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Outline

@ Basic Concepts of Semi-smooth Newton method
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Composite convex program

Consider the following composite convex program

min - f(x) + ¢(x),

where f and & are convex, f is differentiable but 2 may not

Many applications:

@ Sparse and low rank optimization: h(x) = ||x||; or || X||. and many
other forms.

@ Regularized risk minimization: f(x) = >, fi(x) is a loss function of
some misfit and ¢ is a regularization term.

@ Constrained program: ¢ is an indicator function of a convex set.
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A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs. J

key observations:

@ Many popular first-order methods can be equivalent to some
fixed-point iterations: x**! = T(x*);
e Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

o Disadvantages: slow tail convergence.

@ The original problem is equivalent to the system
F(x):= (I —T)(x)=0.

@ Newton-type method since F(x) is semi-smooth in many cases

@ Computational costs can be controlled reasonably well
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An SDP From Electronic Structure Calculation
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Proximal gradient method

@ A first-order method
A
HH = argmin (V(),x = ) + Sl =23 + ()
= prox}y (¢ = Vf(*)/A) ,k=0,1,---,
where the proximal mapping is:

. A
proxé(x) := argmin {¢(u) + EHM — x5}
ueR”

@ Equivalent to find a root of a fixed-point mapping

x=T(x) = proxgz\,(x — Vf(x)/A)
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Semi-smoothness

@ Solving the system
F(z) =0,

where F(z) = T(z) — z and T(z) is a fixed-point mapping.
@ F(z) fails to be differentiable in many interesting applications.

@ but F(z) is (strongly) semi-smooth and monotone.
(a) Fis directionally differentiable at x; and

(b) forany d € R" and J € OF(x + d),

|F(x +d) — F(x) — Jd|2 = o(||d||.) asd — 0.
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A regularized semi-smooth Newton method

@ The Jacobian J; € 9gF(Z*) is positive semidefinite

@ Let i = M\i||F¥||o. Constructe a Newton system:
(Jx + el )d = —F*,
@ Solving the Newton system inexactly:
o= (S + d)d* + FF.
We seek a step d* approximately such that
172 < 7 min{1, \(|[F¥[|2[|d* ]2},  where 0 < 7 < 1

@ Newton Step: 2! =z + a*
@ Faster local convergence is ensured
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Semidefinite Programming
Consider the SDP
min (C,X),st. AX=0,X>0
® f(X) = (C,X) + 1 ax=p} (X).
@ h(X) = 1x(X), where K = {X : X = 0}.

@ Proximal Operator: prox,,(Z) = arg miny 1(|X — Z||? + th(X)
@ Let Z = Qx0T be the spectral decomposition

prox,(Y) = (Y +1C) — A*(AY +tAC - b),
pI‘OX[h(Z) = Q&Zana

@ Fixed-point mapping from DRS:
F(Z) = prox,,(Z) — prox(2prox,,(Z) — Z) = 0.
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Semi-smooth Newton System

@ assumption: AA* =1
@ The SMW theorem yields the inverse matrix

e+ mD)™ " =H ' 4+ HAT(T - AWH AT AWH !

12

2u+1

[+ATAT) A1 —T)).

1
= — (W +TY(I+AT
(W +T)I+A ( 2t

p(p+1)

@ ATATd = AQ(Q o (QT(D)Q))QT, where D = A*d,

E loa
Q — ax (8707
0 |:l£a O )
and E,, is a matrix of ones and /;; = uflkﬁk,»,

@ computational cost O(|a|n?)
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Comparison on electronic structure calculation
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Optimal Transport

Linear programming:

min  (C,X),
XERI"X”

n
s.t. ZXZ'J:M,', 1 <i<m,
=1

m

Y Xij=v, 1<j<n,

=1

X;ij>20, 1<i<m1<j<n,

where C € R™*" is the given cost matrix.
@ Sparsity

@ Multilevel scheme
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Squared /,-DOTmark 128 x 128 images

MSSN CPLX-NWS |M-CPLX
Class TIME/SSN/CG gap/pinf/dinf TIME TIME
WhiteNoise | 24.86/1717/18839 |3.57e-07/9.90e-07/2.98e-08| 1262.96 22.09
GRFrough 21.61/1375/12727 |2.00e-07/7.28e-07/4.20e-08| 1398.86 53.71
GRFmod 18.28/1049/8573 | 1.14e-09/9.69e-07/1.19e-07| 1703.69 51.16
GRFsmooth| 35.15/1467/17149 |1.79e-08/9.86e-07/3.45e-08| 1892.41 69.25
LogGRF 94.41/3945/22768 |2.23e-10/9.93e-07/7.83e-07| 2066.44 56.17
LogitGRF 83.57/3276/33599 |1.31e-08/8.96e-07/9.57e-07| 1928.92 83.84
Cauchy [104.64/17826/256255 | 1.86e-07/9.65e-07/9.34e-07| 1869.37 51.30
Shapes 9.12/748/3380 1.19e-08/5.67e-07/3.38e-10| 2501.76 12.11
Classic 31.73/2820/27321 |1.18e-07/7.45e-07/3.27e-07| 1732.93 70.36
Microscopy | 24.69/1663/10880 |8.52e-09/9.98e-07/9.30e-08| 1671.90 | 35.14
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Outline

e A Trust Region Method For Nonsmooth Convex Programs
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Problem setup

@ Nonsmooth composite program:

min i(x) := f(x) + ¢(x),

xeR”

where f : R" — R is a (probably nonconvex) smooth function and
¢ : R" — R is a convex, proper, and lower semi-continuous
mapping.

@ Trust-region subproblem:

) 1
minmg(p) = ¥ + g/{p + =p'Bip, st Ipll < A
sER” 2

@ g(x) is an extension of the gradient and will be constructed later.

@ A desired property: my(p) locally fits ¢(x) well along a specific
direction.
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Construction of g(x)

@ The steepest descent direction: dy(x) = argmin /' (x;d).

deRrn, ||d||<1
@ In the smooth case: Vi (x) = ¢/ (x; dy(x))ds(x).

@ In the nonsmooth case, we choose a descent direction d(x) with

1, 0¢0y(x),

and an upper bound of the directional derivative:

Mﬂe{wmmawxm,o¢8ww,
{0}, 0 € d(x).

HﬂﬂH={Q 0o,
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Preferable Choices of d(x) and u(x)

Choice 1:
@ We say d,(x) is a y-inexact steepest descent direction (v € (0, 1])
if it satisfies ||d, (x)|| < 1 and ¢’ (x; dy(x)) < v’ (x; dg(x)).
© d(x) = dy(x), u(x) = ' (x;dy(x)).
@ Choice 1 may be difficult to implement.
Choice 2:

, 1
® Proximal Operator: prox’(x) := argmin ¢(z) + Sllz— x5
z€R"

® Natural Residual: Fhy(x) := x — prox (x — A~'Vf(x)).
@ A point x* is a stationary point of problem (16) if and only if x* is a
solution of the nonsmooth equation FA,,(x) = 0.

owl( nat ) _H nat HA

@ d(x) = TR nat 3” , u(x) = —Amin HFrjl\at(x)H-
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Model Function and Trust-Region Subproblem

@ Let g = u(xx)d(xx). Trust region subproblem:

. 1
min mi(s) = e + (g", ) + §<S,Bks) st |Is|| < Ak
@ Cauchy point: Pf = —oz,fgk and ag = argmln my(—1g)-
0<r< -

== Hng

@ Choose the regularization parameter:
1
5hTBkh +ulh)> > MRP YheR® and ||BS+ 1| < A,
Solve a system: (B + #I)p = —g* such that
(B + )t =~ + 7 and ] < gt
~2(M +A\2)

Project p* onto the trust region: s* = min{A;, ||p*|}p*
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Suitable Stepsize

@ Descent direction p; = ﬁ.

© Ty (,d) i= sup { T > 014, (1) := 92 + 1d;d) € C(0, T) }
@ I'(x) := infyepn, |gfj=1 P'max(x, d)

@ Stepsize oy = min {T" (xx; pr) , ||pxl|}-

@ Example: n =2, ¢(x) = ||x|[1, where gx := axpx.

\
Tk + Pk
Tk + Gk
N
Tk .
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Truncation Step

If there exists a sequence {S;}!", satisfying R" = Sy O S -+ D S,
d € (0,+o0], k >0, and a function T : R" x (0, ] — R" with following
properties:
(1) T(x) > 9, Vx € S,
(2) Foranya € (0,9] andx € S\Siy1 (i€0,1,--- ,m—1),ifT'(x) > a
holds T(x,a) = x; ifT'(x) < a, it holds T(x,a) € Sit1, I'(T(x,a)) > a,
and ||T(x,a) — x|| < ka;
we say  is truncatable and T is a truncation operator.

) @<r~*<1-2>f D S o= 5 =02

)T T(x,3)
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Global Convergence

We assume that » andf have the following properties:
(A.1) Vf(x) is locally Lipschitz continuous on R".
(A.2) vy is bounded from below by L.

Assumption 1

| \

Let {x;} and {B} be generated by the Algorithm, we assume:
(B.1) {xx }ren is bounded, i.e., there exist R > 0 with {x;} C Bg(0).

(B.2) There exists kg > 0 with sup ||B|| < kg < oo.

keN
(B.3) For any subsequence {k;}32, C N, if {x,} is convergent and
ay, — 0, then we have

o(xk, + o, Sk,) — p(xx,) — ozklgo”(xkf; Sk,) < o(ag,).

(B.4) For every ¢ > 0 there is ¢ > 0 such that for all x* with T'(x) > ¢ it
follows T (x*,5%) > €.
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Global Convergence

Theorem 1
For truncatable o, suppose that (A.1), (A.2), (B.1)-(B.4) are satisfied.
Assume that the Algorithm does not terminate in finitely many steps

and let {x; } 2, be the sequence generated by the Algorithm. Then it
holds that

liminf ||g|| = 0.
k—ro0

Theorem 1

Under the same assumptions as in the last Theorem, let x* be any
accumulation point of the sequence {x; };2, generated by the
Algorithm where g is given by Choice 1 or Choice 2. Then x* is an
stationary point of (16).
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Outline

e Stochastic Semi-smooth Newton Methods
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Stochatic optimization problem

@ Consider

min W(x) :=£(x) + (x)

@ Expected and Empirical Risk Minimization:
1 N
f) =E[Fx ],  fix)=y > filw)
i=1

@ Assume f(x) is smooth but ¢(x) is convex and non-smooth.

@ Large-scale machine learning problems: the number of data
samples N is very large

@ Full evaluation of f(x) and Vf(x) is not tractable or simply too
expansive.
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Algorithmic ldea

Basic idea based on x**! = prox} (x* — rVf(x")).
@ We incorporate second order information and use stochastic
Hessian oracles (SS0O)

Hy (x5 = V2 (x5

to estimate the Hessian V2f and compute the Newton step.

@ The sample collections s* and #* are chosen independently of
each other and of the other batches s*, ¢/, ¢ € Ny \ {k}.

@ We work with the following SFO and SSO:
Vf(x) : wZVf and  Hu(x) := k‘z 2fi(x

icsk ietk
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Stochastic Semi-smooth Newton Method: Idea
To accelerate the stochastic proximal gradient method, we want to
augment it by a stochastic Newton-type step, obtained from the
(sub-sampled) optimality condition:

F(x) = x — prox) (x — A" 'Vf,(x)) = 0. J

The semi-smooth Newton step is given by

Mpdt = —F)(x%), 1 =xk 4 dt, J

with sample batches s*, /* and My € M, (),

M2 (x) == {M =1—D+ DX "H,(x) : D € dprox)(u}(x))}
and u) (x) := x — A"V (x).

~+ Aim: Utilize fast local convergence to stationary points!
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Algorithmic Framework

We use the following growth conditions (x):
IFEH ) < (0 + we) - 6k + €l (G.1)
() <) + 8- IFEE NV + €2, (G2)

where n € (0,1), 8> 0, and (), (2) € €4, (c}) € £//2

We set 6, to FAkkt‘ KN || if 1 was obtained in step 3.
+

@ Calculating F k"jl‘( k) requires evaluation of V.1 (2*). This
information can be reused in the next iteration if z¥ ~ x**! is
accepted as new iterate.
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Global Convergence: Assumptions

Basic Assumptions:

(A.1) Vf is Lipschitz continuous on R”" with constant L.
(A.2) The matrices (\x) C S, satisfy Ayl = A\ = A,/ for all k.
(A.3) 1 is bounded from below on dom .

Stochastic Assumptions:

(S.1) Forall k € N, there exists o, > 0 such that
E[||Vf (&) — Ve (H)|] < o7

(S.2) The matrices My, chosen in step 1, are random operators.
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Global Convergence

Theorem: Global Convergence [MXCW, ’17]

Suppose that (A.1)—(A.3) and (S.1)—(S.2) are fulfilled. Then, under
the additional conditions, a; < @ := min{1, A, /L},

(o) is nonincreasing, > g =00, Y a0} < o0

it holds lim inf;_, E[||F*(x*)|?] = 0 and lim inf;_,o F*(x*) = 0 a.s. for
any A € 8 ..

@ Verify that (x*) actually defines an adapted stochastic process.
@ The batch s* and the iterate x* are not independent.
@ Derive approximate and uniform descent estimates for the terms

() — ().

For strongly convex case: lim;_,o, E[||F*(x*)||*] = 0 and
limy—oo FA(x*) = 0 a.s. forany A € S .
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Stochastic Semi-smooth Quasi-Newton Method

@ Use stochastic approximation technique!
Estimate v* ~ V£ (x*) from stochastic oracle and set

Fu(x*) = — prox;\,(xk —vk/N).

Example: Assume the samples s are chosen independently, then
a possible estimate of Vf(x) is V/i(x*) := § 2, V().
@ Use extra-gradient step for globalization!
(a) First employ the “Newton” step:

F =t pd, d = —WE()
where W* is exact or approximation of inverse of J*.
(b) Perform an extra gradient step:
= prox} (& + aud* — Vi /), W = Vf(Z).

The choice of g, and «y are very flexible !
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Coordinate Quasi-Newton Method

@ Further computation reduction?
Use coordinate update!

@ Given a coordinates set A(x*) and O(x*) := [N] \ A(x"), d* is
updated by coordinate set:

dk [ W.A(xk).A(xk) 0 ]

0 Yid

® W ()40t IS Updated by L-BFGS related to coordinates .A(x").

k—

auol (e = Dl Yool

(Uk)A(xk) = [l/li‘_(ik), ceey uA(x")

are the subvectors of U, Y*.
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Convergence Assumption

Basic Assumption

A.1 The gradient mapping V7 is Lipschitz continuous on R" with modulus L; > 1.
A.2 The objective function ¢ is bounded from below on dom .

A3 ¢:R" — (—o0,00] is convex, lower semicontinuous, and proper.

Stochastic Assumption

B.1 The mapping D* : © — R" is an F*-measurable function for all .

B.2 There is v > 0 such that we have E[||D*||* | 747" < 17 - E[||Fye (X9 | ']
a.e. and for all k € N.

B.3 Forallk € N, it holds E[V* | Fi~'] = V£ (X"), E[V4 | F'] = Vf(Z") a.e. and
there exists o, ox,+ > 0 such that a.e.

E[|VF(X) = V¥ | Fi'l <ot and  E[|VA(Z") — ViI* | F] < ok,
where

Fr=o(V,V,...,V" and FL=c(FUa(VL)).
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Theorem 1

Suppose that the assumptions (A.1)—(A.3) and (B.1)—<B.3) are
satisfied and we have
1 (1 = P) e+

Mo < — M <
Sl P

)

where . = vi(ow + LeBx Ak +). Then, under the additional conditions

Z)\k = 00, Z)\kO']% < 00, Z)\k7+01%7+ < 00

it follows lim inf;_,« E[||F(X¥)||?] = 0 and lim inf;_,o, F(X¥) = 0 a.s.
and ((X*)), a.s. converges to some random variable Y* with
limy o0 E[p(X5)] = E[Y*].

Locally, if we further assume the function satisfy KL-property and
some mild assumption, we can show then (X*), converges almost
surely to a crit v-valued random variable X*.
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Deep learning: ResNet-18 on Cifar10, ¢ (x) = ||x|;
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35/47



Outline

e A stochastic trust region method for deep reinforcement learning
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Reinforcement learning
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Preliminaries

@ Consider an infinite-horizon discounted Markov decision process
(MDP), usually defined by a tuple (S, A, P, R, po,7);

Agent .
@ po: the distribution of s

state reward action .
S| | A, e ~: discount factor € (0, 1)

R
S| Environment [e—— e P: transition probability

@ Atrajectory: 7 = {s0,ao, r(so,a0), 51, .-, s,,at, F(S1,Q1), St1y e}
@ At a given state, choose action from = (:|s): [, 7w (als)da = 1.

@ The policy is supposed to maximize the total expected reward:

max n(mw [Z’Y r\Ss, ay ] )

with 5o ~ po, ar ~ m(-[sr), sr41 ~ P(:|st, ar).
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Deep reinforcement learning

@ In real-world tasks: high dimensionality, limited observations,...

@ In deep reinforcement learning, the policy = and/or value
functions are usually parameterized with differentiable neural
networks.

@ The policy-based optimization:

).
max n(0)

@ The value-based optimization:

2
m(gn Es {Q¢(s,a) — By op(sa) |7(5,a) + ¥ max 0u(s',d)]s, a} } .

@ Challenges: theoretical analysis; generalization; stability; trade
off between exploration and exploitation...
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VPG, NPG

@ Policy gradient: Vn(0) = E,, =, [V log mg(als)Ag (s, a)].

@ py(s) = ioj ~v'P(s; = s|mg) is the (unnormalized) discounted
visitatioﬁzgrequencies.

@ Vanilla'/Natural® policy gradient: 6; 1 = 6; + aM(6;)Ven(6%).

o M(6) ! = E o, .ma, [Vologmg,(s,a)Velogma,(s,a)'] .

@ A local approximation of #:

= 1(6k) + Z po(s) Z mo(als)Ag, (s, a),
L (0) = (6 +Zﬂek Zﬂe (als)Ag, (s, a).

@ 1(6k) = Ly, (6k), Vn(6k) = VLo, (k).
'R. S. Sutton, el al., Policy gradient methods for reinforcement learning with

function approximation.
2S. M. Kakade, A natural policy gradient. 047

Lo, (0




Stochastic Trust Region Algorithm

@ The objective function
max n(6).

@ At k-th iteration, obtain a trail point 6, from the subproblem:

max Lo, (8), 5.t Bynpy, [D(ma,(15), molC[5))] < .

@ Compute the ratio r;, = %
k k

9 > ,
@ Update 0,1 = {9"“’ = 60’, with 8y > 0.

ks 0.W.,
(] Update 5k+1 = Uk—l—lHVL9k+1(9k+1)” with 1> 12 v > s,

Yk, Tk > P,
M1 = § V2pks Tk € [Bo, B1), -
Y3 Lk, o.w.,
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Unparameterized Policy

@ Specifying the total variation distance in discrete cases (the KL
divergence in continuous cases).

e Policy advantage: A (') = Eywy, [Eqr(fs) [An(s,a)]].

Lemma 2 (Optimality condition)
w is the optimal policy if and only if

A = max A, (7') =0, i.e., T € argmax_, A, (7).
Tr/

Lemma 3 (Monotonicity)

Suppose {m} is the sequence generated by our trust region method,
then we have n(miy1) > n(mi), the equality holds if and only if . is
the optimal policy.
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Main Results

Lemma 4 (Lower bound of AL;,)

Suppose {m} is the sequence generated by our trust region method,
then we have Ly, (my+1) — Ly, (mc) = min(1, (1 —)dx) A7, .

Lemma 5 (Lower bound of r;)

. T . 4epy6? 4e,~vO
The ratio r, satisfies that r, > min | 1 — K% ] — a0
k k= py(1=7)2A7,0 ~ p(1—7)%Az, )”

where py = ming po(s) and ¢; = max; 4 |Ar, (s, a)l.

Theorem 6 (Convergence)

Suppose {;} is the sequence generated by our trust region method,
then we have the following conclusions
Q@ lim A} =0.
k—o0
Q klggo n(my) = n(7*), where * is the optimal policy.
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Empirical algorithm

@ Terminate condition:

!iek(Qk,zﬂ) — Lo, (6k1)| <c or |Ent(6k14.1) — Ent(6;)] > e
1+ | Lo, (6xy)| 1 + [Ent(6y)|
@ Ratio:
- 0(Ohes1) — n(6k) = 7?(51«+1)~— 7(0k) .
Lo, (Ox+1) — Lo, (0k) 07(0k) + Lo, (Or1) — Lo, (0x)

@ 7,(0) is the empirical standard deviation of 7(6).

Ok+1, 1 > Bo,

9 , with a small
ks O0.W.

@ Acceptance criteria: Oy =

negative constant 5, < 0.

@ Mandatory acceptance: after several consecutive rejections,
force to accept the best performed point among the past

rejections.
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Atari games

Table: Max Average Reward (100 episodes) + standard deviation over 5
trails of 1e7 time steps.

Environment PPO TRPO STRO
Pong 20+0 3+7 20+0
MsPacman | 21254322 | 15384159 | 24524-487
Seaquest 10044141 692+92 | 11721346
Bowling 50+17 38+15 10546
Freeway 30+0 28+3 31+0
PrivateEye 10040 88+16 100+0
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