Sparse Optimization Lecture: Dual Methods, Part II

Instructor: Wotao Yin

July 2013

online discussions on piazza.com

Those who complete this lecture will know

- the alternating direction method of multipliers (ADMM)
- the variants of ADMM
- basic convergence results of ADMM
- its applications

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Separable objective and coupling constraints

Consider a convex program with a separable objective and coupling constraints

$$\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + g(\mathbf{z}) \quad \text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{b}.$$

Examples:

•
$$\min f(\mathbf{x}) + g(\mathbf{x}) \implies \min_{\mathbf{x}, \mathbf{z}} \{ f(\mathbf{x}) + g(\mathbf{z}) : \mathbf{x} - \mathbf{z} = 0 \}$$

- $\min f(\mathbf{x}) + g(\mathbf{A}\mathbf{x}) \implies \min_{\mathbf{x},\mathbf{z}} \{ f(\mathbf{x}) + g(\mathbf{z}) : \mathbf{A}\mathbf{x} \mathbf{z} = 0 \}$
- $\min\{f(\mathbf{x}) : \mathbf{A}\mathbf{x} \in \mathcal{C}\} \implies \min_{\mathbf{x}, \mathbf{z}}\{f(\mathbf{x}) + \iota_{\mathcal{C}}(\mathbf{z}) : \mathbf{A}\mathbf{x} \mathbf{z} = 0\}$
- $\min \sum_{i=1}^{N} f_i(\mathbf{x}) \implies \min_{\{\mathbf{x}_i\}, \mathbf{z}} \{\sum_{i=1}^{N} f_i(\mathbf{x}_i) : \mathbf{x}_i \mathbf{z} = 0, \forall i\}$ each \mathbf{x}_i is a copy of \mathbf{x} for f_i , not a subvector of \mathbf{x} .

Alternating direction method of multipliers (ADMM)

Consider

 $\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + g(\mathbf{z})$ s.t. $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{b}.$

f and g are ${\bf convex},$ maybe ${\bf nonsmooth},$ can take the ${\bf extended}$ value

Standard ADMM iteration

1.
$$\mathbf{x}^{k+1} = \arg\min_{\mathbf{x}} f(\mathbf{x}) + g(\mathbf{z}^k) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^k - \mathbf{b} - \mathbf{y}^k\|_2^2$$
,
2. $\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} f(\mathbf{x}^{k+1}) + g(\mathbf{z}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z} - \mathbf{b} - \mathbf{y}^k\|_2^2$,
3. $\mathbf{y}^{k+1} = \mathbf{y}^k - (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} - \mathbf{b})$.

Dates back to Douglas, Peaceman, and Rachford (50s–70s, operator splitting for PDEs); Glowinsky et al.'80s, Gabay'83; Spingarn'85; Eckstein and Bertsekes'92, He et al.'02 in variational inequality.

Alternating direction method of multipliers (ADMM)

Comments:

- \mathbf{y} is the scaled dual variable, $\mathbf{y} = \beta \cdot \text{Lagrange multipliers}$
- y-update can take a large step size $\gamma < \frac{1}{2}(\sqrt{5}+1)$

$$\mathbf{y}^{k+1} = \mathbf{y}^k - \gamma (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} - \mathbf{b}).$$

- Gauss-Seidel style update is applied to ${\bf x}$ and ${\bf z}$ of either order
- If \mathbf{x} and \mathbf{z} are minimized jointly, it reduces to augmented Lagrangian itr:

$$(\mathbf{x}^{k+1}, \mathbf{z}^{k+1}) = \operatorname*{arg\,min}_{\mathbf{x}, \mathbf{z}} f(\mathbf{x}) + g(\mathbf{z}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} - \mathbf{b} - \mathbf{y}^k\|_2^2$$
$$\mathbf{y}^{k+1} = \mathbf{y}^k - (\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} - \mathbf{b}).$$

- it extends to multiple blocks (a few questions remain open)
- it extends to Jacobian (parallel) updates with damping the update of ${f y}$

Why is ADMM liked

- Split awkward intersections and objectives to easy subproblems
 - $\mathbf{X} \succeq \mathbf{0}, \mathbf{X} \ge 0 \longrightarrow$ separate projections
 - $\|\mathbf{L}\|_* + \beta \|\mathbf{M} \mathbf{L}\|_1 \longrightarrow$ separate subproblems with $\|\cdot\|_*$ and $\|\cdot\|_1$
 - $\|\nabla \mathbf{x}\|_1 \longrightarrow \text{decouple } \|\cdot\|_1 \text{ and } \nabla$ to separable subproblems
 - $\sum_i \|\mathbf{x}_{[\mathcal{G}_i]}\|_2 \longrightarrow$ decouple to subproblems of individual groups
 - $\sum_{i=1}^{K} f_i(\mathbf{x}) \longrightarrow K$ parallel subproblems (coordinated by gather-scattering or gossiping between neighbors)
- # iterations is comparable to those of other first-order methods, so the total time can be much smaller (not always though)
- Quite easy to implement, be (nearly) state-of-the-art for a few hours' work

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

KKT conditions

Recall KKT conditions (omitting the complementarity part):

(primal feasibility) $\mathbf{A}\mathbf{x}^* + \mathbf{B}\mathbf{z}^* = \mathbf{b}$ (dual feasibility I) $0 \in \partial f(\mathbf{x}^*) + \mathbf{A}^T \mathbf{y}^*$ (dual feasibility II) $0 \in \partial g(\mathbf{z}^*) + \mathbf{B}^T \mathbf{y}^*$

Recall $\mathbf{z}^{k+1} = \arg\min_{\mathbf{z}} g(\mathbf{z}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z} - \mathbf{b} - \mathbf{y}^{k}\|_{2}^{2}$

 $\implies 0 \in \partial g(\mathbf{z}^{k+1}) + \mathbf{B}^T(\mathbf{A}\mathbf{x}^{k+1} + \mathbf{B}\mathbf{z}^{k+1} - \mathbf{b} - \mathbf{y}^k) = \partial g(\mathbf{z}^{k+1}) + \mathbf{B}^T\mathbf{y}^{k+1}$

Therefore, dual feasibility II is maintained.

Dual feasibility I is not maintained since

$$0 \in \partial f(\mathbf{x}^{k+1}) + \mathbf{A}^T \left(\mathbf{y}^{k+1} + \mathbf{B}(\mathbf{z}^k - \mathbf{z}^{k+1}) \right)$$

But, primal feasibility and dual feasibility I hold asymptotically as $k \to \infty$.

Convergence of ADMM

ADMM is neither purely-primal nor purely-dual. There is no known objective closely associated with the iterations.

Recall via the transform

$$\mathbf{y}^k = \mathbf{prox}_{\beta d_1} \mathbf{w}^k,$$

ADMM is a fixed-point iteration

$$\mathbf{w}^{k+1} = \left(\frac{1}{2}I + \frac{1}{2}\mathbf{refl}_{\beta d_1}\mathbf{refl}_{\beta d_2}\right)\mathbf{w}^k,$$

where the operator is firmly nonexpansive.

Convergence

- Assumptions: f and g convex, closed, proper, and \exists KKT point
- $\mathbf{A}\mathbf{x}^k + \mathbf{B}\mathbf{z}^k \to \mathbf{b}$, $f(\mathbf{x}^k) + g(\mathbf{z}^k) \to p^*$, \mathbf{y}^k converge
- In addition, if $(\mathbf{x}^k,\mathbf{y}^k)$ are bounded, they also converge

Rate of convergence

- ► It is on-going work
- ► Some existing results:
 - simplified cases, exact updates, f smooth, and ∇f Lipschitz \longrightarrow objective $\sim O(1/k), \, O(1/k^2)$
 - at least one update is exact \longrightarrow ergodic: objective error $+(\tilde{\mathbf{u}}^k - \mathbf{u}^*)^T F(\mathbf{u}^*) \sim O(1/k)$ non-ergodic: $\|\mathbf{u}^k - \mathbf{u}^{k+1}\| \sim O(1/k)$
 - f strongly convex and ∇f Lipschitz + some full rank conditions \longrightarrow both solution and objective $\sim O(1/c^k)$, c > 1
 - applied to LP and QP \longrightarrow (asymptotic) strongly convex

Outline

1. Standard ADMM

2. Summary of convergence results

3. Variants of ADMM

- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

An ADMM subproblem is easy, if it has a closed-form solution;
If a subproblem is difficult, it may be not worth solving it exactly. This motivates variants of ADMM.

A few approaches of inexact ADMM subproblems:

1. Iteration limiter: limited iterations of CG or L-BFGS applied to

$$\min_{\mathbf{x}} f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{v}\|_2^2$$

where $\mathbf{v} = \mathbf{b} - \mathbf{B}\mathbf{z}^k + \mathbf{y}^k$.

- ▶ Applicable to quadratic f, perhaps other C^2 functions as well
- Does not apply to nonsmooth subproblems
- ▶ Practically efficient, but lacking theoretical guarantees for now

2. Cached factorization: For quadratic subproblem $f(\mathbf{x}) = \frac{1}{2} \|\mathbf{C}\mathbf{x} - \mathbf{d}\|_2^2$, x-subproblem solves

$$(\mathbf{C}^T\mathbf{C} + \beta \mathbf{A}^T\mathbf{A})\mathbf{x}^{k+1} = (\cdots)$$

- ► cache the Cholesky or LDL^T decomposition to $(\mathbf{C}^T\mathbf{C} + \beta\mathbf{A}^T\mathbf{A})$
- ▶ later, in each iteration, solve simple triangle systems
- \blacktriangleright changing β generally requires re-factorization

► if $(\mathbf{C}^T \mathbf{C} + \beta \mathbf{A}^T \mathbf{A})$ has a (simple+low-rank) structure, apply the Woodbury matrix inversion formula

3. Single gradient-descent step. Simplify x-update from

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^k - \mathbf{b} - \mathbf{y}^k\|_2^2$$

to

$$\mathbf{x}^{k+1} = \mathbf{x}^k - c^k \left(\nabla f(\mathbf{x}^k) + \beta \mathbf{A}^T (\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^k - \mathbf{b} - \mathbf{y}^k) \right)$$

- ▶ applicable to C^1 subproblems only
- ► convergence requires reduced update to y

 \blacktriangleright gradient update c^k and y-update step sizes γ depend on spectral properties of ${\bf A}$

4. Single prox-linear step. Simplify x-update from

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z}^k - \mathbf{b} - \mathbf{y}^k\|_2^2$$

to

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{x} \rangle + \frac{1}{2t} \|\mathbf{x} - \mathbf{x}^k\|_2^2,$$

where

$$\mathbf{g} = \nabla_{\mathbf{x}} \left(\frac{\beta}{2} \| \mathbf{A} \mathbf{x}^k + \mathbf{B} \mathbf{z}^k - \mathbf{b} - \mathbf{y}^k \|_2^2 \right)$$

- similar to the prox-linear iteration
- applicable to nonsmooth f
- convergence requires reduced y-update
- + $t,\,\beta,$ step size γ of y-update, and spectral properties of ${\bf A}$ are related
- also applicable to the other subproblem simultaneously

5. Approximating $A^T A$ by nice matrix D. As an example, replace

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^k - \mathbf{b} - \mathbf{z}^k\|_2^2$$

by

$$\mathbf{x}^{k+1} = \arg\min f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^k - \mathbf{b} - \mathbf{z}^k\|_2^2 + \frac{\beta}{2} (\mathbf{x} - \mathbf{x}^k)^T (\mathbf{D} - \mathbf{A}^T \mathbf{A}) (\mathbf{x} - \mathbf{x}^k)$$

- also known as "optimization transfer"
- reduces to the prox-linear step if $\mathbf{D} = \frac{\beta}{t}I$
- useful if

$$\min f(\mathbf{x}) + \frac{\beta}{2} \mathbf{x}^T \mathbf{D} \mathbf{x}$$

is computationally easier than

$$\min f(\mathbf{x}) + \frac{\beta}{2} \mathbf{x}^T (\mathbf{A}^T \mathbf{A}) \mathbf{x}.$$

 $\bullet\,$ applications: ${\bf A}$ is an off-the-grid Fourier transform

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM

4. Examples

- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Example: total variation

Let ${\bf x}$ represent a 2D image.

$$\min \mathrm{TV}(\mathbf{x}) + \frac{\mu}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

Applications

- Denoising: $\mathbf{A} = I$
- Deblurring and deconvolution: ${\bf A}$ is circulant matrix or convolution
- MRI CS: A = PF downsampled Fourier transform; P is a row selector, F is Fourier transform
- Circulant CS: A = PC downsampled convolution; P is a row selector, C is a circulant matrix or convolution operator

Challenge: TV is the composite of ℓ_1 and ∇x , defined as

$$\mathrm{TV}(\mathbf{x}) := \|\nabla \mathbf{x}\|_1 = \sum_{\mathsf{pixels } (i,j)} \left\| \begin{bmatrix} x_{i+1,j} - x_{i,j} \\ x_{i,j+1} - x_{i,j} \end{bmatrix} \right\|_2$$

Opportunity: assuming the periodic boundary condition, $\nabla\cdot$ is a convolution operator.

Example: total variation

Decouple ℓ_1 from ∇x :

$$\min \frac{\mu}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \|\mathbf{z}\|_1, \quad \text{s.t. } \nabla \mathbf{x} - \mathbf{z} = \mathbf{0}$$

where $\|\mathbf{z}\|_1 = \sum_i \|\mathbf{z}_i\|_2.$

ADMM

• \mathbf{x} -update is quadratic in the form of

$$\mathbf{x}^{k+1} = \operatorname*{arg\,min}_{\mathbf{x}} \mathbf{x}^T (\mu \mathbf{A}^T \mathbf{A} + \beta \nabla^T \nabla) \mathbf{x} + \mathsf{linear terms}$$

If ${\bf A}$ is identity, convolution, or partial Fourier, then

$$F(\mu \mathbf{A}^T \mathbf{A} + \beta \nabla^T \nabla) F^{-1}$$

is a diagonal matrix. So, x-update becomes closed-form.

• z-subproblem is soft-thresholding

This splitting approach is often faster than the splitting

$$\min \mathrm{TV}(\mathbf{x}) + \frac{\mu}{2} \|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2^2, \quad \text{s.t. } \mathbf{x} - \mathbf{z} = 0$$

because the x-update is not in closed form.

Example: transform ℓ_1 minimization

Model

$$\min \|\mathbf{L}\mathbf{x}\|_1 + \frac{\mu}{2}\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

where examples of ${\bf L}$ include

- anisotropic finite difference operators
- orthogonal transforms: DCT, orthogonal wavelets
- frames: curvelets, shearlets

New models

$$\min \frac{\mu}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 + \|\mathbf{z}\|_1, \quad \text{s.t. } \mathbf{L}\mathbf{x} - \mathbf{z} = \mathbf{0},$$

or

$$\min \|\mathbf{L}\mathbf{x}\|_1 + \frac{\mu}{2}\|\mathbf{A}\mathbf{z} - \mathbf{b}\|_2^2, \quad \text{s.t. } \mathbf{x} - \mathbf{z} = \mathbf{0}.$$

Example: ℓ_1 fitting

Model

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_1$$

New model

$$\label{eq:alpha} \min_{\mathbf{x},\mathbf{z}} \|\mathbf{z}\|_1, \quad \text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b}.$$

ADMM

- x-update is quadratic
- z-update is soft-thresholding

Example: robust (Huber-function) fitting

Model

$$\min_{\mathbf{x}} H(\mathbf{A}\mathbf{x} - \mathbf{b}) = \sum_{i=1}^{m} h(\mathbf{a}_{i}^{T}\mathbf{x} - b_{i})$$

where

$$h(y) = \begin{cases} \frac{y^2}{2\mu}, & 0 \le |y| \le \mu, \\ |y| - \frac{\mu}{2}, & |y| > \mu. \end{cases}$$

Original model is differentiable, amenable to gradient descent.

Split model

$$\label{eq:constraint} \min_{\mathbf{x},\mathbf{z}} H(\mathbf{z}), \quad \text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b}.$$

ADMM

- x-update is quadratic, involving AA^T
- z-update is component-wise separable

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Block separable ADMM

Suppose $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N)$ and f is separable, i.e.,

$$f(\mathbf{x}) = f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) + \dots + f_N(\mathbf{x}_N).$$

Model

$$\min_{\mathbf{x},\mathbf{z}} f(\mathbf{x}) + g(\mathbf{z})$$

s.t. $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{z} = \mathbf{b}.$

where

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & & \mathbf{0} \\ & \mathbf{A}_2 & & \\ & & \ddots & \\ \mathbf{0} & & & \mathbf{A}_N \end{bmatrix}$$

Block separable ADMM

The x-update

$$\mathbf{x}^{k+1} \leftarrow \min f(\mathbf{x}) + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{y}^k - \mathbf{b} - \mathbf{z}^k\|_2^2$$

is separable to \boldsymbol{N} independent subproblems

$$\mathbf{x}_{1}^{k+1} \leftarrow \min f_{1}(\mathbf{x}_{1}) + \frac{\beta}{2} \|\mathbf{A}_{1}\mathbf{x}_{1} + (\mathbf{B}\mathbf{y}^{k} - \mathbf{b} - \mathbf{z}^{k})_{1}\|_{2}^{2},$$

$$\vdots$$
$$\mathbf{x}_{N}^{k+1} \leftarrow \min f_{N}(\mathbf{x}_{N}) + \frac{\beta}{2} \|\mathbf{A}_{N}\mathbf{x}_{N} + (\mathbf{B}\mathbf{y}^{k} - \mathbf{b} - \mathbf{z}^{k})_{N}\|_{2}^{2}.$$

No coordination is required.

Example: consensus optimization

Model

$$\min\sum_{i=1}^{N} f_i(\mathbf{x})$$

the objective is partially separable.

Introduce N copies $\mathbf{x}_1, \ldots, \mathbf{x}_N$ of \mathbf{x} . They have the same dimensions. New model:

$$\min_{\{\mathbf{x}_i\},\mathbf{z}} \sum_{i=1}^N f_i(\mathbf{x}_i), \quad \text{s.t. } \mathbf{x}_i - \mathbf{z} = \mathbf{0}, \ \forall i.$$

A more general objective with function g is $\sum_{i=1}^{N} f_i(\mathbf{x}) + g(\mathbf{z})$.

New model:

$$\min_{\{\mathbf{x}_i\},\mathbf{y}}\sum_{i=1}^N f_i(\mathbf{x}_i) + g(\mathbf{z}), \quad \text{s.t.} \begin{bmatrix} I & & \\ & \ddots & \\ & & I \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} - \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \mathbf{z} = \mathbf{0}.$$

Example: consensus optimization

Lagrangian

$$L(\{\mathbf{x}_i\}, \mathbf{z}; \{\mathbf{y}_i\}) = \sum_i \left(f_i(\mathbf{x}_i) + \frac{\beta}{2} \|\mathbf{x}_i - \mathbf{z} - \mathbf{y}_i\|_2^2 \right)$$

where \mathbf{y}_i is the Lagrange multipliers to $\mathbf{x}_i - \mathbf{z} = 0$.

ADMM

$$\begin{aligned} \mathbf{x}_{i}^{k+1} &= \operatorname*{arg\,min}_{\mathbf{x}_{i}} f_{i}(\mathbf{x}_{i}) + \frac{\beta}{2} \|\mathbf{x}_{i} - \mathbf{z}^{k} - \mathbf{y}_{i}^{k}\|_{2}, \quad i = 1, \dots, N, \\ \mathbf{z}^{k+1} &= \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{i}^{k+1} - \beta^{-1} \mathbf{y}_{i}^{k}), \\ \mathbf{y}_{i}^{k+1} &= \mathbf{y}_{i}^{k} - (\mathbf{x}_{i}^{k+1} - \mathbf{z}^{k+1}), \quad i = 1, \dots, N. \end{aligned}$$

The exchange problem

Model $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^n$,

$$\min \sum_{i=1}^{N} f_i(\mathbf{x}_i), \quad \text{s.t. } \sum_{i=1}^{N} \mathbf{x}_i = \mathbf{0}.$$

- it is the dual of the consensus problem
- exchanging n goods among N parties to minimize a total cost
- our goal: to decouple x_i -updates

An equivalent model

$$\min \sum_{i=1}^{N} f_i(\mathbf{x}_i), \quad \text{s.t. } \mathbf{x}_i - \mathbf{x}'_i = \mathbf{0}, \ \forall i, \quad \sum_{i=1}^{N} \mathbf{x}'_i = \mathbf{0}.$$

The exchange problem

ADMM after consolidating the \mathbf{x}'_i update:

$$\mathbf{x}_{i}^{k+1} = \operatorname*{arg\,min}_{\mathbf{x}_{i}} f_{i}(\mathbf{x}_{i}) + \frac{\beta}{2} \|\mathbf{x}_{i} - (\mathbf{x}_{i}^{k} - \operatorname{mean}\{\mathbf{x}_{i}^{k}\} - \mathbf{u}^{k})\|_{2}^{2},$$
$$\mathbf{u}^{k+1} = \mathbf{u}^{k} + \operatorname{mean}\{\mathbf{x}_{i}^{k+1}\}.$$

Applications: distributed dynamic energy management

Distributed ADMM I

$$\min_{\{\mathbf{x}_i\},\mathbf{y}}\sum_{i=1}^N f_i(\mathbf{x}_i) + g(\mathbf{z}), \quad \text{s.t.} \begin{bmatrix} I & & \\ & \ddots & \\ & & I \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{bmatrix} - \begin{bmatrix} I \\ \vdots \\ I \end{bmatrix} \mathbf{z} = \mathbf{0}.$$

Consider N computing nodes with MPI (message passing interface).

• \mathbf{x}_i are local variables; \mathbf{x}_i is stored and updated on node i only

- \mathbf{z} is the global variable; computed and communicated by MPI
- \mathbf{y}_i are dual variables, stored and updated on node i only

At each iteration, given \mathbf{y}^k and \mathbf{z}^k_i

- each node i computes \mathbf{x}_i^{k+1}
- each node i computes $\mathbf{p}_i := (\mathbf{x}_i^{k+1} \beta^{-1} \mathbf{y}_i^k)$
- MPI gathers \mathbf{p}_i and scatters its mean, \mathbf{z}^{k+1} , to all nodes
- each node *i* computes \mathbf{y}_i^{k+1}

Example: distributed LASSO

Model

$$\min \|\mathbf{x}\|_1 + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

Decomposition

$$\mathbf{A}\mathbf{x} = \begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \\ \vdots \\ \mathbf{A}_N \end{bmatrix} \mathbf{x}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_N \end{bmatrix}.$$

$$\frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 = \sum_{i=1}^N \frac{\beta}{2} \|\mathbf{A}_i\mathbf{x} - \mathbf{b}_i\|_2^2 =: \sum_{i=1}^N f_i(\mathbf{x}).$$

LASSO has the form

$$\min\sum_{i=1}^{N} f_i(\mathbf{x}) + g(\mathbf{x})$$

and thus can be solved by distributed ADMM.

Example: dual of LASSO

LASSO

$$\min \|\mathbf{x}\|_1 + \frac{\beta}{2} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2.$$

Lagrange dual

$$\min_{\mathbf{y}} \{ \mathbf{b}^T \mathbf{y} + \frac{\mu}{2} \| \mathbf{y} \|_2^2 : \| \mathbf{A}^T \mathbf{y} \|_{\infty} \le 1 \}$$

equivalently,

$$\min_{\mathbf{y},\mathbf{z}} \{ -\mathbf{b}^T \mathbf{y} + \frac{\mu}{2} \|\mathbf{y}\|_2^2 + \iota_{\{\|\mathbf{z}\|_{\infty} \le 1\}} : \mathbf{A}^T \mathbf{y} + \mathbf{z} = \mathbf{0} \}$$

Standard ADMM:

- primal ${\bf x}$ is the multipliers to ${\bf A}^T {\bf y} + {\bf z} = {\bf 0}$
- z-update is projection to $\ell_\infty\text{-ball};$ easy and separable
- y-update is quadratic

Example: dual of LASSO

• Dual augmented Lagrangian (the scaled form):

$$L(\mathbf{y}, \mathbf{z}; \mathbf{x}) = \mathbf{b}^T \mathbf{y} + \frac{\mu}{2} \|\mathbf{y}\|_2^2 + \iota_{\{\|\mathbf{z}\|_{\infty} \le 1\}} + \frac{\beta}{2} \|\mathbf{A}^T \mathbf{y} + \mathbf{z} - \mathbf{x}\|_2^2$$

• Dual ADMM iterations:

$$\begin{aligned} \mathbf{z}^{k+1} &= \operatorname{Proj}_{\|\cdot\|_{\infty} \leq 1} \left(\mathbf{x}^{k} - \mathbf{A}^{T} \mathbf{y}^{k} \right), \\ \mathbf{y}^{k+1} &= \left(\mu I + \beta \mathbf{A} \mathbf{A}^{T} \right)^{-1} \left(\beta \mathbf{A} (\mathbf{x}^{k} - \mathbf{z}^{k+1}) - \mathbf{b} \right), \\ \mathbf{x}^{k+1} &= \mathbf{x}^{k} - \gamma (\mathbf{A}^{T} \mathbf{y}^{k+1} + \mathbf{z}^{k+1}). \end{aligned}$$

and upon termination at step K, return primal solution

$$\mathbf{x}^* = \beta \mathbf{x}^K$$
 (de-scaling).

- Computation bottlenecks:
 - $(\mu I + \beta \mathbf{A} \mathbf{A}^T)^{-1}$, unless $\mathbf{A} \mathbf{A}^T = I$ or $\mathbf{A} \mathbf{A}^T \approx I$
 - + $\mathbf{A}(\mathbf{x}^k-\mathbf{z}^{k+1})$ and $\mathbf{A}^T\mathbf{y}^k$, unless \mathbf{A} is small or has structures

Example: dual of LASSO

Observe

$$\min_{\mathbf{y}, \mathbf{z}} \{ \mathbf{b}^T \mathbf{y} + \frac{\mu}{2} \| \mathbf{y} \|_2^2 + \iota_{\{ \| \mathbf{z} \|_{\infty} \le 1 \}} : \mathbf{A}^T \mathbf{y} + \mathbf{z} = \mathbf{0} \}$$

- All the objective terms are perfectly separable
- The constraints cause the computation bottlenecks
- We shall try to decouple the blocks of \mathbf{A}^T

Distributed ADMM II

A general form with inseparable f and separable g

$$\min_{\mathbf{x},\mathbf{z}} \sum_{l=1}^{L} \left(f_l(\mathbf{x}) + g_l(\mathbf{z}_l) \right), \quad \text{s.t. } \mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b}$$

- Make L copies $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_L$ of \mathbf{x}
- Decompose

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \\ \vdots \\ \mathbf{A}_L \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} \mathbf{z}_1 \\ \vdots \\ \mathbf{z}_L \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_L \end{bmatrix}$$

• Rewrite $\mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{0}$ as

$$\mathbf{A}_l \mathbf{x}_l + \mathbf{z}_l = \mathbf{b}_l, \ \mathbf{x}_l - \mathbf{x} = \mathbf{0}, \quad l = 1, \dots, L.$$

Distributed ADMM II

New model:

$$\min_{\mathbf{x}, \{\mathbf{x}_l\}, \mathbf{z}} \sum_{l=1}^{L} \left(f_l(\mathbf{x}_l) + g_l(\mathbf{z}_l) \right)$$

s.t. $\mathbf{A}_l \mathbf{x}_l + \mathbf{z}_l = \mathbf{b}_l, \ \mathbf{x}_l - \mathbf{x} = \mathbf{0}, \quad l = 1, \dots, L.$

- \mathbf{x}_l 's are copies of \mathbf{x}
- \mathbf{z}_l 's are sub-blocks of \mathbf{z}
- Group variables $\{\mathbf{x}_l\}, \mathbf{z}, \mathbf{x}$ into two sets
 - $\{\mathbf{x}_l\}$: given z and x, the updates of \mathbf{x}_l are separable
 - (\mathbf{z}, \mathbf{x}) : given $\{\mathbf{x}_l\}$, the updates of \mathbf{z}_l and \mathbf{x} are separable

Therefore, standard (2-block) ADMM applies.

• One can also add a simple regularizer $h(\mathbf{x})$

Distributed ADMM II

Consider L computing nodes with MPI.

- \mathbf{A}_l is local data store on node l only
- $\mathbf{x}_l, \mathbf{z}_l$ are local variables; \mathbf{x}_l is stored and updated on node l only
- \mathbf{x} is the global variable; computed and dispatched by MPI
- $\mathbf{y}_l, \bar{\mathbf{y}}_l$ are Lagrange multipliers to $\mathbf{A}_l \mathbf{x}_l + \mathbf{z}_l = \mathbf{b}_l$ and $\mathbf{x}_l \mathbf{x} = \mathbf{0}$, respectively, stored and updated on node l only

At each iteration,

- each node l computes \mathbf{x}_l^{k+1} , using data \mathbf{A}_l
- each node l computes \mathbf{z}_l^{k+1} , prepares $\mathbf{p}_l = (\cdots)$
- MPI gathers \mathbf{p}_l and scatters its mean, \mathbf{x}^{k+1} , to all nodes l
- each node l computes $\mathbf{y}_l^{k+1}, \bar{\mathbf{y}}_l^{k+1}$

Example: distributed dual LASSO

Recall

$$\min_{\mathbf{y},\mathbf{z}} \{ \mathbf{b}^T \mathbf{y} + \frac{\mu}{2} \| \mathbf{y} \|_2^2 + \iota_{\{ \| \mathbf{z} \|_\infty \le 1\}} : \mathbf{A}^T \mathbf{y} + \mathbf{z} = \mathbf{0} \}$$

Apply distributed ADMM II

- decompose \mathbf{A}^T to row blocks, equivalently, \mathbf{A} to column blocks.
- $\bullet\,$ make copies of ${\bf y}$
- parallel computing + MPI (gathering and scatting vectors of size $\dim(\mathbf{y})$)

Recall distribute ADMM I

- $\bullet\,$ decompose ${\bf A}$ to row blocks.
- $\bullet\,$ make copies of ${\bf x}$
- parallel computing + MPI (gathering and scatting vectors of size $\dim(\mathbf{x})$)

Between I and II, which is better?

- If \mathbf{A} is fat
 - column decomposition in approach II is more efficient
 - the global variable of approach II is smaller
- If A is tall,
 - row decomposition in approach I is more efficient
 - the global variable of approach I is smaller

Distributed ADMM III

A formulation with separable f and separable g

min
$$\sum_{j=1}^{N} f_j(\mathbf{x}_j) + \sum_{i=1}^{M} g_i(\mathbf{z}_i)$$
, s.t. $\mathbf{A}\mathbf{x} + \mathbf{z} = \mathbf{b}$,

where

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N), \quad \mathbf{z} = (\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_M).$$

Decompose \mathbf{A} in both directions as

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \cdots & \mathbf{A}_{1N} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \cdots & \mathbf{A}_{2N} \\ & & \ddots & \\ \mathbf{A}_{M1} & \mathbf{A}_{M2} & \cdots & \mathbf{A}_{MN} \end{bmatrix}, \text{ also } \mathbf{b} = \begin{bmatrix} \mathbf{b}_1 \\ \mathbf{b}_2 \\ \vdots \\ \mathbf{b}_M \end{bmatrix}$$

Same model:

min
$$\sum_{j=1}^{N} f_j(\mathbf{x}_j) + \sum_{i=1}^{M} g_i(\mathbf{z}_i)$$
, s.t. $\sum_{j=1}^{N} \mathbf{A}_{ij} \mathbf{x}_j + \mathbf{z}_i = \mathbf{b}_i$, $i = 1, \dots, M$.

Distributed ADMM III

 $A_{ij}x_j$'s are coupled in the constraints. Standard treatment:

$$\mathbf{p}_{ij} = \mathbf{A}_{ij}\mathbf{x}_j.$$

New model:

$$\min \sum_{j=1}^{N} f_j(\mathbf{x}_j) + \sum_{i=1}^{M} g_i(\mathbf{z}_i), \quad \text{s.t.} \quad \frac{\sum_{j=1}^{N} \mathbf{p}_{ij} + \mathbf{z}_i = \mathbf{b}_i, \qquad \forall i, \\ \mathbf{p}_{ij} - \mathbf{A}_{ij}\mathbf{x}_j = \mathbf{0}, \qquad \forall i, j.$$

ADMM

- alternate between $\{\mathbf{p}_{ij}\}$ and $(\{\mathbf{x}_j\},\{\mathbf{z}_i\})$
- p_{ij}-subproblems have closed-form solutions
- $(\{\mathbf{x}_j\}, \{\mathbf{z}_i\})$ -subproblem are separable over all \mathbf{x}_j and \mathbf{z}_i
 - \mathbf{x}_j -update involves f_j and $\mathbf{A}_{1j}^T \mathbf{A}_{1j}, \dots, \mathbf{A}_{Mj}^T \mathbf{A}_{Mj};$
 - z_i-update involves g_i.
- ready for distributed implementation

Question: how to further decouple f_j and $\mathbf{A}_{1j}^T \mathbf{A}_{1j}, \ldots, \mathbf{A}_{Mj}^T \mathbf{A}_{Mj}$?

Distributed ADMM IV

For each \mathbf{x}_j , make M identical copies: $\mathbf{x}_{1j}, \mathbf{x}_{2j}, \ldots, \mathbf{x}_{Mj}$.

M

New model:

Ν

$$\sum_{j=1}^{N} \mathbf{p}_{ij} + \mathbf{z}_i = \mathbf{b}_i, \qquad \forall \ i,$$

min
$$\sum_{j=1} f_j(\mathbf{x}_j) + \sum_{i=1} g_i(\mathbf{z}_i)$$
, s.t. $\mathbf{p}_{ij} - \mathbf{A}_{ij}\mathbf{x}_{ij} = \mathbf{0}$, $\forall i, j$,

$$\mathbf{x}_j - \mathbf{x}_{ij} = \mathbf{0}, \qquad \forall i, j.$$

ADMM

- alternate between $(\{\mathbf{x}_j\},\{\mathbf{p}_{ij}\})$ and $(\{\mathbf{x}_{ij}\},\{\mathbf{z}_i\})$
- $({\mathbf{x}_j}, {\mathbf{p}_{ij}})$ -subproblem are separable
 - x_j-update involves f_j only; computes prox_{f_j}
 - \mathbf{p}_{ij} -update is in closed form
- $({\mathbf{x}_{ij}}, {\mathbf{z}_i})$ -subproblem are separable
 - \mathbf{x}_{ij} -update involves $(\alpha I + \beta \mathbf{A}_{ij}^T \mathbf{A}_{ij});$
 - y_i-update involves g_i only; computes prox_{g_i}.
- ready for distributed implementation

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM

6. Decentralized ADMM

- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Decentralized ADMM

After making local copies \mathbf{x}_i for \mathbf{x} , instead of imposing the consistency constraints like

$$\mathbf{x}_i - \mathbf{x} = 0, \quad i = 1, \dots, M,$$

consider graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = \{\mathsf{nodes}\}\ \mathsf{and}\ \mathcal{E} = \{\mathsf{edges}\}$

and impose one type of the following consistency constraints

$$\mathbf{x}_i - \mathbf{x}_j = \mathbf{0}, \quad \forall (i, j) \in \mathcal{E}, \text{ or}$$

 $\mathbf{x}_i - \mathbf{z}_{ij} = \mathbf{0}, \ \mathbf{x}_j - \mathbf{z}_{ij} = \mathbf{0}, \quad \forall (i, j) \in \mathcal{E}, \text{ or}$
mean $\{\mathbf{x}_j : (i, j) \in \mathcal{E}\} - \mathbf{x}_i = \mathbf{0}, \quad \forall i \in \mathcal{V}.$

Decentralized ADMM

- Decentralized ADMM run on a *connected* network
- There is no data fusion / control center
- Applications:
 - wireless sensor networks
 - collaborative learning
- ADMM will alternative perform the followings
 - Local computation at each node
 - Communication between neighbors or broadcasting in neighborhood
- Since data is not shared or centrally store, data security is preserved
- Convergence rate depends on
 - the properties (e.g., convexity, condition number) of the objective function
 - the size, connectivity, and spectral properties of the graph

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Example: latent variable graphical model selection

V. Chandrasekaran, P. Parrilo, A. Willsky

Model of regularized maximum normal likelihood

 $\min_{R,S,L} \langle R, \hat{\Sigma}_X \rangle - \log \det(R) + \alpha \|S\|_1 + \beta \mathrm{Tr}(L), \quad \text{ s.t. } R = S - L, R \succ 0, L \succeq 0,$

where X are the observed variables, $\Sigma_X^{-1} \approx R = S - L$, S is spare, L is low rank. First two terms are from the log-likelihood function

$$\ell(K; \Sigma) = \log \det(K) - \operatorname{tr}(K\Sigma).$$

Introduce indicator function

$$\mathcal{I}(L \succeq 0) := \begin{cases} 0, & \text{if } L \succeq 0 \\ +\infty, & \text{otherwise.} \end{cases}$$

Obtain the 3-block formulation

$$\min_{R,S,L} \langle R, \hat{\Sigma}_X \rangle - \log \det(R) + \alpha \|S\|_1 + \beta \operatorname{Tr}(L) + \mathcal{I}(L \succeq 0), \quad \text{s.t.} \quad R - S + L = 0.$$

Example: stable principle component pursuit

Model

$$\begin{aligned} \min_{L,S,Z} & \|L\|_* + \rho \|S\|_1 \\ \text{s.t.} & L + S + Z = M \\ & \|Z\|_F \le \sigma, \end{aligned}$$

M =low-rank + sparse + noise.

For quantities such as images and videos, add $L \ge 0$ component wise.

New model:

$$\begin{split} \min_{L,S,Z,K} & \|L\|_* + \rho \|S\|_1 + \mathcal{I}(\|Z\|_F \le \sigma) + \mathcal{I}(K \ge 0) \\ \text{s.t.} & L + S + Z = M \\ & L - K = 0. \end{split}$$

Block-form constraints:

$$\begin{pmatrix} I & I \\ I & 0 \end{pmatrix} \begin{pmatrix} L \\ S \end{pmatrix} + \begin{pmatrix} I & 0 \\ 0 & -I \end{pmatrix} \begin{pmatrix} Z \\ K \end{pmatrix} = \begin{pmatrix} M \\ 0 \end{pmatrix}.$$

Example: mixed TV and ℓ_1 regularization

Model

$$\min_{x} \operatorname{TV}(x) + \alpha \|Wx\|_{1}, \quad \text{s.t. } \|Rx - b\|_{2} \le \sigma.$$

New model:

$$\min_x \quad \sum_i \|z_i\|_2 + \alpha \|Wx\|_1 + \mathcal{I}(\|y\|_2 \le \sigma)$$

s.t.
$$z_i = D_i x, \forall i = 1, \dots, N$$

$$y = Rx - b.$$

If use two sets of variables, x vs $(y,\{z_i\})$

$$\begin{pmatrix} R \\ D_1 \\ \vdots \\ D_N \end{pmatrix} x - \begin{pmatrix} y \\ z_1 \\ \vdots \\ z_N \end{pmatrix} = \begin{pmatrix} b \\ 0 \\ \vdots \\ 0 \end{pmatrix},$$

x-subproblem is *not* easy to solve.

Example: alignment for linearly correlated images

Model:

$$\min_{I^0, E, \tau} \|I^0\|_* + \lambda \|E\|_1 \quad \text{subject to} \quad I \circ \tau = I^0 + E$$

Linearize the non-convex term $I \circ \tau$: $I \circ (\tau + \delta \tau) \approx I \circ \tau + \nabla I \cdot \Delta \tau$.

New model

$$\min_{I^0, E, \Delta \tau} \|I^0\|_* + \lambda \|E\|_1 \quad \text{subject to} \quad I \circ \tau + \nabla I \Delta \tau = I^0 + E$$

Two solutions to decouple variables

To solve a subproblem with coupling variables

- 1. apply the prox-linear inexact update, or
- 2. introduce bridge variables, as done in distributed ADMM.

For example, consider

$$\min_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{y}} \left(f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \right) + g(\mathbf{y}), \quad \text{s.t.} \left(\mathbf{A}_1 \mathbf{x}_1 + \mathbf{A}_2 \mathbf{x}_2 \right) + \mathbf{B} \mathbf{y} = \mathbf{b}.$$

In the ADMM $(\mathbf{x}_1, \mathbf{x}_2)$ -subproblem, \mathbf{x}_1 and \mathbf{x}_2 are coupled.

However, the prox-linear update is separable

$$\begin{bmatrix} \mathbf{x}_1^{k+1} \\ \mathbf{x}_2^{k+1} \end{bmatrix} = \underset{\mathbf{x}_1, \mathbf{x}_2}{\operatorname{arg\,min}} \left(f_1(\mathbf{x}_1) + f_2(\mathbf{x}_2) \right) + \left\langle \begin{bmatrix} \mathbf{g}_1 \\ \mathbf{g}_2 \end{bmatrix}, \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \right\rangle + \frac{1}{2t} \left\| \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} - \begin{bmatrix} \mathbf{x}_1^k \\ \mathbf{x}_2^k \end{bmatrix} \right\|_2^2$$

Example: patient motion detection during radiation therapy

Goal: to separate different motions (machine's vs patient's)

(wmv)

- My work with Wei Deng (Rice) and group of Steve Jiang (UCSD)
- Model extending robust PCA:

 $\min_{X,P,Z} \mu_1 \|X\|_* + \mu_2 \|\theta\|_1 + \|Z\|_1, \quad \text{s.t. } X + D\theta + Z = \text{input video}.$

X: static; $D\theta:$ background and reg. motion, Z irreg. motion

Example: patient motion detection during radiation therapy

(avi)

Outline

1. Standard ADMM

- 2. Summary of convergence results
- 3. Variants of ADMM
- 4. Examples
- 5. Distributed ADMM
- 6. Decentralized ADMM
- 7. ADMM with three or more blocks
- 8. Uncovered ADMM topics

Uncovered ADMM topics

- ADMM for LP, QP
- ADMM for conic programming, especially, SDP
- Multi-block ADMM schemes
- ADMM applied to non-convex problems (its convergence is open)