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online discussions on piazza.com

Those who complete this lecture will know

• the alternating direction method of multipliers (ADMM)

• the variants of ADMM

• basic convergence results of ADMM

• its applications
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Separable objective and coupling constraints

Consider a convex program with a separable objective and coupling constraints

min
x,z

f(x) + g(z) s.t. Ax + Bz = b.

Examples:

• min f(x) + g(x) =⇒ minx,z{f(x) + g(z) : x− z = 0}

• min f(x) + g(Ax) =⇒ minx,z{f(x) + g(z) : Ax− z = 0}

• min{f(x) : Ax ∈ C} =⇒ minx,z{f(x) + ιC(z) : Ax− z = 0}

• min
∑N
i=1 fi(x) =⇒ min{xi},z{

∑N
i=1 fi(xi) : xi − z = 0, ∀i}

each xi is a copy of x for fi, not a subvector of x.
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Alternating direction method of multipliers (ADMM)

Consider

min
x,z

f(x) + g(z)

s.t. Ax + Bz = b.

f and g are convex, maybe nonsmooth, can take the extended value

Standard ADMM iteration

1. xk+1 = arg minx f(x) + g(zk) + β
2
‖Ax + Bzk − b− yk‖22,

2. zk+1 = arg minz f(xk+1) + g(z) + β
2
‖Axk+1 + Bz− b− yk‖22,

3. yk+1 = yk − (Axk+1 + Bzk+1 − b).

Dates back to Douglas, Peaceman, and Rachford (50s–70s, operator splitting

for PDEs); Glowinsky et al.’80s, Gabay’83; Spingarn’85; Eckstein and

Bertsekes’92, He et al.’02 in variational inequality.
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Alternating direction method of multipliers (ADMM)

Comments:

• y is the scaled dual variable, y = β·Lagrange multipliers

• y-update can take a large step size γ < 1
2
(
√

5 + 1)

yk+1 = yk − γ(Axk+1 + Bzk+1 − b).

• Gauss-Seidel style update is applied to x and z of either order

• If x and z are minimized jointly, it reduces to augmented Lagrangian itr:

(xk+1, zk+1) = arg min
x,z

f(x) + g(z) +
β

2
‖Ax + Bz− b− yk‖22

yk+1 = yk − (Axk+1 + Bzk+1 − b).

• it extends to multiple blocks (a few questions remain open)

• it extends to Jacobian (parallel) updates with damping the update of y

5 / 55



Why is ADMM liked

• Split awkward intersections and objectives to easy subproblems

• X � 0,X ≥ 0 −→ separate projections

• ‖L‖∗ + β‖M− L‖1 −→ separate subproblems with ‖ · ‖∗ and ‖ · ‖1
• ‖∇x‖1 −→ decouple ‖ · ‖1 and ∇ to separable subproblems

•
∑
i ‖x[Gi]‖2 −→ decouple to subproblems of individual groups

•
∑K
i=1 fi(x) −→ K parallel subproblems (coordinated by gather-scattering

or gossiping between neighbors)

• # iterations is comparable to those of other first-order methods, so the

total time can be much smaller (not always though)

• Quite easy to implement, be (nearly) state-of-the-art for a few hours’ work
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KKT conditions

Recall KKT conditions (omitting the complementarity part):

(primal feasibility) Ax∗ + Bz∗ = b

(dual feasibility I) 0 ∈ ∂f(x∗) + ATy∗

(dual feasibility II) 0 ∈ ∂g(z∗) + BTy∗

Recall zk+1 = arg minz g(z) + β
2
‖Axk+1 + Bz− b− yk‖22

=⇒ 0 ∈ ∂g(zk+1) + BT (Axk+1 + Bzk+1 − b− yk) = ∂g(zk+1) + BTyk+1

Therefore, dual feasibility II is maintained.

Dual feasibility I is not maintained since

0 ∈ ∂f(xk+1) + AT
(
yk+1 + B(zk − zk+1)

)
But, primal feasibility and dual feasibility I hold asymptotically as k →∞.
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Convergence of ADMM

ADMM is neither purely-primal nor purely-dual. There is no known objective

closely associated with the iterations.

Recall via the transform

yk = proxβd1wk,

ADMM is a fixed-point iteration

wk+1 =

(
1

2
I +

1

2
reflβd1reflβd2

)
wk,

where the operator is firmly nonexpansive.

Convergence

• Assumptions: f and g convex, closed, proper, and ∃ KKT point

• Axk + Bzk → b, f(xk) + g(zk)→ p∗, yk converge

• In addition, if (xk,yk) are bounded, they also converge
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Rate of convergence

� It is on-going work

� Some existing results:

• simplified cases, exact updates, f smooth, and ∇f Lipschitz −→
objective ∼ O(1/k), O(1/k2)

• at least one update is exact −→
ergodic: objective error +(ũk − u∗)TF (u∗) ∼ O(1/k)

non-ergodic: ‖uk − uk+1‖ ∼ O(1/k)

• f strongly convex and ∇f Lipschitz + some full rank conditions −→
both solution and objective ∼ O(1/ck), c > 1

• applied to LP and QP −→ (asymptotic) strongly convex
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Variants of ADMM

� An ADMM subproblem is easy, if it has a closed-form solution;

� If a subproblem is difficult, it may be not worth solving it exactly.

This motivates variants of ADMM.

A few approaches of inexact ADMM subproblems:

1. Iteration limiter: limited iterations of CG or L-BFGS applied to

min
x
f(x) +

β

2
‖Ax− v‖22

where v = b−Bzk + yk.

� Applicable to quadratic f , perhaps other C2 functions as well

� Does not apply to nonsmooth subproblems

� Practically efficient, but lacking theoretical guarantees for now
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Variants of ADMM

2. Cached factorization: For quadratic subproblem f(x) = 1
2
‖Cx− d‖22,

x-subproblem solves

(CTC + βATA)xk+1 = (· · · )

� cache the Cholesky or LDLT decomposition to (CTC + βATA)

� later, in each iteration, solve simple triangle systems

� changing β generally requires re-factorization

� if (CTC + βATA) has a (simple+low-rank) structure, apply the

Woodbury matrix inversion formula
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Variants of ADMM

3. Single gradient-descent step. Simplify x-update from

xk+1 = arg min f(x) +
β

2
‖Ax + Bzk − b− yk‖22

to

xk+1 = xk − ck
(
∇f(xk) + βAT (Ax + Bzk − b− yk)

)
� applicable to C1 subproblems only

� convergence requires reduced update to y

� gradient update ck and y-update step sizes γ depend on spectral

properties of A
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Variants of ADMM

4. Single prox-linear step. Simplify x-update from

xk+1 = arg min f(x) +
β

2
‖Ax + Bzk − b− yk‖22

to

xk+1 = arg min f(x) + 〈g,x〉+
1

2t
‖x− xk‖22,

where

g = ∇x

(
β

2
‖Axk + Bzk − b− yk‖22

)
• similar to the prox-linear iteration

• applicable to nonsmooth f

• convergence requires reduced y-update

• t, β, step size γ of y-update, and spectral properties of A are related

• also applicable to the other subproblem simultaneously
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Variants of ADMM

5. Approximating ATA by nice matrix D. As an example, replace

xk+1 = arg min f(x) +
β

2
‖Ax + Byk − b− zk‖22

by

xk+1 = arg min f(x) +
β

2
‖Ax + Byk − b− zk‖22

+
β

2
(x− xk)T (D−ATA)(x− xk)

• also known as “optimization transfer”

• reduces to the prox-linear step if D = β
t
I

• useful if

min f(x) +
β

2
xTDx

is computationally easier than

min f(x) +
β

2
xT (ATA)x.

• applications: A is an off-the-grid Fourier transform
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Example: total variation

Let x represent a 2D image.

min TV(x) +
µ

2
‖Ax− b‖22

Applications

• Denoising: A = I

• Deblurring and deconvolution: A is circulant matrix or convolution

• MRI CS: A = PF downsampled Fourier transform; P is a row selector, F

is Fourier transform

• Circulant CS: A = PC downsampled convolution; P is a row selector, C

is a circulant matrix or convolution operator

Challenge: TV is the composite of `1 and ∇x, defined as

TV(x) := ‖∇x‖1 =
∑

pixels (i,j)

∥∥∥∥∥
[
xi+1,j − xi,j
xi,j+1 − xi,j

]∥∥∥∥∥
2

.

Opportunity: assuming the periodic boundary condition, ∇· is a convolution

operator.
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Example: total variation

Decouple `1 from ∇x:

min
µ

2
‖Ax− b‖22 + ‖z‖1, s.t. ∇x− z = 0

where ‖z‖1 =
∑
i ‖zi‖2.

ADMM

• x-update is quadratic in the form of

xk+1 = arg min
x

xT (µATA + β∇T∇)x + linear terms

If A is identity, convolution, or partial Fourier, then

F (µATA + β∇T∇)F−1

is a diagonal matrix. So, x-update becomes closed-form.

• z-subproblem is soft-thresholding

This splitting approach is often faster than the splitting

min TV(x) +
µ

2
‖Az− b‖22, s.t. x− z = 0

because the x-update is not in closed form.
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Example: transform `1 minimization

Model

min ‖Lx‖1 +
µ

2
‖Ax− b‖22

where examples of L include

• anisotropic finite difference operators

• orthogonal transforms: DCT, orthogonal wavelets

• frames: curvelets, shearlets

New models

min
µ

2
‖Ax− b‖22 + ‖z‖1, s.t. Lx− z = 0,

or

min ‖Lx‖1 +
µ

2
‖Az− b‖22, s.t. x− z = 0.
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Example: `1 fitting

Model

min
x
‖Ax− b‖1

New model

min
x,z
‖z‖1, s.t. Ax + z = b.

ADMM

• x-update is quadratic

• z-update is soft-thresholding
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Example: robust (Huber-function) fitting

Model

min
x
H(Ax− b) =

m∑
i=1

h(aTi x− bi)

where

h(y) =


y2

2µ
, 0 ≤ |y| ≤ µ,

|y| − µ
2
, |y| > µ.

Original model is differentiable, amenable to gradient descent.

Split model

min
x,z

H(z), s.t. Ax + z = b.

ADMM

• x-update is quadratic, involving AAT

• z-update is component-wise separable
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Block separable ADMM

Suppose x = (x1,x2, . . . ,xN ) and f is separable, i.e.,

f(x) = f1(x1) + f2(x2) + · · ·+ fN (xN ).

Model

min
x,z

f(x) + g(z)

s.t. Ax + Bz = b.

where

A =


A1 0

A2

. . .

0 AN
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Block separable ADMM

The x-update

xk+1 ← min f(x) +
β

2
‖Ax + Byk − b− zk‖22

is separable to N independent subproblems

xk+1
1 ← min f1(x1) +

β

2
‖A1x1 + (Byk − b− zk)1 ‖22,

...

xk+1
N ← min fN (xN ) +

β

2
‖ANxN + (Byk − b− zk)N‖22.

No coordination is required.
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Example: consensus optimization

Model

min

N∑
i=1

fi(x)

the objective is partially separable.

Introduce N copies x1, . . . ,xN of x. They have the same dimensions.

New model:

min
{xi},z

N∑
i=1

fi(xi), s.t. xi − z = 0, ∀i.

A more general objective with function g is
∑N
i=1 fi(x) + g(z).

New model:

min
{xi},y

N∑
i=1

fi(xi) + g(z), s.t.


I

. . .

I




x1

...

xN

−

I
...

I

 z = 0.

26 / 55



Example: consensus optimization

Lagrangian

L({xi}, z; {yi}) =
∑
i

(
fi(xi) +

β

2
‖xi − z− yi‖22

)
where yi is the Lagrange multipliers to xi − z = 0.

ADMM

xk+1
i = arg min

xi

fi(xi) +
β

2
‖xi − zk − yki ‖2, i = 1, . . . , N,

zk+1 =
1

N

N∑
i=1

(xk+1
i − β−1yki ),

yk+1
i = yki − (xk+1

i − zk+1), i = 1, . . . , N.
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The exchange problem

Model x1, . . . ,xN ∈ Rn,

min

N∑
i=1

fi(xi), s.t.
N∑
i=1

xi = 0.

• it is the dual of the consensus problem

• exchanging n goods among N parties to minimize a total cost

• our goal: to decouple xi-updates

An equivalent model

min
N∑
i=1

fi(xi), s.t. xi − x′i = 0, ∀i,
N∑
i=1

x′i = 0.
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The exchange problem

ADMM after consolidating the x′i update:

xk+1
i = arg min

xi

fi(xi) +
β

2
‖xi − (xki −mean{xki } − uk)‖22,

uk+1 = uk + mean{xk+1
i }.

Applications: distributed dynamic energy management
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Distributed ADMM I

min
{xi},y

N∑
i=1

fi(xi) + g(z), s.t.


I

. . .

I




x1

...

xN

−

I
...

I

 z = 0.

Consider N computing nodes with MPI (message passing interface).

• xi are local variables; xi is stored and updated on node i only

• z is the global variable; computed and communicated by MPI

• yi are dual variables, stored and updated on node i only

At each iteration, given yk and zki

• each node i computes xk+1
i

• each node i computes pi := (xk+1
i − β−1yki )

• MPI gathers pi and scatters its mean, zk+1, to all nodes

• each node i computes yk+1
i
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Example: distributed LASSO

Model

min ‖x‖1 +
β

2
‖Ax− b‖22.

Decomposition

Ax =


A1

A2

...

AN

x, b =


b1

b2

...

bN

 .
=⇒

β

2
‖Ax− b‖22 =

N∑
i=1

β

2
‖Aix− bi‖22 =:

N∑
i=1

fi(x).

LASSO has the form

min

N∑
i=1

fi(x) + g(x)

and thus can be solved by distributed ADMM.
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Example: dual of LASSO

LASSO

min ‖x‖1 +
β

2
‖Ax− b‖22.

Lagrange dual

min
y
{bTy +

µ

2
‖y‖22 : ‖ATy‖∞ ≤ 1}

equivalently,

min
y,z
{−bTy +

µ

2
‖y‖22 + ι{‖z‖∞≤1} : ATy + z = 0}

Standard ADMM:

• primal x is the multipliers to ATy + z = 0

• z-update is projection to `∞-ball; easy and separable

• y-update is quadratic
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Example: dual of LASSO

• Dual augmented Lagrangian (the scaled form):

L(y, z; x) = bTy +
µ

2
‖y‖22 + ι{‖z‖∞≤1} +

β

2
‖ATy + z− x‖22

• Dual ADMM iterations:

zk+1 = Proj‖·‖∞≤1

(
xk −ATyk

)
,

yk+1 =
(
µI + βAAT

)−1 (
βA(xk − zk+1)− b

)
,

xk+1 = xk − γ(ATyk+1 + zk+1).

and upon termination at step K, return primal solution

x∗ = βxK (de-scaling).

• Computation bottlenecks:

•
(
µI + βAAT

)−1
, unless AAT = I or AAT ≈ I

• A(xk − zk+1) and ATyk, unless A is small or has structures
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Example: dual of LASSO

Observe

min
y,z
{bTy +

µ

2
‖y‖22 + ι{‖z‖∞≤1} : ATy + z = 0}

• All the objective terms are perfectly separable

• The constraints cause the computation bottlenecks

• We shall try to decouple the blocks of AT
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Distributed ADMM II

A general form with inseparable f and separable g

min
x,z

L∑
l=1

(fl(x) + gl(zl)) , s.t. Ax + z = b

• Make L copies x1,x2, . . . ,xL of x

• Decompose

A =


A1

...

AL

 , z =


z1

...

zL

 , b =


b1

...

bL


• Rewrite Ax + z = 0 as

Alxl + zl = bl, xl − x = 0, l = 1, . . . , L.
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Distributed ADMM II

New model:

min
x,{xl},z

L∑
l=1

(fl(xl) + gl(zl))

s.t. Alxl + zl = bl, xl − x = 0, l = 1, . . . , L.

• xl’s are copies of x

• zl’s are sub-blocks of z

• Group variables {xl}, z,x into two sets

• {xl}: given z and x, the updates of xl are separable

• (z,x): given {xl}, the updates of zl and x are separable

Therefore, standard (2-block) ADMM applies.

• One can also add a simple regularizer h(x)
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Distributed ADMM II

Consider L computing nodes with MPI.

• Al is local data store on node l only

• xl, zl are local variables; xl is stored and updated on node l only

• x is the global variable; computed and dispatched by MPI

• yl, ȳl are Lagrange multipliers to Alxl + zl = bl and xl − x = 0,

respectively, stored and updated on node l only

At each iteration,

• each node l computes xk+1
l , using data Al

• each node l computes zk+1
l , prepares pl = (· · · )

• MPI gathers pl and scatters its mean, xk+1, to all nodes l

• each node l computes yk+1
l , ȳk+1

l
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Example: distributed dual LASSO

Recall

min
y,z
{bTy +

µ

2
‖y‖22 + ι{‖z‖∞≤1} : ATy + z = 0}

Apply distributed ADMM II

• decompose AT to row blocks, equivalently, A to column blocks.

• make copies of y

• parallel computing + MPI (gathering and scatting vectors of size dim(y))

Recall distribute ADMM I

• decompose A to row blocks.

• make copies of x

• parallel computing + MPI (gathering and scatting vectors of size dim(x))
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Between I and II, which is better?

• If A is fat

• column decomposition in approach II is more efficient

• the global variable of approach II is smaller

• If A is tall,

• row decomposition in approach I is more efficient

• the global variable of approach I is smaller
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Distributed ADMM III

A formulation with separable f and separable g

min
N∑
j=1

fj(xj) +
M∑
i=1

gi(zi), s.t. Ax + z = b,

where

x = (x1,x2, . . . ,xN ), z = (y1,y2, . . . ,yM ).

Decompose A in both directions as

A =


A11 A12 · · · A1N

A21 A22 · · · A2N

· · ·
AM1 AM2 · · · AMN

 , also b =


b1

b2

...

bM

 .
Same model:

min

N∑
j=1

fj(xj) +

M∑
i=1

gi(zi), s.t.
N∑
j=1

Aijxj + zi = bi, i = 1, . . . ,M.
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Distributed ADMM III

Aijxj ’s are coupled in the constraints. Standard treatment:

pij = Aijxj .

New model:

min

N∑
j=1

fj(xj) +

M∑
i=1

gi(zi), s.t.

∑N
j=1 pij + zi = bi, ∀ i,

pij −Aijxj = 0, ∀ i, j.

ADMM

• alternate between {pij} and ({xj}, {zi})

• pij-subproblems have closed-form solutions

• ({xj}, {zi})-subproblem are separable over all xj and zi

• xj-update involves fj and AT
1jA1j , . . . ,A

T
MjAMj ;

• zi-update involves gi.

• ready for distributed implementation

Question: how to further decouple fj and AT
1jA1j , . . . ,A

T
MjAMj?
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Distributed ADMM IV

For each xj , make M identical copies: x1j ,x2j , . . . ,xMj .

New model:

min
N∑
j=1

fj(xj) +
M∑
i=1

gi(zi), s.t.

∑N
j=1 pij + zi = bi, ∀ i,

pij −Aijxij = 0, ∀ i, j,

xj − xij = 0, ∀ i, j.

ADMM

• alternate between ({xj}, {pij}) and ({xij}, {zi})
• ({xj}, {pij})-subproblem are separable

• xj-update involves fj only; computes proxfj
• pij-update is in closed form

• ({xij}, {zi})-subproblem are separable

• xij-update involves (αI + βAT
ijAij);

• yi-update involves gi only; computes proxgi .

• ready for distributed implementation
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Decentralized ADMM

After making local copies xi for x, instead of imposing the consistency

constraints like

xi − x = 0, i = 1, . . . ,M,

consider graph G = (V, E) where V = {nodes} and E = {edges}

and impose one type of the following consistency constraints

xi − xj = 0, ∀(i, j) ∈ E , or

xi − zij = 0, xj − zij = 0, ∀(i, j) ∈ E , or

mean{xj : (i, j) ∈ E} − xi = 0, ∀i ∈ V.
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Decentralized ADMM

• Decentralized ADMM run on a connected network

• There is no data fusion / control center

• Applications:

• wireless sensor networks

• collaborative learning

• ADMM will alternative perform the followings

• Local computation at each node

• Communication between neighbors or broadcasting in neighborhood

• Since data is not shared or centrally store, data security is preserved

• Convergence rate depends on

• the properties (e.g., convexity, condition number) of the objective function

• the size, connectivity, and spectral properties of the graph
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Example: latent variable graphical model selection

V. Chandrasekaran, P. Parrilo, A. Willsky

Model of regularized maximum normal likelihood

where X are the observed variables, Σ−1
X ≈ R = S − L, S is spare, L is low

rank. First two terms are from the log-likelihood function

`(K; Σ) = log det(K)− tr(KΣ).

Introduce indicator function

Obtain the 3-block formulation

47 / 55



Example: stable principle component pursuit

Model

M = low-rank + sparse + noise.

For quantities such as images and videos, add L ≥ 0 component wise.

New model:

Block-form constraints:
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Example: mixed TV and `1 regularization

Model

min
x

TV(x) + α‖Wx‖1, s.t. ‖Rx− b‖2 ≤ σ.

New model:

If use two sets of variables, x vs (y, {zi})

x-subproblem is not easy to solve.
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Example: alignment for linearly correlated images

Model:

Linearize the non-convex term I ◦ τ : I ◦ (τ + δτ) ≈ I ◦ τ +∇I ·∆τ.

New model
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Two solutions to decouple variables

To solve a subproblem with coupling variables

1. apply the prox-linear inexact update, or

2. introduce bridge variables, as done in distributed ADMM.

For example, consider

min
x1,x2,y

(f1(x1) + f2(x2)) + g(y), s.t. (A1x1 + A2x2) + By = b.

In the ADMM (x1,x2)-subproblem, x1 and x2 are coupled.

However, the prox-linear update is separable[
xk+1
1

xk+1
2

]
= arg min

x1,x2

(f1(x1) + f2(x2)) + 〈

[
g1

g2

]
,

[
x1

x2

]
〉+ 1

2t

∥∥∥∥∥
[
x1

x2

]
−

[
xk1

xk2

]∥∥∥∥∥
2

2

.
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Example: patient motion detection during radiation therapy

Goal: to separate different motions (machine’s vs patient’s)

(wmv)

• My work with Wei Deng (Rice) and group of Steve Jiang (UCSD)

• Model extending robust PCA:

min
X,P,Z

µ1‖X‖∗ + µ2‖θ‖1 + ‖Z‖1, s.t. X +Dθ + Z = input video.

X: static; Dθ: background and reg. motion, Z irreg. motion
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s6-1b.wmv
Media File (video/x-ms-wmv)



Example: patient motion detection during radiation therapy

(avi)
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result_s6-2b_f151-450_Xdarker2.avi
Media File (video/avi)
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Uncovered ADMM topics

• ADMM for LP, QP

• ADMM for conic programming, especially, SDP

• Multi-block ADMM schemes

• ADMM applied to non-convex problems (its convergence is open)
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