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Decentralized Consensus Optimization

min
x∈Rp

f̄ (x) =
1

n

n∑
i=1

fi (x) fi : Rp → R. (1)

EXTRA method

use a fixed step size independent of the network size.

convergence rate O( 1
k

) for general convex objection with Lipschitz
differential.

linear convergence rate for (restricted) strongly convex.
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Previous Methods

existing first-order decentralized methods:
(sub)gradient,(sub)gradient-push,fast (sub)gradient,dual averaging.

more restrictive assumptions and worse convergence rate.

using a fixed step size,do not converge to a solution x?,just in its
neighborhood.
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Notation

x(i) ∈ Rp:local copy of the global variable x.

xk
(i):its value at iteration k.

f(x) ,
∑n

i=1 fi (x(i)):an aggregate objective function of the local variables

x ,


−xT

(1)−
−xT

(2)−
...

−xT
(n)−

 ∈ Rn×p
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Notation

∇f(x) ,


−∇T f1(x(1))−
−∇T f2(x(2))−

...
−∇T fn(x(n))−

 ∈ Rn×p.

x is consensual if all of its rows are identical,i.e., x(1) = · · · = x(n).

‖A‖G ,
√

trace(ATGA):G-matrix norm.

null{A} , {x ∈ Rn|Ax = 0}:null space of A.

span{A} , {y ∈ Rm|y = Ax , ∀x ∈ Rn}:linear span of all the columns of A.
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Algorithm 1 (DGD)

xk+1
(i) =

n∑
j=1

wijx
k
(j) − αk∇fi (xk

(i)), for agent i = 1, · · · , n. (2)

matrix version
xk+1 = Wxk − αk∇f(xk). (3)

xk
(i) ∈ Rp is the local copy of x held by agent i at iteration k,

W = [wij ] ∈ Rn×n is a symmetric mixing matrix
satisfying null{I −W } = span{1}.If two agents i and j are neither neighbors
nor identical,then wij = 0,
σmax(W − 1

n
11T) < 1,

αk > 0 is a step size for iteration k.
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Dilemma of DGD

converge slowly to an exact solution with a sequence of diminishing step
sizes.

converge faster with a fixed step size but stall at an inaccurate
solution (O(α)-neighbourhood of a solution).
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The Cause of Inexact Convergence With a Fixed Step Size

let x∞ be the limit of xk . Take the limit over k and get

x∞ = Wx∞ − α∇f(x∞). (4)
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Development of EXTRA

Consider the DGD update at iterations k+1 and k as follows

xk+2 = Wxk+1 − α∇f(xk+1), (5)

xk+1 = Wxk − α∇f(xk), (6)

W̃ =
I + W

2
, the choice of W̃ will be generalized later. (7)

Subtracting the above two iterations of DGD,we get the update formula of
EXTRA:

xk+2 − xk+1 = Wxk+1 − W̃xk − α∇f(xk+1) + α∇f(xk). (8)

Conclusion 1

Provided that null{I−W} = span{1}, W̃ = I+W
2 , 1T(W − W̃) = 0 and the

continuity of ∇f , if a sequence following EXTRA converges to a point
x?, then x? is consensual and any of its identical row vectors solves problem.
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The Algorithm EXTRA

Algorithm 2 (EXTRA)

Choose α > 0 and mixing matrices W ∈ Rn×n and W̃ ∈ Rn×n

Pick any x0 ∈ Rn×p

1.x1 ←Wx0 − α∇f(x0);
2.for k = 0, 1, · · · do
xk+2 ← (I + W)xk+1 − W̃xk − α[∇f (xk+1)−∇f (xk)];
end for
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Assumptions on The Mixing Matrices W and W̃

Assumption 1

(Mixing matrix). Consider a connected network G = {V, E} consisting of a set
of agents V = {1, 2, · · ·, n} and a set of undirected edges E . The mixing
matrices W = [wij ] ∈ Rn×n satisfy

1. (Decentralized property) If i 6= j and (i , j) /∈ E , then wij = w̃ij = 0.

2. (Symmetry) W = W>, W̃ = W̃>.

3. (Null space property) null{W − W̃ } = span{1}, null{I − W̃ } ⊇ span{1}.

4. (Spectral property) W̃ � 0 and I+W
2

< W̃ < W.

In fact,EXTRA can use the same W used in DGD and simply take W̃ = I+W
2
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Mixing Matrices

The mixing matrices W and W̃ diffuse information throughout the network,
which can significantly affect performance.We will verify this point in the
numerical experiments!!!
W can be chosen through following methods:

symmetric doubly stochastic matrix: W = WT,W1 = 1 and wij ≥ 0.

Laplacian-based constant edge weight matrix

Metropolis constant edge weight matrix

symmetric fastest distributed linear averaging(FDLA) matrix

W̃ = I+W
2 is found to be very efficient.
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Due to the update formula

xk+2 − xk+1 = Wxk+1 − W̃xk − α∇f(xk+1) + α∇f(xk),

We add the iterations k together and obtain

xk+1 = Wxk − α∇f (xk) +
k−1∑
t=0

(W − W̃)x
t
, k = 0, 1, · · · (9)

An EXTRA update is a DGD update with a cumulative correction term.The
role of the cumulative term

∑k−1
t=0 (W − W̃)xt is to neutralize −α∇f (xk) in

(span{1})⊥

Xinwei Sun(1301110047), Jingru Zhang(1301110029) EXTRA



Introduction
Algorithm

Convergence analysis
Experiment

Convex objective with Lipshitz continuous gradient
Strongly convex with Lipshitz continuous gradient

EXTRA

Preliminaries

Lemma. 1

Assume null{I −W } = span{1}. If

x? =



−− x?>(1) −−
−− x?>(2) −−

·
·
·

−− x?>(n) −−

 (10)

satisfies conditions:
1. x? = Wx? (consensus),
2. 1>Of (x?) = 0 (optimality),
then x? = x?(i), for any i , is a solution to consensus optimization problem.
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Lemma. 2

Given mixing matrices W and W̃ , define U = (W̃ −W )
1
2 by letting

U , VS
1
2V> ∈ Rn×n where VSV> = W̃ −W is the econmical-form singular

value decomposition. Then, under someassumptions, x? is consensual and
x?(1) = x?(2) = · · · = x?(n) is optimal to optimization problem if and only if there

exists q? = Up for some p ∈ Rn×p such that

Uq? + αOf (x?) = 0 (11)

Ux? = 0 (12)
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Theorem 1

Under assumptions 1− 3, If α satisfies 0 < α < 2λmin(W̃ )
Lf

, then

‖zk − z?‖2G − ‖zk+1 − z?‖2G ≥ ζ‖zk − zk+1‖2G , k = 0, 1, ..., (13)

where ζ = 1− αLf
2λmin(W̃ )

.

zk =

[
qk

xk

]
. zk =

[
qk

xk

]
. G =

[
I 0

0 W̃

]
.
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The key steps in the proof of above theorem.

(I + W − 2W̃ )x? = 0

(14)

2α

Lf
‖Of (xk)− Of (x?)‖2F ≤ 2α〈xk − x?,Of (xk)− Of (x?)〉

(15)

〈xk+1 − x?,U(q? − qk+1)〉 = 〈U(xk+1 − x?), q? − qk+1〉 = 〈Uxk+1, q? − qk+1〉
(16)

〈xk+1 − x?, W̃ (q? − qk+1)〉 = 〈W̃ (xk+1 − x?), q? − qk+1〉
(17)
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The key steps in the proof of above theorem

‖zk − z?‖2G − ‖zk+1 − z?‖2G − ‖zk − zk+1‖2G − 2‖xk+1 − x?‖2I+W−2W̃

+
αLf

2
‖xk − xk+1‖2F ≥ 0 (18)

‖zk − z?‖2G − ‖zk+1 − z?‖2G − ‖zk − zk+1‖2G +
αLf

2
‖xk − xk+1‖2F ≥ 0 (19)

‖zk − z?‖2G − ‖zk+1 − z?‖2G ≥ ‖zk − zk+1‖2G ′ (20)

‖zk − zk+1‖2G ′ ≥ ζ‖zk − zk+1‖2G (21)
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From the analysis above, we can give these thee necessary assumptions:

Assumption 2

(Mixing matrix). Consider a connected network G = {V, E} consisting of a set
of agents V = {1, 2, · · ·, n} and a set of undirected edges E . The mixing
matrices W = [wij ] ∈ Rn×n satisfy

1. (Decentralized property) If i 6= j and (i , j) /∈ E , then wij = w̃ij = 0.

2. (Symmetry) W = W>, W̃ = W̃>.

3. (Null space property) null{W − W̃ } = span{1}, null{I − W̃ } ⊇ span{1}.

4. (Spectral property) W̃ � 0 and I+W
2

< W̃ < W.
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Assumption 3

(Convex objective with Lipschitz continuous gradient) Objective functions fi are
proper closed convex and Lipschitz differentiable:

‖Ofi (xa)− Ofi (xb)‖2 ≤ Lfi ‖xa − xb‖2,∀xa, xb ∈ Rp,

where Lfi ≥ 0 are constant.

Assumption 4

(Solution existence) The optimization problem has a nonempty set of optimal
solutions: X ? 6= Ø.
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From the theorem above, we can get:

Theorem 2

In the same setting of Theorem 3, the following rates hold:
(1) Running-average progress:

1
k

∑k
t=1 ‖z

t − z t+1‖2G = O( 1
k

);

(2) Running-best progress:

mint≤k{‖z t − z t+1‖2G} = o( 1
k

);

(3) Running-average optimality residuals:

1
k

∑k
t=1 ‖Uq

t + αOf x
t

‖2
W̃

= O( 1
k

) and 1
k

∑k
t=1 ‖Ux

t‖2F = O( 1
k

);

(4) Running-best optimality residuals:

mint≤k{‖Uqt + αOf x
t

‖2
W̃

= o( 1
k

) and mint≤k‖Ux t‖2F = o( 1
k

);
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Theorem 3

If g(x) , f (x) + 1
4α
‖x‖2

W̃−W
is restricted strongly convex with respect to x?

with constant µg > 0, then with proper step size α <
2µgλmin(W̃ )

L2
f

, there exists

δ > 0 such that the sequence {zk} generated by EXTRA satisfies

‖zk − z?‖2G ≥ (1 + δ)‖zk+1 − z?‖2G . (22)
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Denote µf is the constant of the restrictedly convex function f (x), then in the
proof of the theorem above,

µg = min{µf − 2Lf γ,
λ̃min(W̃ −W )

2α(1 + 1
γ2

)
} (23)

So we set

α =
λ̃min(W̃ −W )

2(1 + 1
γ2

)(µf − 2Lf γ)
= O(

µg

L2
f

) (24)

The paper said that in this case if we set α = O( 1
Lf

), the algorithm still
converges and become faster, but it remains an open question to prove linear
convergence under this step.
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Experiment set:
We consider solving problem

minimizex f̄ (x) =
1

n

n∑
i=1

1

2
‖M(i)x − y(i)‖22 (25)

Here y(i) = M(i)x + e(i), where y(i) ∈ Rmi and M(i) ∈ Rmi×p are measured data,
x ∈ Rp is unknown signal, and e(i) ∈ Rmi is unknown noise. In this set, n = 10,
mi = 1, ∀i , p = 5. Data M(i) and e(i), ∀i , are generated following the standard
normal equation. The algorithm starts from x0

(i) = 0, ∀i , and we set

‖x − x0
i ‖ = 300.
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We adjust M(i), ∀i , to 20 to make f(i)(x) strongly convex. All other parameters
are the same. And we set α = 1

2Lf
.
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Other Mixing Matrices

We have tried other methods to choose mixing matrices W .The result of using
metropolis method with different connectivity ratio r = 0.2, 0.5, 0.7 as follows.
We can see the significant effect from mixing matrices.
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