
A stochastic smoothing algorithm for semidefinite
programming

Authors: Alexandre d’Aspremont and Noureddine El Karoui,

Repoters: Pan ZHOU and Bin HAO

Peking University

pzhou@pku.edu.cn
haobin@pku.edu.cn

December 16, 2014

Authors: Alexandre d’Aspremont and Noureddine El Karoui, Repoters: Pan ZHOU and Bin HAO (PkU)Stoch December 16, 2014 1 / 24



Overview

1 Introduction
Projected Subgradient
Smooth method

2 Stochastic Smoothing Algorithm

3 Maximum Eigenvalue Minimization

4 Experimental Results

Authors: Alexandre d’Aspremont and Noureddine El Karoui, Repoters: Pan ZHOU and Bin HAO (PkU)Stoch December 16, 2014 2 / 24



Introduction

Focus on maximum eigenvalue minimization

P: min
X∈Q

λmax(A(X )),

where X ∈ Sn.

The set Q is convex and simple, i.e., projections on Q can be
computed with low conplexity.

A(X ) is a simple function. In most case, A(X ) is a linear function of
X .

All semidefinite programs with constant trace can be expressed in this
form.
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Projected Subgradient

Solve
P: min

X∈Q
λmax(A(X ))

by Projected Subgradient.

Input: A starting point X0 ∈ Sn.
1. for t = 0 to N − 1 do
2. update

Xt+1 = PQ(Xt − γ∂λmax(A(Xt))).

3. end for
Output: A point X = 1

N

∑N
t=1 Xt .

Here, γ > 0 and PQ(·) is the Euclidean Projiection on Q.
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Projected Subgradient

The number of iterations required to reach a target precision ε is

N =
D2
QM

2

ε2
,

where DQ is the diameter of Q and ‖∂λmax(A(X ))‖ ≤ M on Q.

The cost per iteration is the sum of

The cost PQ of computing the Euclidean Projection on Q.
The cost of computing ∂λmax(A(X )) which is v1v

T
1 , where v1 is the

leader eigenvector of A(X ).

O(
n2 log n/δ2√

ε
)

where ε is the precision and 1− δ is the probability of failure.
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Projected Subgradient

Solving minX∈Q λmax(A(X )) by Projected Subgradient.
Easy to implement.
Very poor performance in practice. The 1/ε2 dependence is somewhat
punishing.

Example below on MAXCUT.
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Smooth method

Solving minX∈Q λmax(A(X )) by smooth method.

We can reglarize the objective and solve [Nesterov, 2007]

min
X∈Q

f (X ) = µ log Tr

(
exp(

A(X )

µ
)

)
where some regularization parameter µ > 0.

If we set µ = ε/ log n,

λmax(A(X )) ≤ f (X ) ≤ λmax(A(X )) + ε

The gradient ∇f (X ) is Lipschitz continuous with constant

‖A‖2 log n

ε

where ‖A‖ = sup‖h‖≤1‖A(h)‖2.
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Smooth method

The number of iterations required to obtain an ε by smooth
method grows as

DQ
√

log n

ε

The cost per iteration is the sum of

The cost PQ of computing the Euclidean Projection on Q.
The cost of computing the mtrix exponentil exp(A(X )/µ)

O(n3).
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Smooth method

This means that the two classical complexity options for solving

min
X∈Q

λmax(A(X ))

Subgradient methods

D2
Q(n2 log n + PQ)

ε2

Smooth methods
DQ
√

log n(n3 + PQ)

ε
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Subgradient method VS Smooth method

This means that the two classical complexity options for solving

min
X∈Q

λmax(A(X ))

Subgradient methods

D2
Q(n2 log n + PQ)

ε2

Smooth methods
DQ
√

log n(n3 + PQ)

ε

Keep some of the performance of smooth methods, while lowering the
cost of smoothing.

One possible solution here: stochastic gradient approximations.
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Stochastic Smoothing Algorithm

Solve a smooth approximation problem, written as

min
X∈Q

Fk(X ) = E[ max
i=1,··· ,k

λmax(X + εziz
T
i )]

where zi
i .i .d∼ N(0, In), ε > 0.

Property 1: Approximation results are preserved up to a constant
ck > 0

λmax(X ) ≤ E[ max
i=1,··· ,k

λmax(X + εziz
T
i )] ≤ λmax(X ) + ckε

Property 2: The function Fk(X ) is smooth and has a Lipschitz
continuous gradient

‖∇Fk(X )−∇Fk(Y )‖F ≤ L‖X − Y ‖F ,

where L satisfies

L ≤ E[
n

2ε
max

i=1,··· ,k
1/u2i ,1] ≤ ck

n

ε
and ck =

k√
2(k − 2)

.
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Stochastic Smoothing Algorithm

Property 3: The gradient variance of Fk(X ) can be bounded. Let φi0
be the leading eigvector of matrix X + ε

nzi0z
T
i0

, where

i0 = arg max
i=1,··· ,k

λmax(X + εziz
T
i ).

Then, we have

∇Fk(X ) = E(φi0φ
T
i0 ) and E(‖φi0φTi0 −∇Fk(X )‖) ≤ 1.

Property 4: The optimal algorithm for stochastic optimazation
derived in [Lan, 2012] will produce a matrix XN such that

E(Fk(XN)− Fk(X ∗) ≤
4LD2

Q

αN2
+

4DQ√
Nq

where α is the strong convexity of the prox function. q is the number
of independent samples matrixs φφT averaged in approximating the
gradient.
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Maximum Eigenvalue Minimization

Solve maximum eigenvalue minimization after stochastic smoothing

min
x∈Q

Ψ(X ) = E[Ψ(X , z)] = E

[
max

j=1,...,3
λmax

(
X +

ε

n
zjz

T
j

)]
in the variable X ∈ Sn and the zj are Gaussian.

We use an optimal stochastic minimization algorithm in [Lan, 2009] which
is a generalization of the algorithm in Nesterov [1983], with increasing step
size.
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Maximum Eigenvalue Minimization

Optimal Stochastic Composite Optimization.The algorithm in Lan
[2009] solves

min
x∈Q

Ψ(x) := f (x) + h(x)

with the following assumptions

f (x) has Lipschitz gradient with constant L and h(x) is Lipschitz with
constant M,

we have a stochastic oracle G (x , ξt) for the gradient, which satisfies

E[G (x , ξt)] = g(x) ∈ ∂Ψ(x),

E[‖G (x , ξt)− g(x)‖2∗] ≤ σ2.
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Maximum Eigenvalue Minimization

Distance generating function ω(x), i.e. a function such that

Qo =
{
x ∈ Q : ∃y ∈ Rp, x ∈ argminu∈Q [yTu + ω(u)]

}
is convex set.he function ω(x) is strongly convex on Qo with modulus
α with respect to the norm ‖ · ‖, which means

(y − x)T (∇ω(y)−∇ω(x)) ≥ α‖y − x‖2, x , y ∈ Qo .

We then define a Bregman distance V (x , y) on Qo × Q as follows:

V (x , y) ≡ ω(y)− [ω(x) +∇ω(x)T (y − x)].
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Maximum Eigenvalue Minimization

The prox-mapping associated to V is then defined as

PQ,ω
x (y) ≡ argminz∈Q{yT (z − x) + V (x , z)}.

After N iterations, the iterate xN+1 satisfies

E[Ψ(xagN+1)−Ψ∗] ≤
8LD2

ω,Q

N2
+

4Dω,Q
√

4M2 + σ2√
N

which is optimal. Additional assumptions guarantee convergence w.h.p.
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Maximum Eigenvalue Minimization

Stochastic line search.

The bounds on variance and smoothness are very conservative.

Line search allows to take full advantage of the smoothness of
λmax(X ) outside of pathological areas.

Monotonic line search. In Lan [2009], we test

Ψ(xagt+1, ξt+1) ≤Ψ(xmd
t , ξt) + 〈G (xmd

t , ξt), x
ag
t+1 − xmd

t 〉

+
αβt
4γt
‖xagt+1 − xmd

t ‖2 + 2M‖xagt+1 − xmd
t ‖

while decreasing the step size monotonically across iterations.
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Require: An initial point xag = x1 = xw ∈ Rn, an iteration counter
t = 1, the number of iterations N, line search parameters
γmin, γmax , γd , γ > 0, with γd < 1.

1: Set γ = γmax .
2: for t = 1 to N do
3: Define xmd

t = 2
t+1xt + t−1

t+1x
ag
t

4: Call the stochastic gradient oracle to get G (xmd
t , ξt).

5: repeat
6: Set γt = (t+1)γ

2 .
7: Compute the prox mapping xt+1 = Pxt (γtG (xmd

t , ξt)).
8: Set xagt+1 = 2

t+1xt+1 + t−1
t+1x

ag
t .

9: until Ψ(xagt+1, ξt+1) ≤ Ψ(xmd
t , ξt) + 〈G (xmd

t , ξt), x
ag
t+1 − xmd

t 〉+
αγd

4γ ‖x
ag
t+1 − xmd

t ‖2 + 2M‖xagt+1 − xmd
t ‖ or γ ≤ γmin. If exit condition

fails, set γ = γγd and go back to step 5.
10: Set γ = max

{
γmin, γ

}
.

11: end for
Ensure: A point xagN+1.
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Maximum Eigenvalue Minimization

Details:

xw = argminx∈Qω(x),

We use the following gradient oracle

G (X , z) =
1

q

q∑
l=1

φlφ
T
l

where each φl is a leading eigenvector of the matrix X + ε
nzi0z

T
i0

, with

i0 = argmaxi=1,...,kλmax

(
X +

ε

n
ziz

T
i

)
,

where zi are i.i.d. Gaussian vectors zi ∼ N (0, In) and k > 0 is a small
constant (typically 3) and q is used to control the variance.
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Maximum Eigenvalue Minimization

Details:

We have

λmax(X ) ≤ E

[
max

i=1,...,k
λmax

(
X +

ε

n
ziz

T
i

)]
≤ λmax(X ) + kε.
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Maximum Eigenvalue Minimization

For maximum eigenvalue minimization

We have σ ≤ 1, but we can reduce this by averaging q gradients, to
control the tradeoff between smooth and non-smooth terms.

If we set q = max{1,DQ/(ε
√
n)} and N = 2DQ

√
n/ε we get the

following complexity picture

Complexity Num. of Iterations Cost per Iteration

Nonsmooth alg. O(
D2

Q

ε2
) O(pQ + n2 log n)

Smooth stochastic alg. O(
DQ
√
n

ε ) O(pQ + max 1,
DQ

ε
√
n
n2 log n)

Smoothing alg. O(
DQ
√
log n
ε ) O(pQ + n3)
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Solving a problem:

max
X

λmax(A + X ), s.t. − ρ ≤ Xij ≤ ρ.

where X ∈ Sn.
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Solving a problem:

max
X

λmax(A + X ), s.t. − ρ ≤ Xij ≤ ρ.

where X ∈ Sn.
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Thank you!

Any questions?
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