A stochastic smoothing algorithm for semidefinite programming

Authors: Alexandre d'Aspremont and Noureddine El Karoui,

Repoters: Pan ZHOU and Bin HAO

Peking University

pzhou@pku.edu.cn haobin@pku.edu.cn

December 16, 2014

Introduction

- Projected Subgradient
- Smooth method
- 2 Stochastic Smoothing Algorithm
- 3 Maximum Eigenvalue Minimization
- 4 Experimental Results

• Focus on maximum eigenvalue minimization

$$\mathbf{P:} \qquad \min_{X \in Q} \lambda_{max}(A(X)),$$

where $X \in S_n$.

- The set Q is **convex and simple**, i.e., projections on Q can be computed with low conplexity.
- *A*(*X*) is a **simple function**. In most case, *A*(*X*) is a linear function of *X*.
- All semidefinite programs with constant trace can be expressed in this form.

Projected Subgradient

Solve

$$\mathbf{P}: \qquad \min_{X \in Q} \lambda_{max}(A(X))$$

by Projected Subgradient.

Input: A starting point $X_0 \in S_n$. **1.** for t = 0 to N - 1 do **2.** update

$$X_{t+1} = P_Q(X_t - \gamma \partial \lambda_{max}(A(X_t))).$$

3. end for **Output:** A point $X = \frac{1}{N} \sum_{t=1}^{N} X_t$.

• Here, $\gamma > 0$ and $P_Q(\cdot)$ is the Euclidean Projlection on Q.

• The number of iterations required to reach a target precision ϵ is

$$N=\frac{D_Q^2M^2}{\epsilon^2},$$

where D_Q is the diameter of Q and $\|\partial \lambda_{max}(A(X))\| \leq M$ on Q.

- The cost per iteration is the sum of
 - The cost P_Q of computing the Euclidean Projection on Q.
 - The cost of computing $\partial \lambda_{max}(A(X))$ which is $v_1v_1^T$, where v_1 is the leader eigenvector of A(X).

$$O(\frac{n^2\log n/\delta^2}{\sqrt{\epsilon}})$$

where ϵ is the precision and $1-\delta$ is the probability of failure.

Projected Subgradient

- Solving $\min_{X \in Q} \lambda_{max}(A(X))$ by Projected Subgradient.
 - Easy to implement.
 - Very poor performance in practice. The $1/\epsilon^2$ dependence is somewhat punishing.
- Example below on MAXCUT.

Smooth method

- Solving $\min_{X \in Q} \lambda_{max}(A(X))$ by smooth method.
- We can reglarize the objective and solve [Nesterov, 2007]

$$\min_{X \in Q} f(X) = \mu \log \operatorname{Tr}\left(\exp(\frac{A(X)}{\mu})\right)$$

where some regularization parameter $\mu > 0$.

• If we set
$$\mu = \epsilon / \log n$$
,

$$\lambda_{max}(A(X)) \le f(X) \le \lambda_{max}(A(X)) + \epsilon$$

• The gradient $\nabla f(X)$ is Lipschitz continuous with constant

$$\frac{\|A\|^2\log n}{\epsilon}$$

where $||A|| = \sup_{\|h\| \le 1} ||A(h)||_2$.

• The number of iterations required to obtain an ϵ by smooth method grows as

$$\frac{D_Q\sqrt{\log n}}{\epsilon}$$

- The cost per iteration is the sum of
 - The cost P_Q of computing the Euclidean Projection on Q.
 - The cost of computing the mtrix exponentil $exp(A(X)/\mu)$

 $O(n^{3}).$

• This means that the two classical complexity options for solving

$$\min_{X \in Q} \lambda_{max}(A(X))$$

• Subgradient methods

$$\frac{D_Q^2(n^2\log n + P_Q)}{\epsilon^2}$$

Smooth methods

$$\frac{D_Q\sqrt{\log n}(n^3+P_Q)}{\epsilon}$$

Subgradient method VS Smooth method

This means that the two classical complexity options for solving

 $\min_{X \in Q} \lambda_{max}(A(X))$

Subgradient methods

$$\frac{D_Q^2(n^2\log n + P_Q)}{\epsilon^2}$$

Smooth methods

$$\frac{D_Q\sqrt{\log n}(n^3+P_Q)}{\epsilon}$$

- Keep some of the performance of smooth methods, while lowering the cost of smoothing.
- One possible solution here: stochastic gradient approximations.

Stochastic Smoothing Algorithm

• Solve a smooth approximation problem, written as

$$\min_{X \in Q} \mathbf{F}_k(X) = \mathbf{E}[\max_{i=1,\cdots,k} \lambda_{max}(X + \epsilon z_i z_i^T)]$$

where $z_i \stackrel{i.i.d}{\sim} N(0, I_n)$, $\epsilon > 0$.

• **Property 1:** Approximation results are preserved up to a constant $c_k > 0$

$$\lambda_{\max}(X) \leq \mathsf{E}[\max_{i=1,\cdots,k} \lambda_{\max}(X + \epsilon z_i z_i^{\mathsf{T}})] \leq \lambda_{\max}(X) + c_k \epsilon$$

• **Property 2:** The function $F_k(X)$ is smooth and has a Lipschitz continuous gradient

$$\|\nabla \mathbf{F}_k(X) - \nabla \mathbf{F}_k(Y)\|_F \leq L \|X - Y\|_F,$$

where L satisfies

$$L \leq \mathbf{E}[rac{n}{2\epsilon} \max_{i=1,\cdots,k} 1/u_{i,1}^2] \leq c_k rac{n}{\epsilon} \quad ext{and} \quad c_k = rac{k}{\sqrt{2}(k-2)}.$$

Stochastic Smoothing Algorithm

Property 3: The gradient variance of F_k(X) can be bounded. Let φ_{i0} be the leading eigvector of matrix X + ^ϵ/_n z_{i0} z^T_{i0}, where

$$i_0 = \arg \max_{i=1,\cdots,k} \lambda_{max}(X + \epsilon z_i z_i^T).$$

Then, we have

$$abla \mathbf{F}_k(X) = \mathbf{E}(\phi_{i_0} \phi_{i_0}^T) \quad ext{and} \quad \mathbf{E}(\|\phi_{i_0} \phi_{i_0}^T -
abla \mathbf{F}_k(X)\|) \leq 1.$$

• **Property 4:** The optimal algorithm for stochastic optimazation derived in [Lan, 2012] will produce a matrix X_N such that

$$\mathsf{E}(\mathsf{F}_k(X_N) - \mathsf{F}_k(X^*) \leq \frac{4LD_Q^2}{\alpha N^2} + \frac{4D_Q}{\sqrt{Nq}}$$

where α is the strong convexity of the prox function. q is the number of independent samples matrixs $\phi \phi^T$ averaged in approximating the gradient.

Solve maximum eigenvalue minimization after stochastic smoothing

$$\min_{x \in Q} \Psi(X) = \mathrm{E}[\Psi(X, z)] = \mathrm{E}\left[\max_{j=1,...,3} \lambda_{max} \left(X + \frac{\epsilon}{n} z_j z_j^{\mathcal{T}}\right)\right]$$

in the variable $X \in S_n$ and the z_i are Gaussian.

We use an optimal stochastic minimization algorithm in [Lan, 2009] which is a generalization of the algorithm in Nesterov [1983], with increasing step size.

Optimal Stochastic Composite Optimization. The algorithm in Lan [2009] solves

$$\min_{x\in Q}\Psi(x):=f(x)+h(x)$$

with the following assumptions

- f(x) has Lipschitz gradient with constant L and h(x) is Lipschitz with constant M,
- we have a stochastic oracle $G(x, \xi_t)$ for the gradient, which satisfies

$$\begin{split} \mathrm{E}[G(x,\xi_t)] &= g(x) \in \partial \Psi(x), \\ \mathrm{E}[\|G(x,\xi_t) - g(x)\|_*^2] \leq \sigma^2. \end{split}$$

Maximum Eigenvalue Minimization

• Distance generating function $\omega(x)$, i.e. a function such that

$$Q^{o} = \left\{ x \in Q : \exists y \in \mathcal{R}^{p}, x \in \operatorname{argmin}_{u \in Q} [y^{T}u + \omega(u)] \right\}$$

is convex set.he function $\omega(x)$ is strongly convex on Q^o with modulus α with respect to the norm $\|\cdot\|$, which means

$$(y-x)^T (\nabla \omega(y) - \nabla \omega(x)) \ge \alpha \|y-x\|^2, \quad x, y \in Q^o.$$

We then define a **Bregman distance** V(x, y) on $Q^{o} \times Q$ as follows:

$$V(x,y) \equiv \omega(y) - [\omega(x) + \nabla \omega(x)^T (y - x)].$$

• The prox-mapping associated to V is then defined as

$$P_x^{Q,\omega}(y) \equiv \operatorname{argmin}_{z \in Q} \{ y^T(z-x) + V(x,z) \}.$$

After N iterations, the iterate x_{N+1} satisfies

$$\mathbb{E}[\Psi(x_{N+1}^{ag}) - \Psi^*] \le \frac{8LD_{\omega,Q}^2}{N^2} + \frac{4D_{\omega,Q}\sqrt{4M^2 + \sigma^2}}{\sqrt{N}}$$

which is optimal. Additional assumptions guarantee convergence w.h.p.

Stochastic line search.

- The bounds on variance and smoothness are very conservative.
- Line search allows to take full advantage of the smoothness of $\lambda_{\max}(X)$ outside of pathological areas.

Monotonic line search. In Lan [2009], we test

$$\begin{split} \Psi(x_{t+1}^{ag},\xi_{t+1}) \leq & \Psi(x_t^{md},\xi_t) + \langle G(x_t^{md},\xi_t), x_{t+1}^{ag} - x_t^{md} \rangle \\ & + \frac{\alpha \beta_t}{4\gamma_t} \|x_{t+1}^{ag} - x_t^{md}\|^2 + 2\mathcal{M} \|x_{t+1}^{ag} - x_t^{md}\| \end{split}$$

while decreasing the step size monotonically across iterations.

Require: An initial point $x^{ag} = x_1 = x^w \in \mathcal{R}^n$, an iteration counter t = 1, the number of iterations N, line search parameters $\gamma^{min}, \gamma^{max}, \gamma^d, \gamma > 0$, with $\gamma^d < 1$. 1: Set $\gamma = \gamma^{max}$. 2: for t = 1 to *N* do Define $x_t^{md} = \frac{2}{t+1}x_t + \frac{t-1}{t+1}x_t^{ag}$ 3: Call the stochastic gradient oracle to get $G(x_t^{md}, \xi_t)$. 4: repeat 5: Set $\gamma_t = \frac{(t+1)\gamma}{2}$. 6: Compute the prox mapping $x_{t+1} = P_{x_t}(\gamma_t G(x_t^{md}, \xi_t)).$ 7: Set $x_{t+1}^{ag} = \frac{2}{t+1}x_{t+1} + \frac{t-1}{t+1}x_t^{ag}$. 8. until $\Psi(x_{t+1}^{ag},\xi_{t+1}) \leq \Psi(x_t^{md},\xi_t) + \langle G(x_t^{md},\xi_t), x_{t+1}^{ag} - x_t^{md} \rangle +$ 9: $\frac{\alpha\gamma^d}{4\gamma} \|x_{t+1}^{ag} - x_t^{md}\|^2 + 2\mathcal{M} \|x_{t+1}^{ag} - x_t^{md}\|$ or $\gamma \leq \gamma^{min}$. If exit condition fails, set $\gamma = \gamma \gamma^d$ and go back to step 5. Set $\gamma = \max{\{\gamma^{min}, \gamma\}}$. 10: 11: end for **Ensure:** A point $x_{N\perp 1}^{ag}$.

Details:

•
$$x^w = \operatorname{argmin}_{x \in Q} \omega(x)$$
,

• We use the following gradient oracle

$$G(X,z) = \frac{1}{q} \sum_{l=1}^{q} \phi_l \phi_l^T$$

where each ϕ_I is a leading eigenvector of the matrix $X + \frac{\epsilon}{n} z_{i_0} z_{i_0}^T$, with

$$i_0 = \operatorname{argmax}_{i=1,\dots,k} \lambda_{\max} \left(X + \frac{\epsilon}{n} z_i z_i^T \right),$$

where z_i are i.i.d. Gaussian vectors $z_i \sim \mathcal{N}(0, I_n)$ and k > 0 is a small constant (typically 3) and q is used to control the variance.

Details:

• We have

$$\lambda_{\max}(X) \leq \mathrm{E}\left[\max_{i=1,\dots,k} \lambda_{\max}\left(X + \frac{\epsilon}{n} z_i z_i^{\mathsf{T}}\right)\right] \leq \lambda_{\max}(X) + k\epsilon.$$

э

For maximum eigenvalue minimization

- We have $\sigma \leq 1$, but we can reduce this by averaging q gradients, to control the tradeoff between smooth and non-smooth terms.
- If we set $q = \max\{1, D_Q/(\epsilon\sqrt{n})\}$ and $N = 2D_Q\sqrt{n}/\epsilon$ we get the following complexity picture

Complexity	Num. of Iterations	Cost per Iteration
Nonsmooth alg.	$O(\frac{D_Q^2}{\epsilon^2})$	$O(p_Q + n^2 \log n)$
Smooth stochastic alg.	$O(\frac{D_Q\sqrt{n}}{\epsilon})$	$O(p_Q + \max 1, \frac{D_Q}{\epsilon \sqrt{n}} n^2 \log n)$
Smoothing alg.	$O(rac{D_Q\sqrt{\log n}}{\epsilon})$	$O(p_Q + n^3)$

Solving a problem:

$$\max_{X} \lambda_{max}(A+X), \qquad s.t. \ -\rho \leq X_{ij} \leq \rho.$$

where $X \in S_n$.

	Stoch.	Stoch.	ACSA	ACSA	Det.	Det.			
n	# iters.	# eigvs.	# iters.	# eigvs.	# iters.	# eigvs.	n	iters	eigvs
50	707	1266	51	2550	16	3700	100	1132	2018
200	1414	2532	50	11000	28	24800	500	2684	8506
500	2236	8016	60	30000	12	29000	1000	3744	19612
1000	3162	18990	65	65000	12	56000	2000	4709	22004
2000	4472	21444	66	132000	14	132000	2000	4798	22094

TABLE 2. Number of iterations and total number of eigenvectors computed by Algorithm 1 (Stoch.), the ACSA algorithm in Lan [2012] and the algorithm in [Nesterov, 2007b, §4] (Det.) (both with exponential smoohting) to reach identical objective values when solving the DSPCA relaxation in (29).

Solving a problem:

$$\max_{X} \lambda_{max}(A+X), \qquad s.t. \quad -\rho \leq X_{ij} \leq \rho.$$

where $X \in S_n$.

э

< □ > < ---->

Thank you!

Any questions?