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Composite convex program

Consider the following composite convex program

min
x∈Rn

f (x) + ϕ(x),

where f and h are convex, f is differentiable but h may not

Many applications:
Sparse and low rank optimization: h(x) = ‖x‖1 or ‖X‖∗ and many
other forms.

Regularized risk minimization: f (x) =
∑

i fi(x) is a loss function of
some misfit and ϕ is a regularization term.

Constrained program: ϕ is an indicator function of a convex set.
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A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs.

key observations:
Many popular first-order methods can be equivalent to some
fixed-point iterations: xk+1 = T(xk);

Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

Disadvantages: slow tail convergence.

The original problem is equivalent to the system
F(x) := (I − T)(x) = 0.

Newton-type method since F(x) is semi-smooth in many cases

Computational costs can be controlled reasonably well
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An SDP From Electronic Structure Calculation

system: BeO
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Proximal gradient method

A first-order method

xk+1 = arg min
x

〈
∇f (xk), x− xk〉+

λ

2
‖x− xk‖2

2 + ϕ(x)

= proxλϕ
(
xk −∇f (xk)/λ

)
, k = 0, 1, · · · ,

where the proximal mapping is:

proxλϕ(x) := argmin
u∈Rn

{ϕ(u) +
λ

2
‖u− x‖2

2}.

Equivalent to find a root of a fixed-point mapping

x = T(x) = proxλϕ(x−∇f (x)/λ)
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Semi-smoothness

Solving the system
F(z) = 0,

where F(z) = T(z)− z and T(z) is a fixed-point mapping.

F(z) fails to be differentiable in many interesting applications.

but F(z) is (strongly) semi-smooth and monotone.
(a) F is directionally differentiable at x; and

(b) for any d ∈ Rn and J ∈ ∂F(x + d),

‖F(x + d)− F(x)− Jd‖2 = o(‖d‖2) as d → 0.
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A regularized semi-smooth Newton method

The Jacobian Jk ∈ ∂BF(zk) is positive semidefinite

Let µk = λk‖Fk‖2. Constructe a Newton system:

(Jk + µkI)d = −Fk,

Solving the Newton system inexactly:

rk := (Jk + µkI)dk + Fk.

We seek a step dk approximately such that

‖rk‖2 ≤ τ min{1, λk‖Fk‖2‖dk‖2}, where 0 < τ < 1

Newton Step: zk+1 = zk + dk

Faster local convergence is ensured
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Semidefinite Programming

Consider the SDP

min 〈C,X〉 , s.t. AX = b,X � 0

f (X) = 〈C,X〉+ 1{AX=b}(X).

h(X) = 1K(X), where K = {X : X � 0}.

Proximal Operator: proxth(Z) = arg minX
1
2‖X − Z‖2

F + th(X)

Let Z = QΣQT be the spectral decomposition

proxtf (Y) = (Y + tC)−A∗(AY + tAC − b),

proxth(Z) = QαΣαQT
α,

Fixed-point mapping from DRS:

F(Z) = proxth(Z)− proxtf (2proxth(Z)− Z) = 0.



11/47

Semi-smooth Newton System

assumption: AA∗ = I

The SMW theorem yields the inverse matrix

(Jk + µkI)−1 = H−1 + H−1AT(I − AWH−1AT)−1AWH−1

=
1

µ(µ+ 1)
(µI + T)(I + A>(

µ2

2µ+ 1
I + ATA>)−1A(

µ

2µ+ 1
I − T)).

ATA>d = AQ(Ω0 ◦ (QT(D)Q))QT , where D = A∗d,

Ω0 =

[
Eαα lαᾱ
lTαᾱ 0

]
,

and Eαα is a matrix of ones and lij =
µkij

µ+1−kij

computational cost O(|α|n2)
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Comparison on electronic structure calculation
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Optimal Transport

Linear programming:

min
X∈Rm×n

〈C,X〉,

s.t.
n∑

j=1

Xi,j = ui, 1 ≤ i ≤ m,

m∑
i=1

Xi,j = vj, 1 ≤ j ≤ n,

Xi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,

where C ∈ Rm×n is the given cost matrix.
Sparsity

Multilevel scheme



14/47

Squared `2-DOTmark 128× 128 images

MSSN CPLX-NWS M-CPLX
Class TIME/SSN/CG gap/pinf/dinf TIME TIME

WhiteNoise 24.86/1717/18839 3.57e-07/9.90e-07/2.98e-08 1262.96 22.09
GRFrough 21.61/1375/12727 2.00e-07/7.28e-07/4.20e-08 1398.86 53.71
GRFmod 18.28/1049/8573 1.14e-09/9.69e-07/1.19e-07 1703.69 51.16

GRFsmooth 35.15/1467/17149 1.79e-08/9.86e-07/3.45e-08 1892.41 69.25
LogGRF 94.41/3945/22768 2.23e-10/9.93e-07/7.83e-07 2066.44 56.17
LogitGRF 83.57/3276/33599 1.31e-08/8.96e-07/9.57e-07 1928.92 83.84
Cauchy 104.64/17826/256255 1.86e-07/9.65e-07/9.34e-07 1869.37 51.30
Shapes 9.12/748/3380 1.19e-08/5.67e-07/3.38e-10 2501.76 12.11
Classic 31.73/2820/27321 1.18e-07/7.45e-07/3.27e-07 1732.93 70.36

Microscopy 24.69/1663/10880 8.52e-09/9.98e-07/9.30e-08 1671.90 35.14
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Problem setup

Nonsmooth composite program:

min
x∈Rn

ψ(x) := f (x) + ϕ(x),

where f : Rn → R is a (probably nonconvex) smooth function and
ϕ : Rn → R is a convex, proper, and lower semi-continuous
mapping.
Trust-region subproblem:

min
s∈Rn

mk(p) = ψk + gT
k p +

1
2

pTBkp, s.t. ‖p‖ ≤ ∆k.

g(x) is an extension of the gradient and will be constructed later.
A desired property: mk(p) locally fits ψ(x) well along a specific
direction.
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Construction of g(x)

The steepest descent direction: ds(x) = argmin
d∈Rn, ‖d‖≤1

ψ′(x; d).

In the smooth case: ∇ψ(x) = ψ′(x; ds(x))ds(x).
In the nonsmooth case, we choose a descent direction d(x) with

‖d(x)‖ =

{
0, 0 ∈ ∂ψ(x),

1, 0 /∈ ∂ψ(x),

and an upper bound of the directional derivative:

u(x) ∈

{
[ψo(x, d(x)), 0), 0 /∈ ∂ψ(x),

{0}, 0 ∈ ∂ψ(x).

g(x) := u(x)d(x).



18/47

Preferable Choices of d(x) and u(x)

Choice 1:
We say dγ(x) is a γ-inexact steepest descent direction (γ ∈ (0, 1])
if it satisfies ‖dγ(x)‖ ≤ 1 and ψ′(x; dγ(x)) ≤ γψ′(x; ds(x)).
d(x) = dγ(x), u(x) = ψ′(x; dγ(x)).
Choice 1 may be difficult to implement.

Choice 2:

Proximal Operator: proxΛ
ϕ(x) := argmin

z∈Rn
ϕ(z) +

1
2
‖z− x‖2

Λ.

Natural Residual: FΛ
nat(x) := x− proxΛ

ϕ(x− Λ−1∇f (x)).
A point x∗ is a stationary point of problem (16) if and only if x∗ is a
solution of the nonsmooth equation FΛ

nat(x) = 0.

ψ′
(
x;−FΛ

nat(x)
)
≤ −

∥∥FΛ
nat(x)

∥∥2
Λ

.

d(x) = − FΛ
nat(x)

‖FΛ
nat(x)‖ , u(x) = −λmin

∥∥FΛ
nat(x)

∥∥.
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Model Function and Trust-Region Subproblem

Let gk = u(xk)d(xk). Trust region subproblem:

min
s

mk(s) = ψk + 〈gk, s〉+
1
2
〈s,Bks〉 s.t. ‖s‖ ≤ ∆k

Cauchy point: pC
k := −αC

k gk and αC
k := argmin

0≤t≤ ∆k
‖gk‖

mk(−tgk).

Choose the regularization parameter:

1
2

hTBkh + tk‖h‖2 ≥ λ1‖h‖2 ∀ h ∈ Rn and ‖Bk + tkI‖ ≤ λ2,

Solve a system: (Bk + tkI)p = −gk such that

(Bk + tkI)pk = −gk + rk and ‖rk‖ ≤ λ1

2(λ1 + λ2)
‖gk‖.

Project pk onto the trust region: sk = min{∆k, ‖pk‖}p̄k
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Suitable Stepsize

Descent direction p̄k = pk
‖pk‖ .

Γmax(x, d) := sup
{

T > 0 : ψ̃o
x,d(t) := ψo(x + td; d) ∈ C(0,T)

}
Γ(x) := infd∈Rn, ‖d‖=1 Γmax(x, d)

Stepsize αk = min {Γ (xk; p̄k) , ‖pk‖}.
Example: n = 2, ϕ(x) = ‖x‖1, where qk := αkp̄k.
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Truncation Step

Definition 1
If there exists a sequence {Si}m

i=0 satisfying Rn = S0 ⊃ S1 · · · ⊃ Sm,
δ ∈ (0,+∞], κ > 0, and a function T : Rn × (0, δ]→ Rn with following
properties:
(1) Γ(x) ≥ δ, ∀x ∈ Sm;
(2) For any a ∈ (0, δ] and x ∈ Si\Si+1 (i ∈ 0, 1, · · · ,m− 1), if Γ(x) ≥ a, it
holds T(x, a) = x; if Γ(x) < a, it holds T(x, a) ∈ Si+1, Γ(T(x, a)) ≥ a,
and ‖T(x, a)− x‖ ≤ κa;
we say ϕ is truncatable and T is a truncation operator.
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Global Convergence

Assumption 1
We assume that ψ and f have the following properties:
(A.1) ∇f (x) is locally Lipschitz continuous on Rn.
(A.2) ψ is bounded from below by Lb.

Assumption 1
Let {xk} and {Bk} be generated by the Algorithm, we assume:
(B.1) {xk}k∈N is bounded, i.e., there exist R > 0 with {xk} ⊆ BR(0).
(B.2) There exists κB > 0 with sup

k∈N
‖Bk‖ ≤ κB <∞.

(B.3) For any subsequence {k`}∞`=0 ⊆ N, if {xk`} is convergent and
αk` → 0, then we have

ϕ(xk` + αk` s̄k`)− ϕ(xk`)− αk`ϕ
o(xk` ; s̄k`) ≤ o(αk`).

(B.4) For every ε > 0 there is ε′ > 0 such that for all xk with Γ(xk) ≥ ε it
follows Γ

(
xk, s̄k

)
≥ ε′.
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Global Convergence

Theorem 1
For truncatable ϕ, suppose that (A.1), (A.2), (B.1)-(B.4) are satisfied.
Assume that the Algorithm does not terminate in finitely many steps
and let {xk}∞k=0 be the sequence generated by the Algorithm. Then it
holds that

lim inf
k→∞

‖gk‖ = 0.

Theorem 1
Under the same assumptions as in the last Theorem, let x∗ be any
accumulation point of the sequence {xk}∞k=0 generated by the
Algorithm where gk is given by Choice 1 or Choice 2. Then x∗ is an
stationary point of (16).
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Stochatic optimization problem

Consider
min
x∈Rn

Ψ(x) := f (x) + ϕ(x)

Expected and Empirical Risk Minimization:

f (x) := E[F(x, ξ)], f (x) =
1
N

N∑
i=1

fi(x)

Assume f (x) is smooth but ϕ(x) is convex and non-smooth.
Large-scale machine learning problems: the number of data
samples N is very large
Full evaluation of f (x) and ∇f (x) is not tractable or simply too
expansive.
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Algorithmic Idea

Basic idea based on xk+1 = proxλϕ(xk − t∇f (xk)).
We incorporate second order information and use stochastic
Hessian oracles (SSO)

Htk(xk) ≈ ∇2f (xk)

to estimate the Hessian ∇2f and compute the Newton step.
The sample collections sk and tk are chosen independently of
each other and of the other batches s`, t`, ` ∈ N0 \ {k}.

We work with the following SFO and SSO:

∇fsk(x) :=
1
|sk|

∑
i∈sk

∇fi(x) and Htk(x) :=
1
|tk|
∑
i∈tk
∇2fi(x).
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Stochastic Semi-smooth Newton Method: Idea

To accelerate the stochastic proximal gradient method, we want to
augment it by a stochastic Newton-type step, obtained from the
(sub-sampled) optimality condition:

Fλs (x) = x− proxλh (x− λ−1∇fs(x)) ≈ 0.

The semi-smooth Newton step is given by

Mk dk = −Fλsk(xk), xk+1 = xk + dk,

with sample batches sk, tk and Mk ∈Mλk
sk,tk(xk),

Mλ
s,t(x) := {M = I − D + Dλ−1Ht(x) : D ∈ ∂proxλϕ(uλs (x))}

and uλs (x) := x− λ−1∇fs(x).

 Aim: Utilize fast local convergence to stationary points!
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Algorithmic Framework

We use the following growth conditions (?):

‖Fλk+1
sk+1 (zk)‖ ≤ (η + νk) · θk + ε1

k , (G.1)

ψ(zk) ≤ ψ(xk) + β · θ1/2
k ‖F

λk+1
sk+1 (zk)‖1/2 + ε2

k , (G.2)

where η ∈ (0, 1), β > 0, and (νk), (ε
2
k) ∈ `1

+, (ε1
k) ∈ `1/2

+ .

We set θk+1 to ‖Fλk+1
sk+1 (xk+1)‖ if xk+1 was obtained in step 3.

Remark:

Calculating Fλk+1
sk+1 (zk) requires evaluation of ∇fsk+1(zk). This

information can be reused in the next iteration if zk  xk+1 is
accepted as new iterate.
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Global Convergence: Assumptions

Basic Assumptions:
(A.1) ∇f is Lipschitz continuous on Rn with constant L.
(A.2) The matrices (λk) ⊂ Sn

++ satisfy λMI � λk � λmI for all k.
(A.3) ψ is bounded from below on dom ϕ.

Stochastic Assumptions:
(S.1) For all k ∈ N, there exists σk ≥ 0 such that

E[‖∇f (xk)−∇fsk(xk)‖2] ≤ σ2
k .

(S.2) The matrices Mk, chosen in step 1, are random operators.
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Global Convergence

Theorem: Global Convergence [MXCW, ’17]

Suppose that (A.1)–(A.3) and (S.1)–(S.2) are fulfilled. Then, under
the additional conditions, αk ≤ α := min{1, λm/L},

(αk) is nonincreasing ,
∑

αk =∞,
∑

αkσ
2
k <∞

it holds lim infk→∞ E[‖Fλ(xk)‖2] = 0 and lim infk→∞ Fλ(xk) = 0 a.s. for
any λ ∈ Sn

++.

Verify that (xk) actually defines an adapted stochastic process.
The batch sk and the iterate xk are not independent.
Derive approximate and uniform descent estimates for the terms
ψ(xk)− ψ(xk+1).

For strongly convex case: limk→∞ E[‖Fλ(xk)‖2] = 0 and
limk→∞ Fλ(xk) = 0 a.s. for any λ ∈ Sn

++.
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Stochastic Semi-smooth Quasi-Newton Method

Use stochastic approximation technique!
Estimate vk ≈ ∇f (xk) from stochastic oracle and set

Fvk(xk) := xk − proxλϕ(xk − vk/λ).

Example: Assume the samples s are chosen independently, then
a possible estimate of ∇f (x) is ∇fs(xk) := 1

|s|
∑

i∈s∇fi(xk).

Use extra-gradient step for globalization!
(a) First employ the “Newton” step:

zk = xk + βkdk, dk = −WkFvk (xk)

where Wk is exact or approximation of inverse of Jk.

(b) Perform an extra gradient step:

xk+1 = proxλϕ(xk + αkdk − vk
+/λ), vk

+ ≈ ∇f (zk).

The choice of βk and αk are very flexible !
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Coordinate Quasi-Newton Method

Further computation reduction?
Use coordinate update!
Given a coordinates set A(xk) and O(xk) := [N] \ A(xk), dk is
updated by coordinate set:

dk = −

 WA(xk)A(xk) 0

0 γkI

 (Fλvk(xk))A(xk)

(Fλvk(xk))O(xk)

 ,
WA(xk)A(xk) is updated by L-BFGS related to coordinates A(xk).

(Uk)A(xk) = [uk−p
A(xk)

, . . . , uk−1
A(xk)

], (Yk)A(xk) = [yk−p
A(xk)

, . . . , yk−1
A(xk)

],

are the subvectors of Uk,Yk.
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Convergence Assumption

Basic Assumption
A.1 The gradient mapping ∇f is Lipschitz continuous on Rn with modulus Lf ≥ 1.

A.2 The objective function ψ is bounded from below on dom ϕ.

A.3 ϕ : Rn → (−∞,∞] is convex, lower semicontinuous, and proper.

Stochastic Assumption

B.1 The mapping Dk : Ω→ Rn is an F k-measurable function for all k.

B.2 There is νk > 0 such that we have E[‖Dk‖2 | F k−1
+ ] ≤ ν2

k · E[‖FVk (Xk)‖2 | F k−1
+ ]

a.e. and for all k ∈ N.

B.3 For all k ∈ N, it holds E[Vk | F k−1
+ ] = ∇f (Xk), E[Vk

+ | F k] = ∇f (Zk) a.e. and
there exists σk, σk,+ > 0 such that a.e.

E[‖∇f (Xk)− Vk‖2 | F k−1
+ ] ≤ σ2

k and E[‖∇f (Zk)− Vk
+‖2 | F k] ≤ σ2

k,+,

where
F k = σ(V0,V0

+, . . . ,V
k) and F k

+ = σ(Fk ∪ σ(Vk
+)).
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Theorem 1

Suppose that the assumptions (A.1)–(A.3) and (B.1)–(B.3) are
satisfied and we have

λk,+ ≤
1
Lf
, λk ≤

(1− ρ̄)λk,+

1 + µ2
k

,

where µk = νk(αk + Lfβkλk,+). Then, under the additional conditions∑
λk =∞,

∑
λkσ

2
k <∞,

∑
λk,+σ

2
k,+ <∞

it follows lim infk→∞ E[‖F(Xk)‖2] = 0 and lim infk→∞ F(Xk) = 0 a.s.
and (ψ(Xk))k a.s. converges to some random variable Y∗ with
limk→∞ E[ψ(Xk)] = E[Y∗].

Locally, if we further assume the function satisfy KL-property and
some mild assumption, we can show then (Xk)k converges almost
surely to a crit ψ-valued random variable X∗.



35/47

Deep learning: ResNet-18 on Cifar10, ψ(x) = ‖x‖1
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Reinforcement learning
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Preliminaries

Consider an infinite-horizon discounted Markov decision process
(MDP), usually defined by a tuple (S,A,P,R, ρ0, γ);

ρ0: the distribution of s0

γ: discount factor ∈ (0, 1)

P: transition probability

A trajectory: τ = {s0, a0, r(s0, a0), s1, ..., st, at, r(st, at), st+1, ...}.
At a given state, choose action from π(·|s):

∫
A π(a|s)da = 1.

The policy is supposed to maximize the total expected reward:

max
π

η(π) = Eπ

[ ∞∑
t=0

γtr(st, at)

]
,

with s0 ∼ ρ0, at ∼ π(·|st), st+1 ∼ P(·|st, at).
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Deep reinforcement learning

In real-world tasks: high dimensionality, limited observations,...
In deep reinforcement learning, the policy π and/or value
functions are usually parameterized with differentiable neural
networks.
The policy-based optimization:

max
θ

η(θ).

The value-based optimization:

min
φ

Es,a

{
Qφ(s, a)− Es′∼P(·|s,a)

[
r(s, a) + γmax

a′
Qφ(s′, a′)|s, a

]}2

.

Challenges: theoretical analysis; generalization; stability; trade
off between exploration and exploitation...
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VPG, NPG

Policy gradient: ∇η(θ) = Eρθ,πθ [∇ log πθ(a|s)Aθ(s, a)].

ρθ(s) =
∞∑

t=0
γtP(st = s|πθ) is the (unnormalized) discounted

visitation frequencies.

Vanilla1/Natural2 policy gradient: θk+1 = θk + αM(θk)∇θη(θk).

M(θk)
−1 = Eρθk ,πθk

[
∇θ log πθk(s, a)∇θ log πθk(s, a)T

]
.

A local approximation of η:

η(θ) = η(θk) +
∑

s

ρθ(s)
∑

a

πθ(a|s)Aθk(s, a),

Lθk(θ) = η(θk) +
∑

s

ρθk(s)
∑

a

πθ(a|s)Aθk(s, a).

η(θk) = Lθk(θk),∇η(θk) = ∇Lθk(θk).
1R. S. Sutton, el al., Policy gradient methods for reinforcement learning with

function approximation.
2S. M. Kakade, A natural policy gradient.
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Stochastic Trust Region Algorithm

The objective function
max
θ

η(θ).

At k-th iteration, obtain a trail point θ̃k+1 from the subproblem:

max
θ

Lθk(θ), s.t. Es∼ρθk
[D(πθk(·|s), πθ(·|s))] ≤ δk.

Compute the ratio rk =
η(θ̃k+1)−η(θk)

Lθk (θ̃k+1)−Lθk (θk)
.

Update θk+1 =

{
θ̃k+1, rk ≥ β0,

θk, o.w.,
, with β0 > 0.

Update δk+1 = µk+1‖∇Lθk+1(θk+1)‖ with γ1 > 1 ≥ γ2 > γ3,

µk+1 =


γ1µk, rk ≥ β1,

γ2µk, rk ∈ [β0, β1),

γ3µk, o.w.,

.
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Unparameterized Policy

Specifying the total variation distance in discrete cases (the KL
divergence in continuous cases).

Policy advantage: Aπ(π′) = Es∼ρπ
[
Ea∼π′(·|s) [Aπ(s, a)]

]
.

Lemma 2 (Optimality condition)
π is the optimal policy if and only if

A∗π = max
π′

Aπ(π′) = 0, i.e., π ∈ argmaxπ′Aπ(π′).

Lemma 3 (Monotonicity)
Suppose {πk} is the sequence generated by our trust region method,
then we have η(πk+1) ≥ η(πk), the equality holds if and only if πk is
the optimal policy.
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Main Results

Lemma 4 (Lower bound of ∆Lπk)
Suppose {πk} is the sequence generated by our trust region method,
then we have Lπk(πk+1)− Lπk(πk) ≥ min(1, (1− γ)δk)A∗πk

.

Lemma 5 (Lower bound of rk)

The ratio rk satisfies that rk ≥ min

(
1− 4εkγδ

2
k

p2
0(1−γ)2A∗πk

, 1− 4εkγδk
p2

0(1−γ)3A∗πk

)
,

where p0 = mins ρ0(s) and εk = maxs,a |Aπk(s, a)|.

Theorem 6 (Convergence)
Suppose {πk} is the sequence generated by our trust region method,
then we have the following conclusions

1 lim
k→∞

A∗πk
= 0.

2 lim
k→∞

η(πk) = η(π∗), where π∗ is the optimal policy.
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Empirical algorithm

Terminate condition:

|L̂θk(θk,l+1)− L̂θk(θk,l)|
1 +

∣∣L̂θk(θk,l)
∣∣ ≤ ε, or

|Ent(θk,l+1)− Ent(θk)|
1 + |Ent(θk)|

≥ ε.

Ratio:

rk =
η(θ̃k+1)− η(θk)

Lθk(θ̃k+1)− Lθk(θk)
=⇒ rk =

η̂(θ̃k+1)− η̂(θk)

σ̂η(θk) + L̂θk(θ̃k+1)− L̂θk(θk)
.

σ̂η(θ) is the empirical standard deviation of η(θ).

Acceptance criteria: θk+1 =

{
θ̃k+1, rk ≥ β0,

θk, o.w.
, with a small

negative constant β0 < 0.
Mandatory acceptance: after several consecutive rejections,
force to accept the best performed point among the past
rejections.



45/47

Mujoco in Baselines
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Figure: Training curves on Mujoco-v2 continuous control benchmarks.
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Atari games

Table: Max Average Reward (100 episodes) ± standard deviation over 5
trails of 1e7 time steps.

Environment PPO TRPO STRO
Pong 20±0 3±7 20±0

MsPacman 2125±322 1538±159 2452±487
Seaquest 1004±141 692±92 1172±346
Bowling 50±17 38±15 105±6
Freeway 30±0 28±3 31±0

PrivateEye 100±0 88±16 100±0
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