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Introduction

@ Focus on maximum eigenvalue minimization

P: in Amax (A(X)),
min max(A(X))

where X € §5,,.

@ The set Q is convex and simple, i.e., projections on @ can be
computed with low conplexity.

e A(X) is a simple function. In most case, A(X) is a linear function of
X.

@ All semidefinite programs with constant trace can be expressed in this
form.
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Projected Subgradient

@ Solve
P: in Amax(A(X
min Ams (A(X))
by Projected Subgradient.

Input: A starting point Xy € S,.
1. fort=0to N—1do
2. update

Xer1 = Po(Xe — 70Amax(A(Xt)))-
3. end for
Output: A point X = % Zivzl Xt.

@ Here, v > 0 and Pg(+) is the Euclidean Projiection on Q.
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Projected Subgradient

@ The number of iterations required to reach a target precision € is

2 pg2
_ DM

e

N

where Dg is the diameter of Q and |[0Amax(A(X))|| < M on Q.

@ The cost per iteration is the sum of
e The cost Py of computing the Euclidean Projection on Q.

o The cost of computing O\ max(A(X)) which is viv;", where v is the
leader eigenvector of A(X).
n?log n/4?
Ve

where € is the precision and 1 — § is the probability of failure.

o( )
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Projected Subgradient

@ Solving minxc@ Amax(A(X)) by Projected Subgradient.
o Easy to implement.
o Very poor performance in practice. The 1/¢? dependence is somewhat
punishing.

o Example below on MAXCUT.
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Smooth method

@ Solving minxec@ Amax(A(X)) by smooth method.

@ We can reglarize the objective and solve [Nesterov, 2007]
. A(X)
min f(X) = plog Tr | exp(———=
i 70) = g T (o)) )
where some regularization parameter p > 0.

o If we set u = ¢/ logn,

Amax(A(X)) < F(X) < Amax(A(X)) + €

@ The gradient Vf(X) is Lipschitz continuous with constant

|A[[? log n
€

where [[A[| = supjjp <1 [|A(H)][2-
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Smooth method

@ The number of iterations required to obtain an ¢ by smooth

method grows as
Dg+/logn

€
@ The cost per iteration is the sum of

e The cost Py of computing the Euclidean Projection on Q.
o The cost of computing the mtrix exponentil exp(A(X)/u)

o(n?).
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Smooth method

@ This means that the two classical complexity options for solving
min A A(X
min A (A(X))

o Subgradient methods

Dé(n2 log n+ Pg)
2

€

@ Smooth methods
Dg+/log n(n® + Pg)

€
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Subgradient method VS Smooth method

@ This means that the two classical complexity options for solving

min Amax(A(X))

Subgradient methods

D% (n? log n+ Pq)
2

€

Smooth methods

Dg+/log n(n® + Pg)

€

@ Keep some of the performance of smooth methods, while lowering the
cost of smoothing.

One possible solution here: stochastic gradient approximations.
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Stochastic Smoothing Algorithm

@ Solve a smooth approximation problem, written as
in F(X) =E Amax(X + €ziz
XEQ K(X) [i:nlq,??(,k max(X + €227 )]
where z; &7 N(0, 1), € > 0.

o Property 1: Approximation results are preserved up to a constant
ck >0

Amax(X) < E[ _max /\maX(X + €2z )] < Amax(X) + cke

o Property 2: The function Fk(X) is smooth and has a Lipschitz
continuous gradient

[VF(X) = VF(Y)||[F < LI|IX = Y|F,

where L satisfies

k
L<E[— max 1/u,1]<ckf and ¢, =

€ i=1, k V2(k —2)
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Stochastic Smoothing Algorithm

o Property 3: The gradient variance of Fy(X) can be bounded. Let ¢;
be the leading eigvector of matrix X + £z,z], where

o =arg nfaxk)\max(X +eziz]).
i=1,--

Then, we have
VF«(X) = E(¢i¢7) and E([|¢5¢) — VF(X)[)) < 1.

o Property 4: The optimal algorithm for stochastic optimazation
derived in [Lan, 2012] will produce a matrix Xy such that

4 D2 a4D

* Q Q

E(F,(Xn) — Fr(XF) < 4+ —=
(Fi(Xn) (X7 < alN? v/ Ng

where « is the strong convexity of the prox function. g is the number
of independent samples matrixs ¢¢7 averaged in approximating the
gradient.
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Maximum Eigenvalue Minimization

Solve maximum eigenvalue minimization after stochastic smoothing

./:17"'7

i _ — A
min W(X) = E[V(X,2)] = E [ max_ Amax (X +z7 )}

in the variable X € S, and the z; are Gaussian.

We use an optimal stochastic minimization algorithm in [Lan, 2009] which
is a generalization of the algorithm in Nesterov [1983], with increasing step
size.
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Maximum Eigenvalue Minimization

Optimal Stochastic Composite Optimization.The algorithm in Lan
[2009] solves

min W(x) := f(x) + h
XEIS (X) (X) (X)
with the following assumptions

e f(x) has Lipschitz gradient with constant L and h(x) is Lipschitz with
constant M,

@ we have a stochastic oracle G(x,¢&;) for the gradient, which satisfies
E[G(x,&)] = g(x) € 0V(x),

E[|G(x, &) — g(x)[7] < 0.
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Maximum Eigenvalue Minimization

e Distance generating function w(x), i.e. a function such that
Q° = {x €Q: 3y €RP, x € argmin,oly v +w(u)]}

is convex set.he function w(x) is strongly convex on Q° with modulus
a with respect to the norm || - ||, which means

(v = %) (Vwly) = Vw(x) = ally = x|’ x,y € Q°.
We then define a Bregman distance V(x,y) on Q° x Q as follows:

V(x,y) = wly) = lw(x) + Vw(x)" (y = x)].
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Maximum Eigenvalue Minimization

@ The prox-mapping associated to V is then defined as

PXQ""(y) = argminzeQ{yT(z —x)+ V(x,2z)}.

After N iterations, the iterate xyy1 satisfies

8LDU2J7Q N 4D,, oVAMZ 1 o2
N2 VN

which is optimal. Additional assumptions guarantee convergence w.h.p.

E[W(xgh,) — V' <
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Maximum Eigenvalue Minimization

Stochastic line search.
@ The bounds on variance and smoothness are very conservative.

@ Line search allows to take full advantage of the smoothness of
Amax(X) outside of pathological areas.

Monotonic line search. In Lan [2009], we test

\U(Xt+1’£t+1) <\U( agt) < ( degt)axfil - Xtmd>
04/3t

md md
” t+1 —x{" ||2 + 2M||Xt+1 — x|

while decreasing the step size monotonically across iterations.

Authors: Alexandre d'Aspremont and Noured Stoch December 16, 2014 17 / 24



Require: An initial point x% = x; = x" € R", an iteration counter
t = 1, the number of iterations N, line search parameters

ymin ymax 7", ~v > 0, with v < 1.

Set v = ™,

fort =1to N do

Define x/" = t—1,26

= t+1Xf + X

Call the stochastic gradient oracle to get G(x/™, &;).

repeat
Set v =
Compute the prox mapping X;11 = Py, (7:G(x™, &)).
Set x¥; = giyxes1 + :ﬁ xge

until U(x%,,&41) < V(X" 4 &)+ (G(x md7§t)axtail x") +

(t+1) .

© o N s W

th+1 —x H2 + 2M||x78, — x| or v < ™", If exit condition

falls, set v = vy? and go back to step 5.
10: Set v = max {vm"”,'y}.
11: end for
Ensure: A point X/v+1
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Maximum Eigenvalue Minimization

Details:

o x" = argmin, qw(x),

@ We use the following gradient oracle
G(X, z) Z b1

where each ¢, is a leading eigenvector of the matrix X + %z,-oz,-z—, with
. € T
o = argmaxizl,__’k)\max (X + ;z,-z,- ) ,

where z; are i.i.d. Gaussian vectors z; ~ N (0,1,) and k > 0 is a small
constant (typically 3) and g is used to control the variance.
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Maximum Eigenvalue Minimization

Details:
o We have

i=1

Amax(X) < E [ maxkAmaX (X + ;z,-z,-T)] < Amax(X) + ke.

[ARS}
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Maximum Eigenvalue Minimization

For maximum eigenvalue minimization

@ We have o < 1, but we can reduce this by averaging g gradients, to
control the tradeoff between smooth and non-smooth terms.

o If we set g = max{1, Dg/(ey/n)} and N = 2Dg+/n/e we get the
following complexity picture

Complexity ‘ Num. of lterations ‘ Cost per lteration
D2
Nonsmooth alg. O(#) O(pq + n? Iog n)
Smooth stochastic alg. o( DQEﬁ) O(pg + max1, f n?log n)
Smoothing alg. O(Baleen Velog") O(pq + n?)
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Solving a problem:

m)?x)\maX(A + X), s.t. —p < Xj <p.
where X € §S,.

Stoch. | Stoch. | ACSA | ACSA ‘ Det. | Det.
#iters. | #eigvs. | #ilers. | #eigvs. | #ilers. | # eigvs.
50 707 1266 51 2550 16 3700 _mw
100 1000 | 1806 | 50 | sooo | 12 | sso 100 1132 /2018
200 1414 | 2532 55 11000 28 24800 500 2684 8506
500 | 2236 | 8016 | 60 | 30000 | 12 | 29000 1000 3744 19612
1000 | 3162 | 18990 65 65000 12 56000
2000 | 4472 | 21444 | 66 | 132000 14 |[132000 2000 4798 22094
TABLE 2. Number of iterations and total number of eigenvectors computed by Algorithm 1
(Stoch.), the ACSA algorithm in Lan [2012] and the algorithm in [Nesterov, 2007b, §4]
(Det.) (both with exponential smoohting) to reach identical objective values when solving
the DSPCA relaxation in (29).
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Solving a problem:

m)?x)\maX(A + X), s.it. —p < Xj <p.

where X € S,,.
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Thank you!

Any questions?
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