oj
" ¢ ° . k:

Aggregation :' “‘ Disggregation
probability . probability
Uik Pu=PZy=512=35) Vi
~‘°¢ ‘ o - ‘o :’"‘

§ ° ° [

pi =Y uipuvy = Martrix form P = UPV"
k=1
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Low-Nonnegative-Rank Approximation

minimizeycgexa A (X) := g(X) + xe(X) + A\Q(X) (1)

Theorem 5 (Sufficient and necessary conditions for global optimality )

X is globally optimal for (1) with an optimal factorization X = UV iff
Ju € RY s.t.

u’ (p1f = Veg(X))v< A, Vuve R% with |[ullz = [|v]2 = 1,

(117 = Ve(X)V] —AUdlag{ H JHZ}
|| J”2 j= 1

[10,# — (Vs(X)) fJL - wdiag{ ” J’”z}f].

( 1Vill2

o g(X) := ||E(P™ — X)||}, xe(X) is the indicator function on
X1, = ld

@ ((X) does not have an explicit form.
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Outline

e Modified Levenberg-Marquardt Method For Phase Retrieval
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Phase retrieval by non-convex optimization

Solve the system of quadratic equations:

yr = | (ar,x) ]2, r=12...m

@ Gaussian model:
a, € C"EEN(0,1/2) +iN(0,1)2).
Nonlinear least square problem
: 1 < 20
min () = k; Ve — (a2

f is nonconvex, many local minima
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Wirtinger flow: Candes, Li and Soltanolkotabi ('14)

@ Spectral Initialization:
1 Input measurements {a,} and observation {y, }(r

=1,2,...,m).
2 Calculate z to be the leading eigenvector of ¥ = 1 Z yra,ar.

3 Normalize zy such that ||zo||> = ”ZZH . NEN

@ Iteration via Wirtinger derivatives: forr =0, 1,...

Zr+l =2Zr ﬁwﬁ;vf( 7)
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The Modified LM method for Phase Retrieval

Levenberg-Marquardt lteration:

2 = 2 — (U(z) + md) ' g(z)

Algorithm

1 Input: Measurements {a,}, observations {y,}. Set e > 0.

2 Construct zg using the spectral initialization algorithms.
3 While ||g(z)|| > € do
e Compute s; by solving equation

Whisy = (W(zk) + md) sx = —g(zx)-

until
H\I/é‘kkslc + g(z) || < mellg(ze) |-
o Setgyr1 =z +spandk:=k+ 1.
3 Output: z.
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Convergence of the Gaussian Model

If the measurements follow the Gaussian model, the LM equation is
solved accurately (n, = 0 for all k), and the following conditions hold:

e m > cnlogn, where c is sufficiently large;
o Iff(zi) > H;O‘g‘nz, let . = 70000n+/nf (zx), if else, let . = \/f (zk).

Then, with probability at least 1 — 15¢=7" — 8 /n* — me~ ", we have
dist(zp,x) < (1/8)||x]|, and

dist(zx+1,x) < c1dist(zx, x),

llzs[1*

Meanwhile, once f(zs) < o>

for any k > s we have

dist(zx41,%) < codist(zx, x)*.
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Numerical Result: Natural Image
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Figure: Relation between relative error and CPU time used for natural images recovery.
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Outline

© Modularity minimization for community detection
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Modularity minimization for community detection

@ The modularity maximization problem X = &*(&*) '
max (A — 5-dd", X)
s.t. X € {0, 1} is a partiton matrix.
@ Nonconvex completely positive relaxation:

in (—A —ddT vuT
Jin (=A+ o3 )

SLU > 0, Juil® = 1, Juiflo < pyi=1,...,n

Theorem 7 (Theoretical Error Bounds)

Define G, = ;e cx i Ha = S BuGp,fi = H 01, Under the
assumpt/on Max|<g<bh<k F “b+ <A< m1n1<a<k
Let U* be the global opt/ma/ solution, and def/ne

A = U*(U*)T — ®*(®*)". Then with high probability
1Al < § (1 + (maxi<osk 2171 ) ) (VAT +n)

S for some § > 0.
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Outline

e Analysis on a quartic-quadratic optimization problem
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Analysis on a quartic-quadratic optimization problem

Definition 1 (Model Problem)

Suppose matrix A € C"*" js Hermitian and 3 > 0 is a constant. We consider
the following minimization problem.

zeCr 2

Example: Non-rotating BEC Problem

The ground state of non-rotating Bose-Einstein Condensation (BEC)
problem is usually defined as the minimizer of the following dimensionless
energy functional

1 n
minf(2) = 22e+ 5 Yl st e = 1.
k=1

B6) = [ [5I760R + VElooP + Slowi] ax.

where d = 1,2, 3 is the dimension, V(x) denotes the potential and g € R is
the interaction coefficient. We also need the wave function to be
normalized: [|¢||;2(ray = 1.

3



Batch normalization (BN) from deep learning

@ Given weight vector w, the output x from the previous layer
@ Batch normalization transform on z := w'x

_z—El] wi(x—E[R) u'(x—E[]

B V/ Var[Z] B VWTRuw VuT Ry

where u = w/||w||, E[x] and R,, are the mean and covariance of x.
@ Note that BN(w'x) = BN(u'x), then the wight vector satisfies

BN(z)

we sl

where "~ ! is is the (n — 1)-dimensional sphere in R".
@ Deep networks with multiple layers and multiple units per layer

min E(X)7 St M = Snl_l X ooo X Snm_l X Rl
XeM
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Landscape of the objective function

£
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Geometric Analysis In Real Case

Suppose that the coefficient 3 satisfies 3 > -2 ( 1 4+ ~)pn/? for some

given~ > 0. Then, the function f has the (C 7p, \[p, C,p)-strict-saddle

property with C,, := 2= (1 + y)n*/? — 1.

Three Regions

1. (Strong convexity). Ry = {z € S""! : maxj<x<u|z7 — 1/n| < 1/2n}.
2. (Large gradient). R, = {z € " ! :
max1<k<n\zk —1/n| > 1/2n, min;<x<p zk 1/12n}.

3. (Negative curvature). R3 = {z € S"~ L. ming<g<n zk < 1/12n}.
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Geometric Analysis In Real Case
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Figure (a): The overlap of the sets R;—R, and R,—Rj3 is shown in green. The set R, is the
union of the yellow and the two surrounding green areas, while R, is the union of all green and
light blue areas. The region R3 is the union of the dark blue sets and the enclosing green area.
Figure (b): the (disjoint) yellow, turquoise, and dark blue areas directly correspond to the sets
R1, R, and R3, respectively. Non-filled and filled diamond markers are used for local and
global minima. Local and global maxima are marked by non-filled and filled squares.
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Geometric Analysis In Real Case

Corollary 9

If 3 > 4pn®, the problem has at least 2" local minima. Furthermore, if
B > 18, then the problem has exactly 2" local minima

n—1

Theorem 10

Suppose that 3 > 3 5 Then, it follows

n—1

f(y) — min f(z) < min f(z) — A,(A)

2
zesn—1 18n |:z€S"—1 :|’ ( )

for all local minimizery € S"~! where \,(A) denotes the smallest
eigenvalue of the matrix A.
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Estimation of the Kurdyka-tojasiewicz Exponent

e Find the largest 6 € (0, ] such that for all stationary points z, the
Lojasiewicz inequality,

F(y) —f(@)|'? < nllgrad f(y)|, Vy€B(zd)NCS" !, (3)

holds with some constants ¢,, 7, > 0.

@ Let A = diag(a) € C"™", a € R", be a diagonal matrix. Then, the
largest KL exponent is at least }V

@ Suppose A € R™" is a symmetric matrix and z is a stationary
point satisfying

H := A + 2pdiag(|z|*) — 2\ = 0,

where \ = z*V,f(z) = 1z*Az + j3|z||}. Then, the largest KL
exponent at z is at least 1.
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