
Sparse Optimization

Lecture: Dual Methods, Part I

Instructor: Wotao Yin

July 2013

online discussions on piazza.com

Those who complete this lecture will know

• dual (sub)gradient iteration

• augmented `1 iteration (linearzed Bregman iteration)

• dual smoothing minimization

• augmented Lagrangian iteration

• Bregman iteration and addback iteration

1 / 39

Review

Last two lectures

• studied explicit and implicit (proximal) gradient updates

• derived the Lagrange dual problem

• overviewed the following dual methods

1. dual (sub)gradient method (a.k.a. Uzawa’s method)

2. dual proximal method (a.k.a., augmented Lagrangian method (ALM))

3. operator splitting methods applied to the dual of

min
x,z

{f(x) + g(z) : Ax + Bz = b}

The operator splitting methods studied includes

• forward-backward splitting

• Peaceman-Rachford splitting

• Douglas-Rachford splitting (giving rise to ADM or ADMM)

This lecture study these dual methods in more details and present their

applications to sparse optimization models.

2 / 39

About sparse optimization

During the lecture, keep in mind that sparse optimization models typically have

one or more nonsmooth yet simple part(s) and one or more smooth parts with

dense data.

Common preferences:

• to the nonsmooth and simple part, proximal operation is preferred over

subgradient descent

• if smoothing is applied, exact smoothing is preferred over inexact

smoothing

• to the smooth part with dense data, simple (gradient) operator is preferred

over more complicated operators

• when applying divide-and-conquer, fewer divisions and simpler

subproblems are preferred

In general, the dual methods appear to be more versatile than the primal-only

methods (e.g., (sub)gradient and prox-linear methods)

3 / 39

Dual (sub)gradient ascent

Primal problem

min
x

f(x), s.t. Ax = b.

Lagrangian relaxation:

L(x;y) = f(x) + yT (Ax− b)

Lagrangian dual problem

min
y

d(y) or max
y
−d(y)

If g is differentiable, you can apply

yk+1 ← yk − ck∇d(yk)

otherwise, apply

yk+1 ← yk − ckg, where g ∈ ∂d(yk).

4 / 39

Dual (sub)gradient ascent

Derive ∇d or ∂d

• by hand, or

• use L(x;yk): compute xk ← minx L(x;yk), then b−Ax̄ ∈ ∂d(yk).

Iteration:

xk+1 ← min
x
L(x;yk),

yk+1 ← yk + ck(Axk+1 − b).

Application: augmented `1 minimization, a.k.a. linearized Bregman.

5 / 39

Augmented `1 minimization

Augment `1 by `22:

(L1+LS) min ‖x‖1 +
1

2α
‖x‖22 s.t. Ax = b

• primal objective becomes strongly convex (but still non-differentiable)

• hence, its dual is unconstrained and differentiable

• a sufficiently large but finite α leads the exact `1 solution

• related to: linearized Bregman algorithm, the elastic net model

• a test with Gaussian A and sparse x with Gaussian entries:

min{‖x‖1 : Ax = b} min{‖x‖2
2 : Ax = b} min{‖x‖1 + 1

25 ‖x‖2
2 : Ax = b}

Exactly the same as `1 solution

6 / 39

Lagrangian dual of (L1+LS)

Theorem (Convex Analysis, Rockafellar [1970])

If a convex program has a strictly convex objective, it has a unique solution and

its Lagrangian dual program is differentiable.

Lagrangian: (separable in x for fixed y)

L(x;y) = ‖x‖1 +
1

2α
‖x‖22 − yT (Ax− b)

Lagrange dual problem:

min
y

d(y) = −b>y +
α

2
‖A>y − Proj[−1,1]n(A>y)‖22

note: shrink(x, γ) = max{|x| − γ, 0}sign(x) = x− Proj[−γ,γ](x).

Objective gradient:

∇d(y) = −b + αA shrink(A>y)

Dual gradient iteration:

xk+1 = α shrink(A>yk),

yk+1 = yk + ck(b−Axk+1).

7 / 39

How to choose α

• Exact smoothing: ∃ a finite α0 so that all α > α0 lead to `1 solution

• In practice, α = 10‖xsol‖∞ suffices1, with recovery guarantees under RIP,

NSP, and other conditions.

• Although α > α0 lead to the same and unique primal solution x∗, the dual

solution set Y∗ is a multi-set and it depends on α.

• Dynamically adjusting α may not be a good idea for the dual algorithms.

1Lai and Yin [2012]

8 / 39

Exact regularization

Theorem (Friedlander and Tseng [2007], Yin [2010])

There exists a finite α0 > 0 such that whenever α > α0, the solution to

(L1+LS) min ‖x‖1 +
1

2α
‖x‖22 s.t. Ax = b

is also a solution to

(L1) min ‖x‖1 s.t. Ax = b.

L1 L1+LS

9 / 39

L1+LS in compressive sensing

If in some scenario, L1 gives exact or stable recovery provided that

#measurements m ≥ C ∙ F (signal dim n, signal sparsity k).

Then, adding 1
2α
‖x‖22, the condition becomes

#measurements m ≥ (C + O(
1

2α
)) ∙ F (signal dim n, signal sparsity k).

Theorem (exact recovery, Lai and Yin [2012])

Under the assumptions

1. x0 is k-sparse, and A satisfies RIP with δ2k ≤ 0.4404, and

2. α ≥ 10‖x0‖∞,

(L1+LS) uniquely recovers x0.

The bound on δ2k is tighter than that for `1, and it depends on the bound on α.

10 / 39

Stable recovery

For approximately sparse signals and/or noisy measurements, consider:

min
x

{

‖x‖1 +
1

2α
‖x‖22 : ‖Ax− b‖2 ≤ σ

}

(1)

Theorem (stable recovery, Lai and Yin [2012])

Let x0 be an arbitrary vector, S = {largest k entries of x0}, and Z = SC . Let

b := Ax0 + n, where n is arbitrary noisy. If A satisfies RIP with δ2k ≤ 0.3814

and α ≥ 10‖x0‖∞, then the solution x∗ of (1) with σ = ‖n‖2 satisfies

‖x∗ − x0‖2 ≤C̄1 ∙ ‖n‖2 + C̄2 ∙ ‖x
0
Z‖1/

√
k,

where C̄1, and C̄2 are constants depending on δ2k.

11 / 39

Implementation

• Since dual is C1 and unconstrained, various first-order techniques apply

• accelerated gradient descent2

• Barzilai-Borwein step size3 / (non-monotone) line search4

• Quasi Newton method (with some cautions since it is not C2)

• Fits the dual-decomposition framework, easy to parallelize (later lecture)

• Results generalize to `1-like functions.

• Matlab codes and demos at

www.caam.rice.edu/~optimization/linearized_bregman/

2Nesterov [1983]
3Barzilai and Borwein [1988]
4Zhang and Hager [2004]

12 / 39

Review: convex conjugate

Recall convex conjugate (the Legendre transform):

f∗(y) = sup
x∈domf

{yT x− f(x)}

� f∗ is convex since it is point-wise maximum of linear functions

� if f is proper, closed, convex, then (f∗)∗ = f , i.e.,

f(x) = sup
y∈domf∗

{yT x− f∗(y)}.

Examples:

• f(x) = ιC(x), indicator function, and f∗(y) = supx∈C yT x, support

function

• f(x) = ι{−1≤x≤1} and f∗(y) = ‖y‖1

• f(x) = ι{‖x‖2≤1} and f∗(y) = ‖y‖2

• lots of smooth examples

13 / 39

Review: convex conjugate

One can introduce an alternative representation via convex conjugacy

f(x) = sup
y∈domf∗

{yT (Ax + b)− h∗(y)} = h(Ax + b).

Example:

• let C = {y = [y1;y2] : y1 + y2 = 1, y1,y2 ≥ 0} and

A =

[
1

−1

]

.

Since ‖x‖1 = supy{(y1 − y2)
T x− ιC(y)} = supy{y

T Ax− ιC(y)}, we

have

‖x‖1 = ι∗C(Ax)

where ι∗C([x1;x2]) = max{x1,x2} entry-wise.

14 / 39

Dual smoothing

Idea: strongly convexify h∗ =⇒ f becomes differentiable and has Lipschitz ∇f

Represent f using h∗:

f(x) = sup
y∈domh∗

{yT (Ax + b)− h∗(y)}

Strongly convexify h∗ by adding strongly convex function d:

ĥ∗(y) = h∗(y) + μd(y)

Obtain a differentiable approximation:

fμ(x) = sup
y∈domh∗

{yT (Ax + b)− ĥ∗(y)}

fμ(x) is differentiable since h∗(y) + μd(y) is strongly convex.

15 / 39

Example: augmented `1

• primal problem min{‖x‖1 : Ax = b}

• dual problem: max{bT y + ι[−1,1]n(AT y)}

• f(y) = ι[−1,1]n(y) is non-differentiable

• let f∗(x) = ‖x‖1 and represent f(y) = supx{y
T x− f∗(x)},

• add μ
2
‖x‖2 to f∗(x) and obtain

fμ(y) = sup
x
{yT x− (‖x‖1 +

μ

2
‖x‖22)} =

1

2μ
‖y − Proj[−1,1]n(y)‖22

• fμ(y) is differentiable; ∇fμ(y) = 1
μ

shrink(y).

• On the other hand, we can also smooth f∗(x) = ‖x‖1 and obtain

differentiable f∗
μ(x) by adding d(y) to f(y). (see the next slide ...)

16 / 39

Example: smoothed absolute value

� Recall

f∗(x) = |x| = sup
y
{yx− ι[−1,1](y)}

Let d(y) = y2/2

f∗
μ = sup

y
{yx− (ι[−1,1](y) + μy2/2)} =






x2/(2μ), |x| ≤ μ,

|x| − μ/2, |x| > μ,

which is the Huber function

� let d(y) = 1−
√

1− y2

f∗
μ = sup

y
{yx− (ι[−1,1](y)− μ

√
1− y2)} − μ =

√
x2 + μ2 − μ.

� Recall

|x| = sup
y
{(y1 − y2)x− ιC(y)}

for C = {y : y1 + y2 = 1, y1, y2 ≥ 0}. Let d(y) = y1 log y1 + y2 log y2 + log 2

f∗
μ(x) = sup

y
{(y1 − y2)x− (ιC(y) + μd(y))} = μ log

ex/μ + e−x/μ

2
.

17 / 39

Compare three smoothed functions

Courtesy of L. Vandenberghe

18 / 39

Example: smoothed maximum eigenvalue

Let C = {Y ∈ Sn : trY = 1,Y � 0}. Let X ∈ Sn

f(X) = λmax(X) = sup
Y
{Y •X− ιC(Y)}

Negative entropy of {λi(Y)}:

d(Y) =
n∑

i=1

λi(Y) log λi(Y) + log n

(Courtesy of L. Vandenberghe)

Smoothed function

fμ(X) = sup
Y
{Y •X− (ιC(Y) + μd(Y))} = μ log

(
n∑

i=1

eλi(X)/μ

)

− μ log n

19 / 39

Application: smoothed minimization5

Instead of solving

min f(x),

solve

min fμ(x) = sup
y∈domh∗

{yT (Ax + b)− [h∗(y) + μd(y)]}

by gradient descent, with acceleration, line search, etc......

Gradient is given by:

∇fμ(x) = AT ȳ, where ȳ = arg max
y∈domh∗

{yT (Ax + b)− [h∗(y) + μd(y)]}.

If d(y) is strongly convex with modulus ν > 0, then

• h∗(y) + μd(y) is strongly convex with modulus at least μν

• ∇fμ(x) is Lipschitz continuous with constant no more than ‖A‖2/μν.

Error control by bounding |fμ(x)− f(x)| or ‖x∗
μ − x∗‖.

5Nesterov [2005]

20 / 39

Augmented Lagrangian (a.k.a. method of multipliers)

Augment L(x;yk) = f(x)− (yk)T (Ax− b) by adding c
2
‖Ax− b‖22.

Augmented Lagrangian:

LA(x;yk) = f(x)− (yk)T (Ax− b) +
c

2
‖Ax− b‖22

Iteration:

xk+1 = arg min
x

LA(x;yk)

yk+1 = yk + c(b−Axk+1)

from k = 0 and y0 = 0. c > 0 can change.

The objective of the first step is convex in x, if f(∙) is convex, and linear in y.

Equivalent to the dual implicit (proximal) iteration.

21 / 39

Augmented Lagrangian (a.k.a. method of multipliers)

Recall KKT conditions (omitting the complementarity part):

(primal feasibility) Ax∗ = b

(dual feasibility) 0 ∈ ∂f(x∗)−AT y∗

Compare the 2nd condition with the optimality condition of ALM subproblem

0 ∈ ∂f(xk+1)−AT (yk + c(b−Axk+1)) = ∂f(xk+1)−AT yk+1

Conclusion: dual feasibility is maintained for (xk+1,yk+1) for all k.

Also, it “works toward” primal feasibility:

−(yk)T (Ax− b) +
c

2
‖A− b‖22 =

c

2
〈Ax− b,

k∑

i=1

(Axi − b) + (Ax− b)〉

It keeps adding penalty to the violation of Ax = b. In the limit, Ax∗ = b

holds (for polyhedral f(∙) in finitely many steps).

22 / 39

Augmented Lagrangian (a.k.a. Method of Multipliers)

Compared to dual (sub)gradient ascent

Pros:

• It converges for nonsmooth and extended-value f (thanks to the proximal

term)

Cons:

• If f is nice and dual ascent works, it may be slower than dual ascent since

the subproblem is more difficult

• The term 1
2
‖Ax− b‖22 in the x-subproblem couples different blocks of x

(unless A has a block-diagonal structure)

Application/alternative derivation: Bregman iterative regularization6

6Osher, Burger, Goldfarb, Xu, and Yin [2005], Yin, Osher, Goldfarb, and Darbon [2008]

23 / 39

Bregman Distance

Definition: let r(x) be a convex function

Dr(x,y;p) = r(x)− r(y)− 〈p,x− y〉, where p ∈ ∂r(y)

Not a distance but has a flavor of distance.

Examples: D`22
(u, uk; pk) versus D`1(u, uk; pk)

differentiable case non-differentiable case

24 / 39

Bregman iterative regularization

Iteration

xk+1 = arg min Dr(x,xk;pk) + g(x),

pk+1 = pk −∇g(xk+1),

starting k = 0 and (x0,p0) = (0,0). The update of p follows from

0 ∈ ∂r(xk+1)− pk +∇g(xk+1),

so in the next iteration, Dr(x,xk+1;pk+1) is well defined.

Bregman iteration is related, or equivalent, to

1. Proximal point iteration

2. Residual addback iteration

3. Augmented Lagrangian iteration

25 / 39

Bregman and Proximal Point

If r(x) = c
2
‖x‖22, Bregman method reduces to the classical proximal point

method

xk+1 = arg min
x

g(x) +
c

2
‖x− xk‖22.

Hence, Bregman iteration with function r is r-proximal algorithm for min g(x)

Traditional, r = `22 or other smooth functions is used as the proximal function.

Few uses non-differentiable convex functions like `1 to generate the proximal

term because `1 is not stable!

But using `1 proximal function has interesting properties.

26 / 39

Bregman convergence

If g(x) = p(Ax− b) is a strictly convex function that penalizes Ax = b,

which is feasible, then the iteration

xk+1 = arg min
x

Dr(x,xk;pk) + g(x)

converges to a solution of

min r(x), s.t. Ax = b.

Recall, the augmented Lagrangian algorithm also has a similar property.

Next we restrict our analysis to

g(x) =
c

2
‖Ax− b‖22.

27 / 39

Residual addback iteration

If g(x) = c
2
‖Ax− b‖22, we can derive the equivalent iteration

bk+1 = b + (bk −Axk),

xk+1 = arg min r(x) +
c

2
‖Ax− bk+1‖22.

Interpretation:

• every iteration, the residual b−Axk is added back to bk;

• every subproblem is identical but with different data.

28 / 39

Bregman = Residual addback

Equivalence the two forms is given by pk = −cAT (Axk − bk).

Proof by induction. Assume both iterations have the same xk so far

(c = δ below)

29 / 39

Bregman = Residual addback = Augmented Lagrangian

Assume f(x) = r(x) and g(x) = c
2
‖Ax− b‖22.

Addback iteration:

bk+1 = bk + (b−Axk) = ∙ ∙ ∙ = b0 +

k∑

i=0

(b−Axi).

Augmented Lagrangian iteration:

yk+1 = yk + c(b−Axk+1) = ∙ ∙ ∙ = y0 + c

k+1∑

i=0

(b−Axi).

Bregman iteration:

pk+1 = pk + cAT (b−Axk+1) = ∙ ∙ ∙ = p0 + c

k+1∑

i=0

AT (b−Axi).

Their equivalence is established by

yk = cbk+1 and pk = AT yk, k = 0, 1, . . .

and initial values x0 = 0, b0 = 0, p0 = 0, y0 = 0.

30 / 39

Residual addback in a regularization perspective

Adding the residual b−Axk back to bk is somewhat counter intuitive. In the

regularized least-squares problem

min
x

r(x) +
c

2
‖Ax− b‖22

the residual b−Axk contains both unwanted error and wanted features.

The question is how to extract the features out of b−Axk.

An intuitive approach is to solve

y∗ = arg min
y

r′(y) +
c′

2
‖Ay − (b−Axk)‖2

and then let

xk+1 ← xk + y∗.

However, the addback iteration keeps the same r and adds residuals back to

bk. Surprisingly, this gives good denoising results.

31 / 39

Good denoising effect

Compare to addback (Bregman) to BPDN: min{‖x‖1 : ‖Ax− b‖2 ≤ σ}

where b = Axo + n.

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

true signal
BPDN sol'n

(a) BPDN with σ = ‖n‖2

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

true signal
Bregman itr 1

(b) Bregman Iteration 1

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

true signal
Bregman itr 3

(c) Bregman Iteration 3

0 50 100 150 200 250
-1.5

-1

-0.5

0

0.5

1

1.5

true signal
Bregman itr 5

(d) Bregman Iteration 5

32 / 39

Good denoising effect

From this example,

• given noisy observations and starting being over regularized, some

intermediate solutions have better fitting and less noise than

x∗
σ = arg min{‖x‖1 : ‖Ax− b‖2 ≤ σ},

in fact, no matter how σ is chosen.

• the addback intermediate solutions are not on the path of

x∗
σ = arg min{‖x‖1 : ‖Ax− b‖2 ≤ σ} by varying σ > 0.

• Recall if the add iteration is continued, it will converge to the solution of

min
x
‖x‖1, s.t. Ax = b.

33 / 39

Example of total variation denoising

Problem: u a 2D image, b noisy image. Noise is Gaussian.

Apply the addback iteration with A = I and

r(u) = TV(u) = ‖∇u‖1.

The subproblem has the form

min
u

TV(u) +
δ

2
‖u− fk‖22,

where initial f0 is a noisy observation of uoriginal.

34 / 39

35 / 39

When to stop the addback iteration?

The 2nd curve shows that optimal stopping iteration is 5.

The 1st curve shows that residual just gets across noise level.

Solution: stop when ‖Axk − b‖2 ≈ noise level. Some theoretical results exist7

7Osher, Burger, Goldfarb, Xu, and Yin [2005]

36 / 39

Numerical stability

The addback/augmented-Lagrangian iterations are more stable the Bregman

iteration, though they are same same on paper.

Two reasons:

• pk in the Bregman iteration may gradually lose the property of ∈ R(AT)

due to accumulated round-off errors; the other two iterations explicitly

multiply AT and are thus more stable

• The addback iteration enjoy errors forgetting and error cancellation when

r is polyhedral.

37 / 39

Numerical stability for `1 minimization

`1-based errors forgetting simulation:

• use five different subproblem solvers for `1 Bregman iterations

• for each subproblem, stop solver at accuracy 10−6

• track and plot ‖xk−x∗‖2
‖x∗‖2

vs iteration k

Errors made in subproblems get cancelled iteratively. See Yin and Osher [2012].

38 / 39

Summary

• Dual gradient method, after smoothing

• Exact smoothing for `1

• Smooth a function by adding a strongly convex function to its convex

conjugate

• Augmented Lagrangian, Bregman, and residual addback iterations; their

equivalence

• Better denoising result of residual addback iteration

• Numerical stability, error forgetting and cancellation of residual addback

iteration; numerical instability of Bregman iteration

39 / 39

(Incomplete) References:

R Tyrrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

M.-J. Lai and W. Yin. Augmented `1 and nuclear-norm models with a globally linearly

convergent algorithm. Submitted to SIAM Journal on Imaging Sciences, 2012.

M.P. Friedlander and P. Tseng. Exact regularization of convex programs. SIAM

Journal on Optimization, 18(4):1326–1350, 2007.

W. Yin. Analysis and generalizations of the linearized Bregman method. SIAM

Journal on Imaging Sciences, 3(4):856–877, 2010.

Yurii Nesterov. A method of solving a convex programming problem with convergence

rate O(1/k2). Soviet Mathematics Doklady, 27:372–376, 1983.

J. Barzilai and J.M. Borwein. Two-point step size gradient methods. IMA Journal of

Numerical Analysis, 8(1):141–148, 1988.

Hongchao Zhang and William W Hager. A nonmonotone line search technique and its

application to unconstrained optimization. SIAM Journal on Optimization, 14(4):

1043–1056, 2004.

Yu Nesterov. Smooth minimization of non-smooth functions. Mathematical

Programming, 103(1):127–152, 2005.

S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin. An iterative regularization

method for total variation-based image restoration. SIAM Journal on Multiscale

Modeling and Simulation, 4(2):460–489, 2005.

40 / 39

W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms for

l1-minimization with applications to compressed sensing. SIAM Journal on Imaging

Sciences, 1(1):143–168, 2008.

W. Yin and S. Osher. Error forgetting of Bregman iteration. Journal of Scientific

Computing, 54(2):684–698, 2012.

41 / 39

	References

