Sparse Optimization
Lecture: Dual Methods, Part Il

Instructor: Wotao Yin

July 2013

online discussions on piazza.com

Those who complete this lecture will know

® the alternating direction method of multipliers (ADMM)
® the variants of ADMM
® basic convergence results of ADMM

® jts applications



1. Standard ADMM

Outline



Separable objective and coupling constraints

Consider a convex program with a separable objective and coupling constraints

min f(x) + g(z) st. Ax+Bz=Db.

Examples:

min f(x) + g(x) = mine{f(x)+g(z) : x—z =0}
min f(x) + g(Ax) = ming . {f(x) +g(z) : Ax —z =0}
min{f(x) : Ax € C} = mink{f(x)+c(z) : Ax —z =0}

min Zfil filx) = min{xi}yz{Zf\Ll fi(x:) :x; —z =0,Vi}

each x; is a copy of x for f;, not a subvector of x.



Alternating direction method of multipliers (ADMM)

Consider

min f(x) +g(2)

st. Ax+Bz=Db.

f and g are convex, maybe nonsmooth, can take the extended value

Standard ADMM iteration

3
2. ZFtl = arg min,, f(xk“) +9(z) + gHAka +Bz—b— yk||§
3. yk'*'1 = yk' — (Axk'*'1 + BzFt! — b).

1. x* = argmin, f(x) + g(z") + §\|Ax—|— Bz" — b — y*|

Dates back to Douglas, Peaceman, and Rachford (50s-70s, operator splitting
for PDEs); Glowinsky et al.’80s, Gabay'83; Spingarn'85; Eckstein and
Bertsekes'92, He et al.’02 in variational inequality.



Alternating direction method of multipliers (ADMM)

Comments:
e y is the scaled dual variable, y = 3-Lagrange multipliers
e y-update can take a large step size v < %(\/5—1— 1)

ylﬁ'1 = yk — fy(Axk"'1 + Bzt — b).

Gauss-Seidel style update is applied to x and z of either order

(1,254 = argmin f(x) + 9(2) + 5 | Ax + Bz — b~ y*|3

X,z

Yy = yF — (AX* 4 BZMT — b).

it extends to multiple blocks (a few questions remain open)

it extends to Jacobian (parallel) updates with damping the update of y

If x and z are minimized jointly, it reduces to augmented Lagrangian itr:



Why is ADMM liked

o Split awkward intersections and objectives to easy subproblems
e X »0,X >0 — separate projections

|IL||« + B||M — L||1 — separate subproblems with || - ||« and || - ||1

e ||Vx]||1 — decouple || - ||1 and V to separable subproblems

>~; IIx(g;1ll2 — decouple to subproblems of individual groups

ZiKzl fi(x) — K parallel subproblems (coordinated by gather-scattering
or gossiping between neighbors)

e # iterations is comparable to those of other first-order methods, so the
total time can be much smaller (not always though)

¢ Quite easy to implement, be (nearly) state-of-the-art for a few hours’ work



2. Summary of convergence results
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KKT conditions

Recall KKT conditions (omitting the complementarity part):

(primal feasibility) Ax* +Bz" =b
(dual feasibility I) 0 € af(x*) + ATy"
(dual feasibility 1) 0 € dg(z*) + B y"

Recall z*™! = argmin, g(z) + gHAka +Bz—-b-y"|3

— 0€dg(z"™) + BT (AX" T + Bz — b — y*) = 9g(z"T) + BTy !
Therefore, dual feasibility Il is maintained.

Dual feasibility | is not maintained since

0€af(x"1) + A7 (ka + Bz — zk+1)>

But, primal feasibility and dual feasibility | hold asymptotically as k — oo.



Convergence of ADMM

ADMM is neither purely-primal nor purely-dual. There is no known objective
closely associated with the iterations.

Recall via the transform
k k
Yy’ =Pproxg, w,

ADMM is a fixed-point iteration
k1 (1 1 k
w = §I+§reﬂgd1reﬂgd2 w,
where the operator is firmly nonexpansive.

Convergence
e Assumptions: f and g convex, closed, proper, and 3 KKT point
e Ax" + Bz" = b, f(x*) + g(z") = p*, y* converge

e In addition, if (x",y") are bounded, they also converge



Rate of convergence

» It is on-going work

» Some existing results:

o simplified cases, exact updates, f smooth, and V f Lipschitz —
objective ~ O(1/k), O(1/k?)

e at least one update is exact —
ergodic: objective error 4(@i* — u*)T F(u*) ~ O(1/k)
non-ergodic: |[u® — u**1|| ~ O(1/k)

e f strongly convex and V f Lipschitz 4+ some full rank conditions —
both solution and objective ~ O(1/c*), ¢ > 1

e applied to LP and QP — (asymptotic) strongly convex
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3. Variants of ADMM
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Variants of ADMM

» An ADMM subproblem is easy, if it has a closed-form solution;
» If a subproblem is difficult, it may be not worth solving it exactly.
This motivates variants of ADMM.

A few approaches of inexact ADMM subproblems:

1. Iteration limiter: limited iterations of CG or L-BFGS applied to
) B 2
min () + 5[ Ax — v

where v=b — Bz* + yk.
» Applicable to quadratic f, perhaps other C? functions as well
» Does not apply to nonsmooth subproblems

» Practically efficient, but lacking theoretical guarantees for now
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Variants of ADMM

2. Cached factorization: For quadratic subproblem f(x) = 1|/Cx —d||3,

X-subproblem solves

(CTC+ BATAX T =(..)
» cache the Cholesky or LDL” decomposition to (CTC + 3ATA)
» later, in each iteration, solve simple triangle systems

» changing [ generally requires re-factorization

» if (CTC+ BATA) has a (simple+low-rank) structure, apply the
Woodbury matrix inversion formula



Variants of ADMM

3. Single gradient-descent step. Simplify x-update from
x**1 = argmin f(x) + gllAX +Bz" —b—y"|I3
to
xFT = xP _cF (Vf(xk) +BAT(Ax+Bz" —b - yk)>
» applicable to C! subproblems only

» convergence requires reduced update to y

» gradient update ¢ and y-update step sizes v depend on spectral
properties of A



Variants of ADMM

4. Single prox-linear step. Simplify x-update from
x" 1 = argmin f(x) + §||Ax+ Bz" — b —y"*|3

to

. 1
xFt = arg min f(x) + (g, x) + EHX — xk||§,

where
g = Vi (§||Axk +BzF —b-— yk\|§>

e similar to the prox-linear iteration

e applicable to nonsmooth f

e convergence requires reduced y-update

e t, 3, step size v of y-update, and spectral properties of A are related

e also applicable to the other subproblem simultaneously
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Variants of ADMM

5. Approximating AT A by nice matrix D. As an example, replace

x" 1 = argmin f(x) + §||Ax+ By" — b —z"|3

x" ! = argmin f(x) + gHAx +By" —b—z"|3
+ g(x —x")T(MD - ATA)(x - x¥)
also known as “optimization transfer”
reduces to the prox-linear step if D = %I
useful if
min f(x) + ngDx
is computationally easier than

min f(x) + SXT(ATA)X.

applications: A is an off-the-grid Fourier transform
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4. Examples
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Example: total variation

Let x represent a 2D image.
min TV(x) + £ Ax — b3
Applications

e Denoising: A =1
e Deblurring and deconvolution: A is circulant matrix or convolution

e MRI CS: A = PF downsampled Fourier transform; P is a row selector, F

is Fourier transform

e Circulant CS: A = PC downsampled convolution; P is a row selector, C

is a circulant matrix or convolution operator

Challenge: TV is the composite of /1 and Vz, defined as

Titl,j — Tiyg
Tij+1 = Tij

Opportunity: assuming the periodic boundary condition, V- is a convolution

TV(x) := ||Vx]1 = Z

pixels (2,7)

2

operator.



Example: total variation
Decouple ¢; from Vz:
mingqu —b|2+ ||z, st Vx—z=0
where [|z[[1 = 3_; [|z:|2-
ADMM
e x-update is quadratic in the form of

X = arg min XT(N,ATA + ﬁVTV)X + linear terms
X

If A is identity, convolution, or partial Fourier, then
F(uA"A + V'V )F~!
is a diagonal matrix. So, x-update becomes closed-form.
e z-subproblem is soft-thresholding
This splitting approach is often faster than the splitting
min TV (x) + %”AZ —b|3, stx—z=0

because the x-update is not in closed form.
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Example: transform ¢; minimization

Model
min ||Lx|); + %HAX — b2

where examples of L include

e anisotropic finite difference operators
e orthogonal transforms: DCT, orthogonal wavelets

e frames: curvelets, shearlets
New models
min %HAx —b|2+||zl;, st Lx-z=0,

or
min || Lx||; + %HAZ —b|2, st.x—z=0.



Example: /; fitting

Model
min [|[Ax — b||:
New model
min||z]|;, st. Ax+z=Dhb.
ADMM

e x-update is quadratic

e z-update is soft-thresholding
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Example: robust (Huber-function) fitting

Model

where
2
L7 0< < )
h(y) = 2n <lyl<u
lyl =5, Iyl > p
Original model is differentiable, amenable to gradient descent.

Split model
min H(z), st. Ax+z=Dhb.

ADMM

e x-update is quadratic, involving AAT

e z-update is component-wise separable
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5. Distributed ADMM
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Block separable ADMM

Suppose x = (X1,X2,...,Xn) and f is separable, i.e.,

J(x) = fi(x1) + fa(x2) + - + fn(xn).

Model
min f(x) +g(2)
st. Ax+Bz=Db.
where
A, 0
A,



Block separable ADMM

The x-update
X" min f(x) + gHAx +By" —b—2"|3
is separable to N independent subproblems

T min fi(x1) + §HA1X1 + (By" —b—2z") |I3,

X5 min fa(xn) + gHANxN + (By" —b— 2|2

No coordination is required.
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Example: consensus optimization

Model
N
min Z fi(x)
i=1
the objective is partially separable.
Introduce N copies x1,...,xn of x. They have the same dimensions.

New model:

N
min Zfi(xi), st.x; —z=0, Vi.

{xitz =
A more general objective with function g is va:l fi(x) + g(z).
New model:

I X1 I

x;},y “
txity i

N
min Zfi(xi)—i—g(z), s.t. S| —]:]z=0.
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Example: consensus optimization

Lagrangian

Lxhmstyid) = 3 () + Sl — 2=l

7

where y; is the Lagrange multipliers to x; —z = 0.

ADMM

k+1

N
1 _
2" = ~ > (T =87y,
=1

k1 _ _k k41 k+1 .
i=ys — (X =2"), i=1,...,N.

X; :argminfi(xi)—l—gﬂxi—zk —yHl2, i=1,...

7N7
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The exchange problem

Model x1,...,xy € R",

N N
minz fi(xi), st in =0.
i=1 i=1

e it is the dual of the consensus problem
e exchanging n goods among N parties to minimize a total cost

e our goal: to decouple x;-updates

An equivalent model

N

N
miani(xi), st.x; —x, =0, Vi, Zx; =0.
i=1

i=1



The exchange problem

ADMM after consolidating the x; update:

X = arg min fi(x) + 2 xi — (<~ mean{xt} — )3,
X
u* ! = u* + mean{x[""}.

Applications: distributed dynamic energy management
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Distributed ADMM |

I X1 I

ity

Consider N computing nodes with MPI (message passing interface).

e x; are local variables; x; is stored and updated on node 7 only
e 7z is the global variable; computed and communicated by MPI

e y; are dual variables, stored and updated on node i only

At each iteration, given y* and z*

e each node 7 computes xf“

e each node i computes p; := (xi€+1 —B7yE)

k+1

o MPI gathers p; and scatters its mean, z , to all nodes

e each node ¢ computes yf“

N
min Zf}(x,;)—kg(z)7 s.t. Sl —=1]:{z=0.
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Example: distributed LASSO

Model 5
min ||x|[1 + §HAX - ng

Decomposition

A1 bl
A b2
Ax=|  |x, b=| .
AN bN
=
B R R
§HAX —blz = Z EHAiX —billz = Zfi(x)~
i=1 i=1
LASSO has the form N
min Y fi(x) + g(x)
i=1

and thus can be solved by distributed ADMM.



Example: dual of LASSO

LASSO 3
min ||x|[1 + §HAX - ng

Lagrange dual
min{b"y + Zlly[3 : [Ty < 1}

equivalently,
min{—b'y + SIVIE+ ez : ATy +2= 0}
Standard ADMM:

e primal x is the multipliers to ATy +z =0
e z-update is projection to {..-ball; easy and separable

e y-update is quadratic



Example: dual of LASSO

e Dual augmented Lagrangian (the scaled form):
L(y,z;x) =b"y + gl\yllg + tflall <1} + §||ATy +z—x|
e Dual ADMM iterations:
2 = Projy i (x* — ATY"),
v = (ul + BAAT) - (BAG* 2" ~b),

Xk+1 _ xk o 'y(ATyk+1 + Zk+1).

and upon termination at step K, return primal solution
x* = px"  (de-scaling).
e Computation bottlenecks:

o (uI+BAAT)™! unless AAT =1 or AAT ~ [

e A(xF —zF*t1) and ATy, unless A is small or has structures

2
2



Example: dual of LASSO

Observe
min{b”y + LyI3 + t(jaic <1y : ATy +2 = 0}

o All the objective terms are perfectly separable
e The constraints cause the computation bottlenecks

e We shall try to decouple the blocks of AT



Distributed ADMM I

A general form with inseparable f and separable g

L
Z x)+gi(z1)), st. Ax+z=Db
e Make L copies x1,X2,...,Xxr, of X
o Decompose
Ay Z1 b1
A= |, z=|: ]|, b=|"_
AL zr, by,

e Rewrite Ax+z =20 as

xAle—‘er:bl7 Xl—X:O7 lzl,...,L.



Distributed ADMM I

New model:

L

min Z (filx1) + g1(z1))

R N

s.t. A1X1+Zl:bl, x; —x =0, l:L...,L.

e x;'s are copies of x

e 7,'s are sub-blocks of z

Group variables {x;},z,x into two sets
e {x;}: given z and x, the updates of x; are separable
e (z,x): given {x;}, the updates of z; and x are separable

Therefore, standard (2-block) ADMM applies.

One can also add a simple regularizer h(x)
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Distributed ADMM I

Consider L computing nodes with MPI.

e A, is local data store on node [ only
e x;,7; are local variables; x; is stored and updated on node [ only
e x is the global variable; computed and dispatched by MPI

e y;,y: are Lagrange multipliers to A;x; +2; = b; and x; —x =0,

respectively, stored and updated on node [ only

At each iteration,

e each node I computes xf'“, using data A,

e each node I computes z, "', prepares p; = (---)

k+1

o MPI gathers p; and scatters its mean, X", to all nodes [

e each node I computes y; ™, g !



Example: distributed dual LASSO

Recall
min{b"y + Zly]3 + (japcny : ATy +2=0)

Apply distributed ADMM II

e decompose AT to row blocks, equivalently, A to column blocks.
e make copies of y

e parallel computing + MPI (gathering and scatting vectors of size dim(y))

Recall distribute ADMM |

e decompose A to row blocks.
e make copies of x

e parallel computing + MPI (gathering and scatting vectors of size dim(x))



Between | and Il, which is better?

e |f A is fat
e column decomposition in approach Il is more efficient
o the global variable of approach Il is smaller

o If A is tall,
e row decomposition in approach | is more efficient

o the global variable of approach | is smaller
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Distributed ADMM Il

A formulation with separable f and separable g

N M
min Z fi(x;5) + Zgi(zi), st. Ax+z =D,
j=1 i=1

where
x = (x1,X2,...,XN),

Decompose A in both directions as

A A

A A
A 21 22

Anri A

Same model:

N M
min Y fi(x;) + Y gi(zi), st
j=1 i=1

z = (y17Y2,~~~7yM)~

Ain by

A bz
2N ,also b=

Aun bas

N
ZAinj+zi:bi7 Z:L,M

j=1



Distributed ADMM Il

Ai;x;'s are coupled in the constraints. Standard treatment:
Pij = Aijx;.
New model:

- . YN piyt+zi=bi, Vi

. j=1 1] K (2] )
min > fi(x;) + > _gi(z:), st o
j=1 i=1 pij — Aijx; =0, V4, 4.

ADMM

e alternate between {p;;} and ({x,},{z:})

e p;j-subproblems have closed-form solutions

o ({x;},{zi})-subproblem are separable over all x; and z;
e x;-update involves f; and AEAU, .. ‘,A%}jAMj;
e z;-update involves g;.

e ready for distributed implementation

Question: how to further decouple f; and AT; Ay, ..., Al An;?



Distributed ADMM |V

For each x;, make M identical copies: x1j,X2j,...,XMm;-

New model:
N
N u Zj:1 pPij +2zi = by,
min Y fi(x5) + Y gi(z), st pi — Ayxi; =0,
j=1 i=1

Xj —Xij = 0,

ADMM

e alternate between ({x,}, {p:;}) and ({xs;},{zi})
e ({x;},{pij})-subproblem are separable

e xj-update involves f; only; computes prox;,

e p;j-update is in closed form
o ({xij},{zi})-subproblem are separable

e x;;-update involves (af + ,BAZT].AU');

e y;-update involves g; only; computes prox,, .

e ready for distributed implementation

Vi,
Vi, J,

Vi, j.
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6. Decentralized ADMM
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Decentralized ADMM

After making local copies x; for x, instead of imposing the consistency
constraints like
xi—x=0, +=1,..., M,

consider graph G = (V, &) where V = {nodes} and & = {edges}

and impose one type of the following consistency constraints
x; —x; =0, V(i,5) €&, or
X; —2;; =0, x; —2z;5 =0, V(i,j)GE, or
mean{x; : (¢,j) € £} —x; =0, VieV.
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Decentralized ADMM

Decentralized ADMM run on a connected network

There is no data fusion / control center

Applications:

e wireless sensor networks
e collaborative learning

ADMM will alternative perform the followings
e Local computation at each node

e Communication between neighbors or broadcasting in neighborhood
Since data is not shared or centrally store, data security is preserved

Convergence rate depends on

o the properties (e.g., convexity, condition number) of the objective function

e the size, connectivity, and spectral properties of the graph
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7. ADMM with three or more blocks
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Example: latent variable graphical model selection
V. Chandrasekaran, P. Parrilo, A. Willsky

Model of regularized maximum normal likelihood

fI{IllIl (R,%x) —logdet(R) + a||S||, + 8Tr(L), st. R=8—L,R>0,L=0,
where X are the observed variables, E}l ~R=S5-1L, S is spare, L is low
rank. First two terms are from the log-likelihood function

UK;X) = logdet(K) — tr(KX).

Introduce indicator function

0, itL>0

+o0, otherwise.

I(L = 0) :—{

Obtain the 3-block formulation

in (R,¥x) —logdet(R) + a||S|l1 + Tr(L) + Z(L = 0), st. R—S+L=0.

47
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Example: stable principle component pursuit

Model
ming s,z [|L]l+ + pll S|l
s.t. L+S+7Z=M
1Z]|F < o,

M = low-rank + sparse + noise.

For quantities such as images and videos, add L > 0 component wise.

New model:

ming s,z k [|Lll«+ oSl + Z(|Z]|F < o) + Z(K > 0)
s.t. L+S+7Z=M
L—-—K=0.

Block-form constraints:

()65 E)-6)



Example: mixed TV and /; regularization

Model
min TV (z) 4+ a||Wz|1, st ||Rx—10|2<o0.

New model:

ming 3, [[zll2 + Wzl + Z([lyll2 < o)
st. z =Dz Vi=1,...,N
y=Rx —b.

If use two sets of variables, = vs (y,{zi})

R y
D, Z1 0

T — = ,
Dy ZN 0

z-subproblem is not easy to solve.
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Example: alignment for linearly correlated images
- o 3
N

Igmn IO/« + Al E|l1  subject to [ToT=1"+F

?"'

Model:

Linearize the non-convex term Jo71: I o (T +07) =~ IoT+ VI AT

New model

in 1%+ + M| E|l1  subject to Tor+VIAT =1+ E
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Two solutions to decouple variables

To solve a subproblem with coupling variables

1. apply the prox-linear inexact update, or

2. introduce bridge variables, as done in distributed ADMM.

For example, consider

min (fi(x1) + fo(x2)) + 9(y), st (Aix1+ Axx2)+ By =b.

X1,X2,Y
In the ADMM (x1, x2)-subproblem, x; and x are coupled.
However, the prox-linear update is separable
g1 X1
22 ’ X2

2 X1,X2

i+
Lkﬂ} =argmin (f1(x1) + f2(x2)) +(
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Example: patient motion detection during radiation therapy

Goal: to separate different motions (machine’s vs patient’s)

(wmv)

e My work with Wei Deng (Rice) and group of Steve Jiang (UCSD)
o Model extending robust PCA:

)Plli)nzu1|\X|\* + p2l0l1 + |1 Z]l1, st. X + DO + Z = input video.

X static; DO: background and reg. motion, Z irreg. motion
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s6-1b.wmv
Media File (video/x-ms-wmv)


Example: patient motion detection during radiation therapy

(avi)



result_s6-2b_f151-450_Xdarker2.avi
Media File (video/avi)


Outline

8. Uncovered ADMM topics
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Uncovered ADMM topics

ADMM for LP, QP
ADMM for conic programming, especially, SDP
Multi-block ADMM schemes

ADMM applied to non-convex problems (its convergence is open)
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