Second-Order Type Optimization Algorithms For Machine Learning

Zaiwen Wen

Beijing International Center For Mathematical Research Peking University

References/Coauthors in our group or alumnus

- Li Yongfeng, Wen Zaiwen, Yang Chao, Yuan Yaxiang; A Semi-smooth Newton Method For semidefinite programs and its applications in electronic structure calculations; SIAM Journal on Scientific Computing
- Chen Ziang, Andre Milzarek, Wen Zaiwen; A Trust-Region Method For Nonsmooth Nonconvex Optimization, arXiv: 2002.08513
- Andre Milzarek, Xiao Xiantao, Cen Sicong, Wen Zaiwen, Michael Ulbrich; A stochastic semi-smooth Newton method for nonsmooth nonconvex optimization, SIAM Journal on Optimization
- Yang Minghan, Andre Milzarek, Wen Zaiwen, Zhang Tong, Stochastic semi-smooth Quasi-Newton method for nonsmooth optimization
- Zhao Mingming, Li Yongfeng, Wen Zaiwen, A stochastic trust region framework for policy optimization

Outline

Basic Concepts of Semi-smooth Newton method

2 A Trust Region Method For Nonsmooth Convex Programs

3 Stochastic Semi-smooth Newton Methods

4 A stochastic trust region method for deep reinforcement learning

Consider the following composite convex program

$$\min_{x \in \mathbb{R}^n} \quad f(x) + \varphi(x),$$

where f and h are convex, f is differentiable but h may not

Many applications:

- Sparse and low rank optimization: $h(x) = ||x||_1$ or $||X||_*$ and many other forms.
- Regularized risk minimization: $f(x) = \sum_i f_i(x)$ is a loss function of some misfit and φ is a regularization term.
- Constrained program: φ is an indicator function of a convex set.

A General Recipe

Goal: study approaches to bridge the gap between first-order and second-order type methods for composite convex programs.

key observations:

- Many popular first-order methods can be equivalent to some fixed-point iterations: x^{k+1} = T(x^k);
 - Advantages: easy to implement; converge fast to a solution with moderate accuracy.
 - Disadvantages: slow tail convergence.
- The original problem is equivalent to the system F(x) := (I T)(x) = 0.
- Newton-type method since *F*(*x*) is semi-smooth in many cases
- Computational costs can be controlled reasonably well

An SDP From Electronic Structure Calculation

system: BeO

Proximal gradient method

A first-order method

$$\begin{aligned} x^{k+1} &= \arg\min_{x} \left\langle \nabla f(x^{k}), x - x^{k} \right\rangle + \frac{\lambda}{2} \|x - x^{k}\|_{2}^{2} + \varphi(x) \\ &= \operatorname{prox}_{\varphi}^{\lambda} \left(x^{k} - \nabla f(x^{k}) / \lambda \right), k = 0, 1, \cdots, \end{aligned}$$

where the proximal mapping is:

$$\operatorname{prox}_{\varphi}^{\lambda}(x) := \operatorname*{argmin}_{u \in \mathbb{R}^n} \left\{ \varphi(u) + \frac{\lambda}{2} \|u - x\|_2^2 \right\}.$$

Equivalent to find a root of a fixed-point mapping

$$x = T(x) = \operatorname{prox}_{\varphi}^{\lambda}(x - \nabla f(x)/\lambda)$$

Semi-smoothness

Solving the system

$$F(z)=0,$$

where F(z) = T(z) - z and T(z) is a fixed-point mapping.

- F(z) fails to be differentiable in many interesting applications.
- but F(z) is (strongly) semi-smooth and monotone.
 (a) F is directionally differentiable at x; and

(b) for any $d \in \mathbb{R}^n$ and $J \in \partial F(x+d)$,

 $||F(x+d) - F(x) - Jd||_2 = o(||d||_2)$ as $d \to 0$.

A regularized semi-smooth Newton method

- The Jacobian $J_k \in \partial_B F(z^k)$ is positive semidefinite
- Let $\mu_k = \lambda_k ||F^k||_2$. Constructe a Newton system:

$$(J_k + \mu_k I)d = -F^k,$$

• Solving the Newton system inexactly:

$$r^k := (J_k + \mu_k I)d^k + F^k.$$

We seek a step d^k approximately such that

$$\|r^k\|_2 \le \tau \min\{1, \lambda_k \|F^k\|_2 \|d^k\|_2\}, \quad \text{where } 0 < \tau < 1$$

- Newton Step: $z^{k+1} = z^k + d^k$
- Faster local convergence is ensured

Semidefinite Programming

Consider the SDP

 $\min \langle C, X \rangle$, s.t. $\mathcal{A}X = b, X \succeq 0$

•
$$f(X) = \langle C, X \rangle + 1_{\{\mathcal{A}X=b\}}(X).$$

- $h(X) = 1_K(X)$, where $K = \{X : X \succeq 0\}$.
- Proximal Operator: $\operatorname{prox}_{th}(Z) = \operatorname{arg\,min}_X \frac{1}{2} ||X Z||_F^2 + th(X)$
- Let $Z = Q \Sigma Q^T$ be the spectral decomposition

$$prox_{tf}(Y) = (Y + tC) - \mathcal{A}^*(\mathcal{A}Y + t\mathcal{A}C - b),$$

$$prox_{th}(Z) = Q_{\alpha}\Sigma_{\alpha}Q_{\alpha}^T,$$

Fixed-point mapping from DRS:

$$F(Z) = \operatorname{prox}_{th}(Z) - \operatorname{prox}_{tf}(2\operatorname{prox}_{th}(Z) - Z) = 0.$$

◆□ ▶ ◆ ● ▶ ◆ ● ▶ ◆ ● ▶ ○ ● ○ ○ ○ ○ 10/47

Semi-smooth Newton System

- assumption: $AA^* = I$
- The SMW theorem yields the inverse matrix

$$(J_k + \mu_k I)^{-1} = H^{-1} + H^{-1} A^T (I - AWH^{-1}A^T)^{-1} AWH^{-1}$$

= $\frac{1}{\mu(\mu + 1)} (\mu I + T) (I + A^\top (\frac{\mu^2}{2\mu + 1} I + ATA^\top)^{-1} A (\frac{\mu}{2\mu + 1} I - T)).$

• $ATA^{\top}d = \mathcal{A}Q(\Omega_0 \circ (Q^T(D)Q))Q^T$, where $D = \mathcal{A}^*d$,

$$\Omega_0 = \begin{bmatrix} E_{\alpha\alpha} & l_{\alpha\bar{\alpha}} \\ l^T_{\alpha\bar{\alpha}} & 0 \end{bmatrix},$$

and $E_{\alpha\alpha}$ is a matrix of ones and $l_{ij} = \frac{\mu k_{ij}}{\mu + 1 - k_{ij}}$

• computational cost $O(|\alpha|n^2)$

Comparison on electronic structure calculation

Optimal Transport

Linear programming:

$$\begin{split} \min_{X \in \mathbb{R}^{m \times n}} & \langle C, X \rangle, \\ \textbf{s.t.} & \sum_{j=1}^{n} X_{i,j} = u_i, \quad 1 \le i \le m, \\ & \sum_{i=1}^{m} X_{i,j} = v_j, \quad 1 \le j \le n, \\ & X_{i,j} \ge 0, \quad 1 \le i \le m, 1 \le j \le n, \end{split}$$

where $C \in \mathbb{R}^{m \times n}$ is the given cost matrix.

- Sparsity
- Multilevel scheme

Squared ℓ_2 -DOTmark 128 \times 128 images

	MSSN		CPLX-NWS	M-CPLX
Class	TIME/SSN/CG	gap/pinf/dinf	TIME	TIME
WhiteNoise	24.86/1717/18839	3.57e-07/9.90e-07/2.98e-08	1262.96	22.09
GRFrough	21.61/1375/12727	2.00e-07/7.28e-07/4.20e-08	1398.86	53.71
GRFmod	18.28/1049/8573	1.14e-09/9.69e-07/1.19e-07	1703.69	51.16
GRFsmooth	35.15/1467/17149	1.79e-08/9.86e-07/3.45e-08	1892.41	69.25
LogGRF	94.41/3945/22768	2.23e-10/9.93e-07/7.83e-07	2066.44	56.17
LogitGRF	83.57/3276/33599	1.31e-08/8.96e-07/9.57e-07	1928.92	83.84
Cauchy	104.64/17826/256255	1.86e-07/9.65e-07/9.34e-07	1869.37	51.30
Shapes	9.12/748/3380	1.19e-08/5.67e-07/3.38e-10	2501.76	12.11
Classic	31.73/2820/27321	1.18e-07/7.45e-07/3.27e-07	1732.93	70.36
Microscopy	24.69/1663/10880	8.52e-09/9.98e-07/9.30e-08	1671.90	35.14

A Trust Region Method For Nonsmooth Convex Programs

3) Stochastic Semi-smooth Newton Methods

4 A stochastic trust region method for deep reinforcement learning

Problem setup

Nonsmooth composite program:

$$\min_{x\in\mathbb{R}^n}\psi(x):=f(x)+\varphi(x),$$

where $f : \mathbb{R}^n \to \mathbb{R}$ is a (probably nonconvex) smooth function and $\varphi : \mathbb{R}^n \to \mathbb{R}$ is a convex, proper, and lower semi-continuous mapping.

• Trust-region subproblem:

$$\min_{s\in\mathbb{R}^n}m_k(p)=\psi_k+g_k^Tp+\frac{1}{2}p^TB_kp,\quad\text{s.t.}\quad \|p\|\leq\Delta_k.$$

- g(x) is an extension of the gradient and will be constructed later.
- A desired property: *m_k(p)* locally fits ψ(x) well along a specific direction.

Construction of g(x)

- The steepest descent direction: $d_s(x) = \underset{d \in \mathbb{R}^n, \|d\| \le 1}{\operatorname{argmin}} \psi'(x; d).$
- In the smooth case: $\nabla \psi(x) = \psi'(x; d_s(x))d_s(x)$.
- In the nonsmooth case, we choose a descent direction d(x) with

$$\|d(x)\| = \begin{cases} 0, & 0 \in \partial \psi(x), \\ 1, & 0 \notin \partial \psi(x), \end{cases}$$

and an upper bound of the directional derivative:

$$u(x) \in \begin{cases} [\psi^o(x, d(x)), 0), & 0 \notin \partial \psi(x), \\ \{0\}, & 0 \in \partial \psi(x). \end{cases}$$

• g(x) := u(x)d(x).

Preferable Choices of d(x) and u(x)

Choice 1:

• We say $d_{\gamma}(x)$ is a γ -inexact steepest descent direction ($\gamma \in (0, 1]$) if it satisfies $||d_{\gamma}(x)|| \le 1$ and $\psi'(x; d_{\gamma}(x)) \le \gamma \psi'(x; d_s(x))$.

•
$$d(x) = d_{\gamma}(x), u(x) = \psi'(x; d_{\gamma}(x)).$$

• Choice 1 may be difficult to implement.

Choice 2:

- Proximal Operator. $\operatorname{prox}_{\varphi}^{\Lambda}(x) := \operatorname*{argmin}_{z \in \mathbb{R}^n} \varphi(z) + \frac{1}{2} \|z x\|_{\Lambda}^2.$
- Natural Residual: $F_{nat}^{\Lambda}(x) := x \operatorname{prox}_{\varphi}^{\Lambda}(x \Lambda^{-1} \nabla f(x)).$
- A point x* is a stationary point of problem (16) if and only if x* is a solution of the nonsmooth equation F^Λ_{nat}(x) = 0.

•
$$\psi'(x; -F_{\mathsf{nat}}^{\Lambda}(x)) \leq - \|F_{\mathsf{nat}}^{\Lambda}(x)\|_{\Lambda}^{2}$$
.
• $d(x) = -\frac{F_{\mathsf{nat}}^{\Lambda}(x)}{\|F_{\mathsf{nat}}^{\Lambda}(x)\|}, u(x) = -\lambda_{\min} \|F_{\mathsf{nat}}^{\Lambda}(x)\|.$

Model Function and Trust-Region Subproblem

• Let $g_k = u(x_k)d(x_k)$. Trust region subproblem:

$$\min_{s} m_k(s) = \psi_k + \langle g^k, s \rangle + \frac{1}{2} \langle s, B^k s \rangle \quad \text{s.t.} \quad \|s\| \le \Delta_k$$

• Cauchy point: $p_k^C := -\alpha_k^C g_k$ and $\alpha_k^C := \underset{0 \le t \le \frac{\Delta_k}{\|g_k\|}}{\operatorname{argmin}} m_k(-tg_k).$

Choose the regularization parameter:

$$\frac{1}{2}h^T B^k h + t_k \|h\|^2 \ge \lambda_1 \|h\|^2 \quad \forall h \in \mathbb{R}^n \quad \text{and} \quad \|B^k + t_k I\| \le \lambda_2,$$

Solve a system: $(B^k + t_k I)p = -g^k$ such that

$$(B^k + t_k I)p^k = -g^k + r^k$$
 and $||r^k|| \le \frac{\lambda_1}{2(\lambda_1 + \lambda_2)} ||g^k||.$

Project p^k onto the trust region: $s^k = \min\{\Delta_k, \|p^k\|\}\bar{p}^k$

19/47

Suitable Stepsize

- Descent direction $\bar{p}_k = \frac{p_k}{\|p_k\|}$.
- $\Gamma_{\max}(x,d) := \sup \left\{ T > 0 : \tilde{\psi}^o_{x,d}(t) := \psi^o(x+td;d) \in C(0,T) \right\}$
- $\Gamma(x) := \inf_{d \in \mathbb{R}^n, \|d\|=1} \Gamma_{\max}(x, d)$
- Stepsize $\alpha_k = \min \{ \Gamma(x_k; \bar{p}_k), \|p_k\| \}.$
- Example: n = 2, $\varphi(x) = ||x||_1$, where $q_k := \alpha_k \overline{p}_k$.

20/47

Truncation Step

Definition 1

If there exists a sequence $\{S_i\}_{i=0}^m$ satisfying $\mathbb{R}^n = S_0 \supset S_1 \cdots \supset S_m$, $\delta \in (0, +\infty]$, $\kappa > 0$, and a function $T : \mathbb{R}^n \times (0, \delta] \to \mathbb{R}^n$ with following properties:

(1) $\Gamma(x) \ge \delta$, $\forall x \in S_m$; (2) For any $a \in (0, \delta]$ and $x \in S_i \setminus S_{i+1}$ ($i \in 0, 1, \dots, m-1$), if $\Gamma(x) \ge a$, it holds T(x, a) = x; if $\Gamma(x) < a$, it holds $T(x, a) \in S_{i+1}$, $\Gamma(T(x, a)) \ge a$, and $||T(x, a) - x|| \le \kappa a$;

we say φ is truncatable and T is a truncation operator.

Global Convergence

Assumption 1

We assume that ψ and f have the following properties: (A.1) $\nabla f(x)$ is locally Lipschitz continuous on \mathbb{R}^n . (A.2) ψ is bounded from below by L_b .

Assumption 1

Let $\{x_k\}$ and $\{B_k\}$ be generated by the Algorithm, we assume: (B.1) $\{x_k\}_{k\in\mathbb{N}}$ is bounded, i.e., there exist R > 0 with $\{x_k\} \subseteq B_R(0)$. (B.2) There exists $\kappa_B > 0$ with $\sup_{k\in\mathbb{N}} ||B_k|| \le \kappa_B < \infty$. (B.3) For any subsequence $\{k_\ell\}_{\ell=0}^{\infty} \subseteq \mathbb{N}$, if $\{x_{k_\ell}\}$ is convergent and $\alpha_{k_\ell} \to 0$, then we have

$$\varphi(x_{k_{\ell}} + \alpha_{k_{\ell}}\bar{s}_{k_{\ell}}) - \varphi(x_{k_{\ell}}) - \alpha_{k_{\ell}}\varphi^{o}(x^{k_{\ell}};\bar{s}_{k_{\ell}}) \le o(\alpha_{k_{\ell}}).$$

(B.4) For every $\epsilon > 0$ there is $\epsilon' > 0$ such that for all x^k with $\Gamma(x^k) \ge \epsilon$ it follows $\Gamma(x^k, \overline{s}^k) \ge \epsilon'$.

Global Convergence

Theorem 1

For truncatable φ , suppose that (A.1), (A.2), (B.1)-(B.4) are satisfied. Assume that the Algorithm does not terminate in finitely many steps and let $\{x_k\}_{k=0}^{\infty}$ be the sequence generated by the Algorithm. Then it holds that

 $\liminf_{k\to\infty}\|g_k\|=0.$

Theorem 1

Under the same assumptions as in the last Theorem, let x^* be any accumulation point of the sequence $\{x_k\}_{k=0}^{\infty}$ generated by the Algorithm where g_k is given by **Choice 1** or **Choice 2**. Then x^* is an stationary point of (16).

Basic Concepts of Semi-smooth Newton method

2 A Trust Region Method For Nonsmooth Convex Programs

Stochastic Semi-smooth Newton Methods

4 A stochastic trust region method for deep reinforcement learning

(ロ) (同) (三) (三) (三) (○)

24/47

Stochatic optimization problem

Consider

$$\min_{x \in \mathbb{R}^n} \Psi(x) := f(x) + \varphi(x)$$

• Expected and Empirical Risk Minimization:

$$f(x) := \mathbb{E}[F(x,\xi)], \qquad f(x) = \frac{1}{N} \sum_{i=1}^{N} f_i(x)$$

- Assume f(x) is smooth but $\varphi(x)$ is convex and non-smooth.
- Large-scale machine learning problems: the number of data samples *N* is very large
- Full evaluation of f(x) and $\nabla f(x)$ is not tractable or simply too expansive.

Algorithmic Idea

Basic idea based on $x^{k+1} = \operatorname{prox}_{\varphi}^{\lambda}(x^k - t\nabla f(x^k))$.

 We incorporate second order information and use stochastic Hessian oracles (SSO)

$$H_{t^k}(x^k) \approx \nabla^2 f(x^k)$$

to estimate the Hessian $\nabla^2 f$ and compute the Newton step.

- The sample collections s^k and t^k are chosen independently of each other and of the other batches s^ℓ, t^ℓ, ℓ ∈ N₀ \ {k}.
- We work with the following *SFO* and *SSO*:

$$\nabla f_{s^k}(x) := \frac{1}{|s^k|} \sum_{i \in s^k} \nabla f_i(x) \quad \text{and} \quad \mathcal{H}_{t^k}(x) := \frac{1}{|t^k|} \sum_{i \in t^k} \nabla^2 f_i(x).$$

Stochastic Semi-smooth Newton Method: Idea

To accelerate the stochastic proximal gradient method, we want to augment it by a stochastic Newton-type step, obtained from the (sub-sampled) optimality condition:

$$F_s^{\lambda}(x) = x - \operatorname{prox}_h^{\lambda}(x - \lambda^{-1} \nabla f_s(x)) \approx 0.$$

The semi-smooth Newton step is given by

$$M_k d^k = -F_{s^k}^{\lambda}(x^k), \quad x^{k+1} = x^k + d^k,$$

with sample batches s^k , t^k and $M_k \in \mathcal{M}_{s^k,t^k}^{\lambda_k}(x^k)$,

$$\mathcal{M}_{s,t}^{\lambda}(x) := \{M = I - D + D\lambda^{-1}\mathcal{H}_t(x) : D \in \partial \mathrm{prox}_{\varphi}^{\lambda}(u_s^{\lambda}(x))\}$$

and $u_s^{\lambda}(x) := x - \lambda^{-1} \nabla f_s(x).$

Aim: Utilize fast local convergence to stationary points!

Algorithmic Framework

We use the following growth conditions (\star) :

$$\|F_{s^{k+1}}^{\lambda_{k+1}}(z^{k})\| \le (\eta + \nu_{k}) \cdot \theta_{k} + \varepsilon_{k}^{1},$$

$$\psi(z^{k}) \le \psi(x^{k}) + \beta \cdot \theta_{k}^{1/2} \|F_{s^{k+1}}^{\lambda_{k+1}}(z^{k})\|^{1/2} + \varepsilon_{k}^{2},$$
(G.2)

where $\eta \in (0, 1)$, $\beta > 0$, and $(\nu_k), (\varepsilon_k^2) \in \ell_+^1, (\varepsilon_k^1) \in \ell_+^{1/2}$.

We set θ_{k+1} to $||F_{x^{k+1}}^{\lambda_{k+1}}(x^{k+1})||$ if x^{k+1} was obtained in step 3.

Remark:

Calculating F^{λ_{k+1}}_{s^{k+1}}(z^k) requires evaluation of ∇f_{s^{k+1}}(z^k). This information can be reused in the next iteration if z^k → x^{k+1} is accepted as new iterate.

Global Convergence: Assumptions

Basic Assumptions:

- (A.1) ∇f is Lipschitz continuous on \mathbb{R}^n with constant *L*.
- (A.2) The matrices $(\lambda_k) \subset \mathbb{S}_{++}^n$ satisfy $\lambda_M I \succeq \lambda_k \succeq \lambda_m I$ for all k.
- (A.3) ψ is bounded from below on dom φ .

Stochastic Assumptions:

(S.1) For all $k \in \mathbb{N}$, there exists $\sigma_k \ge 0$ such that

$$\mathbb{E}[\|\nabla f(x^k) - \nabla f_{s^k}(x^k)\|^2] \le \sigma_k^2.$$

(S.2) The matrices M_k , chosen in step 1, are random operators.

Global Convergence

Theorem: Global Convergence [MXCW, '17]

Suppose that (A.1)–(A.3) and (S.1)–(S.2) are fulfilled. Then, under the additional conditions, $\alpha_k \leq \overline{\alpha} := \min\{1, \lambda_m/L\}$,

$$(lpha_k)$$
 is nonincreasing , $\sum lpha_k = \infty$, $\sum lpha_k \sigma_k^2 < \infty$

it holds $\liminf_{k\to\infty} \mathbb{E}[\|F^{\lambda}(x^k)\|^2] = 0$ and $\liminf_{k\to\infty} F^{\lambda}(x^k) = 0$ a.s. for any $\lambda \in \mathbb{S}^n_{++}$.

- Verify that (x^k) actually defines an adapted stochastic process.
- The batch s^k and the iterate x^k are not independent.
- Derive approximate and uniform descent estimates for the terms $\psi(x^k) \psi(x^{k+1})$.

For strongly convex case: $\lim_{k\to\infty} \mathbb{E}[||F^{\lambda}(x^k)||^2] = 0$ and $\lim_{k\to\infty} F^{\lambda}(x^k) = 0$ a.s. for any $\lambda \in \mathbb{S}^n_{++}$.

30/47

Stochastic Semi-smooth Quasi-Newton Method

• Use stochastic approximation technique! Estimate $v^k \approx \nabla f(x^k)$ from stochastic oracle and set

$$F_{v^k}(x^k) := x^k - \operatorname{prox}_{\varphi}^{\lambda}(x^k - v^k/\lambda).$$

Example: Assume the samples *s* are chosen independently, then a possible estimate of $\nabla f(x)$ is $\nabla f_s(x^k) := \frac{1}{|s|} \sum_{i \in s} \nabla f_i(x^k)$.

• Use extra-gradient step for globalization!

(a) First employ the "Newton" step:

$$z^k = x^k + \beta_k d^k, \quad d^k = -W^k F_{v^k}(x^k)$$

where W^k is exact or approximation of inverse of J^k .

(b) Perform an extra gradient step:

$$x^{k+1} = \operatorname{prox}_{\varphi}^{\lambda}(x^k + \alpha_k d^k - v_+^k/\lambda), \quad v_+^k \approx \nabla f(z^k).$$

The choice of β_k and α_k are very flexible !

31/47

Coordinate Quasi-Newton Method

- Further computation reduction? Use coordinate update!
- Given a coordinates set A(x^k) and O(x^k) := [N] \ A(x^k), d^k is updated by coordinate set:

$$d^{k} = - \begin{bmatrix} W_{\mathcal{A}(x^{k})\mathcal{A}(x^{k})} & 0 \\ 0 & \gamma_{k}I \end{bmatrix} \begin{bmatrix} (F_{v^{\lambda}}^{\lambda}(x^{k}))_{\mathcal{A}(x^{k})} \\ (F_{v^{\lambda}}^{\lambda}(x^{k}))_{\mathcal{O}(x^{k})} \end{bmatrix},$$

• $W_{\mathcal{A}(x^k)\mathcal{A}(x^k)}$ is updated by L-BFGS related to coordinates $\mathcal{A}(x^k)$.

$$(U^k)_{\mathcal{A}(x^k)} = [u^{k-p}_{\mathcal{A}(x^k)}, \dots, u^{k-1}_{\mathcal{A}(x^k)}], \quad (Y^k)_{\mathcal{A}(x^k)} = [y^{k-p}_{\mathcal{A}(x^k)}, \dots, y^{k-1}_{\mathcal{A}(x^k)}],$$

are the subvectors of U^k, Y^k .

Convergence Assumption

Basic Assumption

- A.1 The gradient mapping ∇f is Lipschitz continuous on \mathbb{R}^n with modulus $L_f \geq 1$.
- A.2 The objective function ψ is bounded from below on dom φ .
- A.3 $\varphi: \mathbb{R}^n \to (-\infty, \infty]$ is convex, lower semicontinuous, and proper.

Stochastic Assumption

- **B.1** The mapping $D^k : \Omega \to \mathbb{R}^n$ is an \mathcal{F}^k -measurable function for all k.
- B.2 There is $\nu_k > 0$ such that we have $\mathbb{E}[\|\mathsf{D}^k\|^2 | \mathcal{F}^{k-1}_+] \le \nu_k^2 \cdot \mathbb{E}[\|F_{\mathsf{V}^k}(\mathsf{X}^k)\|^2 | \mathcal{F}^{k-1}_+]$ a.e. and for all $k \in \mathbb{N}$.
- B.3 For all $k \in \mathbb{N}$, it holds $\mathbb{E}[V^k | \mathcal{F}_+^{k-1}] = \nabla f(X^k)$, $\mathbb{E}[V_+^k | \mathcal{F}^k] = \nabla f(Z^k)$ a.e. and there exists $\sigma_k, \sigma_{k,+} > 0$ such that a.e.

 $\mathbb{E}[\|\nabla f(\mathsf{X}^k) - \mathsf{V}^k\|^2 \mid \mathcal{F}_+^{k-1}] \le \sigma_k^2 \quad \text{and} \quad \mathbb{E}[\|\nabla f(\mathsf{Z}^k) - \mathsf{V}_+^k\|^2 \mid \mathcal{F}^k] \le \sigma_{k,+}^2,$

where

$$\mathcal{F}^k = \sigma(V^0, V^0_+, \dots, V^k) \text{ and } \mathcal{F}^k_+ = \sigma(\mathcal{F}_k \cup \sigma(V^k_+)).$$

Theorem 1

Suppose that the assumptions (A.1)–(A.3) and (B.1)–(B.3) are satisfied and we have

$$\lambda_{k,+} \leq rac{1}{L_f}, \quad \lambda_k \leq rac{(1-ar
ho)\lambda_{k,+}}{1+\mu_k^2},$$

where $\mu_k = \nu_k(\alpha_k + L_f \beta_k \lambda_{k,+})$. Then, under the additional conditions

$$\sum \lambda_k = \infty, \quad \sum \lambda_k \sigma_k^2 < \infty, \quad \sum \lambda_{k,+} \sigma_{k,+}^2 < \infty$$

it follows $\liminf_{k\to\infty} \mathbb{E}[||F(X^k)||^2] = 0$ and $\liminf_{k\to\infty} F(X^k) = 0$ a.s. and $(\psi(X^k))_k$ a.s. converges to some random variable Y^* with $\lim_{k\to\infty} \mathbb{E}[\psi(X^k)] = \mathbb{E}[Y^*].$

Locally, if we further assume the function satisfy KL-property and some mild assumption, we can show then $(X^k)_k$ converges almost surely to a crit ψ -valued random variable X^* .

Deep learning: ResNet-18 on Cifar10, $\psi(x) = ||x||_1$

(a) Training accuracy

<ロト < 回 ト < 臣 ト < 臣 ト < 臣 > ○ Q (?) 35/47

- Basic Concepts of Semi-smooth Newton method
- 2 A Trust Region Method For Nonsmooth Convex Programs
- 3 Stochastic Semi-smooth Newton Methods

A stochastic trust region method for deep reinforcement learning

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

36/47

Reinforcement learning

Preliminaries

 Consider an infinite-horizon discounted Markov decision process (MDP), usually defined by a tuple (S, A, P, R, ρ₀, γ);

- A trajectory: $\tau = \{s_0, a_0, r(s_0, a_0), s_1, \dots, s_t, a_t, r(s_t, a_t), s_{t+1}, \dots\}$.
- At a given state, choose action from $\pi(\cdot|s)$: $\int_{\mathcal{A}} \pi(a|s) da = 1$.
- The policy is supposed to maximize the total expected reward:

$$\max_{\pi} \eta(\pi) = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s_{t}, a_{t}) \right],$$

with $s_{0} \sim \rho_{0}, a_{t} \sim \pi(\cdot|s_{t}), s_{t+1} \sim P(\cdot|s_{t}, a_{t}).$

Deep reinforcement learning

- In real-world tasks: high dimensionality, limited observations,...
- In deep reinforcement learning, the policy π and/or value functions are usually parameterized with differentiable neural networks.
- The policy-based optimization:

$$\max_{\theta} \quad \eta(\theta).$$

The value-based optimization:

$$\min_{\phi} \mathrm{E}_{s,a} \left\{ \mathcal{Q}_{\phi}(s,a) - \mathrm{E}_{s' \sim \mathrm{P}(\cdot|\mathrm{s},\mathrm{a})} \left[r(s,a) + \gamma \max_{a'} \mathcal{Q}_{\phi}(s',a') | s, a \right] \right\}^{2}$$

 Challenges: theoretical analysis; generalization; stability; trade off between exploration and exploitation...

VPG, NPG

• Policy gradient: $\nabla \eta(\theta) = \mathbb{E}_{\rho_{\theta}, \pi_{\theta}} \left[\nabla \log \pi_{\theta}(a|s) A_{\theta}(s, a) \right].$

• $\rho_{\theta}(s) = \sum_{t=0}^{\infty} \gamma^{t} P(s_{t} = s | \pi_{\theta})$ is the (unnormalized) discounted visitation frequencies.

- Vanilla¹/Natural² policy gradient: $\theta_{k+1} = \theta_k + \alpha M(\theta_k) \nabla_{\theta} \eta(\theta_k)$.
- $M(\theta_k)^{-1} = \mathbb{E}_{\rho_{\theta_k}, \pi_{\theta_k}} \left[\nabla_{\theta} \log \pi_{\theta_k}(s, a) \nabla_{\theta} \log \pi_{\theta_k}(s, a)^T \right].$

• A local approximation of η :

$$\eta(\theta) = \eta(\theta_k) + \sum_{s} \rho_{\theta}(s) \sum_{a} \pi_{\theta}(a|s) A_{\theta_k}(s, a),$$
$$L_{\theta_k}(\theta) = \eta(\theta_k) + \sum_{s} \rho_{\theta_k}(s) \sum_{a} \pi_{\theta}(a|s) A_{\theta_k}(s, a).$$

• $\eta(\theta_k) = L_{\theta_k}(\theta_k), \nabla \eta(\theta_k) = \nabla L_{\theta_k}(\theta_k).$

¹R. S. Sutton, el al., Policy gradient methods for reinforcement learning with function approximation.

²S. M. Kakade, A natural policy gradient.

Stochastic Trust Region Algorithm

The objective function

 $\max_{\boldsymbol{\theta}} \quad \boldsymbol{\eta}(\boldsymbol{\theta}).$

• At *k*-th iteration, obtain a trail point $\tilde{\theta}_{k+1}$ from the subproblem:

$$\max_{\theta} \quad L_{\theta_k}(\theta), \quad \text{s.t. } \mathbb{E}_{s \sim \rho_{\theta_k}} \left[D(\pi_{\theta_k}(\cdot|s), \pi_{\theta}(\cdot|s)) \right] \leq \delta_k.$$

• Compute the ratio
$$r_k = \frac{\eta(\theta_{k+1}) - \eta(\theta_k)}{L_{\theta_k}(\bar{\theta}_{k+1}) - L_{\theta_k}(\theta_k)}$$
.
• Update $\theta_{k+1} = \begin{cases} \tilde{\theta}_{k+1}, & r_k \ge \beta_0, \\ \theta_k, & \text{o.w.}, \end{cases}$, with $\beta_0 > 0$.
• Update $\delta_{k+1} = \mu_{k+1} \|\nabla L_{\theta_{k+1}}(\theta_{k+1})\|$ with $\gamma_1 > 1 \ge \gamma_2 > \gamma_3$,

~

$$\mu_{k+1} = \begin{cases} \gamma_1 \mu_k, & r_k \ge \beta_1, \\ \gamma_2 \mu_k, & r_k \in [\beta_0, \beta_1), . \\ \gamma_3 \mu_k, & \text{o.w.}, \end{cases}$$

Unparameterized Policy

- Specifying the total variation distance in discrete cases (the KL divergence in continuous cases).
- Policy advantage: $\mathbb{A}_{\pi}(\pi') = \mathbb{E}_{s \sim \rho_{\pi}} \left[\mathbb{E}_{a \sim \pi'(\cdot|s)} \left[A_{\pi}(s, a) \right] \right].$

Lemma 2 (Optimality condition)

 π is the optimal policy if and only if

$$\mathbb{A}_{\pi}^{*} = \max_{\pi'} \mathbb{A}_{\pi}(\pi') = 0, \text{ i.e.}, \pi \in \operatorname{argmax}_{\pi'} \mathbb{A}_{\pi}(\pi').$$

Lemma 3 (Monotonicity)

Suppose $\{\pi_k\}$ is the sequence generated by our trust region method, then we have $\eta(\pi_{k+1}) \ge \eta(\pi_k)$, the equality holds if and only if π_k is the optimal policy.

Main Results

Lemma 4 (Lower bound of ΔL_{π_k})

Suppose $\{\pi_k\}$ is the sequence generated by our trust region method, then we have $L_{\pi_k}(\pi_{k+1}) - L_{\pi_k}(\pi_k) \ge \min(1, (1-\gamma)\delta_k)\mathbb{A}_{\pi_k}^*$.

Lemma 5 (Lower bound of r_k)

The ratio
$$r_k$$
 satisfies that $r_k \ge \min\left(1 - \frac{4\epsilon_k\gamma\delta_k^2}{p_0^2(1-\gamma)^2\mathbb{A}_{\pi_k}^*}, 1 - \frac{4\epsilon_k\gamma\delta_k}{p_0^2(1-\gamma)^3\mathbb{A}_{\pi_k}^*}\right)$,
where $p_0 = \min_s \rho_0(s)$ and $\epsilon_k = \max_{s,a} |A_{\pi_k}(s, a)|$.

Theorem 6 (Convergence)

Suppose $\{\pi_k\}$ is the sequence generated by our trust region method, then we have the following conclusions

$$\lim_{k\to\infty} \mathbb{A}^*_{\pi_k} = 0.$$

2
$$\lim_{k\to\infty} \eta(\pi_k) = \eta(\pi^*)$$
, where π^* is the optimal policy.

Empirical algorithm

Terminate condition:

$$\frac{|\hat{L}_{\theta_k}(\theta_{k,l+1}) - \hat{L}_{\theta_k}(\theta_{k,l})|}{1 + |\hat{L}_{\theta_k}(\theta_{k,l})|} \le \epsilon, \text{ or } \frac{|\operatorname{Ent}(\theta_{k,l+1}) - \operatorname{Ent}(\theta_k)|}{1 + |\operatorname{Ent}(\theta_k)|} \ge \epsilon.$$

$$r_k = \frac{\eta(\tilde{\theta}_{k+1}) - \eta(\theta_k)}{L_{\theta_k}(\tilde{\theta}_{k+1}) - L_{\theta_k}(\theta_k)} \Longrightarrow r_k = \frac{\hat{\eta}(\tilde{\theta}_{k+1}) - \hat{\eta}(\theta_k)}{\hat{\sigma}_{\eta}(\theta_k) + \hat{L}_{\theta_k}(\tilde{\theta}_{k+1}) - \hat{L}_{\theta_k}(\theta_k)}.$$

- $\hat{\sigma}_n(\theta)$ is the empirical standard deviation of $\eta(\theta)$.
- Acceptance criteria: $\theta_{k+1} = \begin{cases} \tilde{\theta}_{k+1}, & r_k \ge \beta_0, \\ \theta_k, & \text{o.w.} \end{cases}$, with a small negative constant $\beta_0 < 0$.
- Mandatory acceptance: after several consecutive rejections, force to accept the best performed point among the past rejections.

Mujoco in Baselines

Figure: Training curves on Mujoco-v2 continuous control benchmarks.

45/47

Table: Max Average Reward (100 episodes) \pm standard deviation over 5 trails of 1e7 time steps.

Environment	PPO	TRPO	STRO
Pong	20±0	3±7	20 ±0
MsPacman	2125±322	1538±159	2452 ±487
Seaquest	1004±141	692±92	1172 ±346
Bowling	50±17	38±15	105 ±6
Freeway	30±0	28±3	31 ±0
PrivateEye	100±0	88±16	100 ±0

Many Thanks For Your Attention!

- 北大课程:大数据分析中的算法,华文慕课回放 http://bicmr.pku.edu.cn/~wenzw/bigdata2020.html
- 教材:刘浩洋,户将,李勇锋,文再文,最优化计算方法http://bicmr.pku.edu.cn/~wenzw/optbook.html
- Looking for Ph.D students and Postdoc Competitive salary as U.S and Europe
- http://bicmr.pku.edu.cn/~wenzw
- E-mail: wenzw@pku.edu.cn
- Office phone: 86-10-62744125