Parallel Multi-Block ADMM with o(1/k) Convergence

Wotao Yin (UCLA Math)

W. Deng, M.-J. Lai, Z. Peng, and W. Yin, Parallel Multi-Block ADMM with o(1/k) Convergence, UCLA CAM 13-64, 2013.

Advanced Workshop at Shanghai U.

Linearly Constrained Separable Problem

minimize
$$f_1(\mathbf{x}_1) + \dots + f_N(\mathbf{x}_N)$$

subject to $A_1\mathbf{x}_1 + \dots + A_N\mathbf{x}_N = c$, $\mathbf{x}_1 \in \mathcal{X}_1, \dots, \mathbf{x}_N \in \mathcal{X}_N$.

- $f_i: \mathbb{R}^{n_i} \to (-\infty, +\infty]$ are convex functions. $N \geq 2$.
- a.k.a. extended monotropic programming [Bertsekas, 2008]
- Examples:
 - Linear programming
 - Multi-agent network optimization
 - Exchange problem
 - Regularization model

Parallel and Distributed Algorithms

Motivation:

- Data may be collected and stored in a distributed way
- Often difficult to minimize all the f_i 's jointly

Strategy:

- ullet Decompose the problem into N simpler and smaller subproblems
- Solve subproblems in parallel
- Coordinate by passing some information

Dual Decomposition

$$\begin{cases} (\mathbf{x}_1^{k+1}, \mathbf{x}_2^{k+1}, \dots, \mathbf{x}_N^{k+1}) = \arg\min_{\{\mathbf{x}_i\}} \mathcal{L}(\mathbf{x}_1, \dots, \mathbf{x}_N, \lambda^k), \\ \lambda^{k+1} = \lambda^k - \alpha_k \left(\sum_{i=1}^N A_i \mathbf{x}_i^{k+1} - c \right), \quad \alpha_k > 0. \end{cases}$$

Lagrangian:

$$\mathcal{L}(\mathbf{x}_1, \dots, \mathbf{x}_N, \lambda) = \sum_{i=1}^N f_i(\mathbf{x}_i) - \lambda^\top \left(\sum_{i=1}^N A_i \mathbf{x}_i - c\right)$$

• \mathbf{x} -step has N decoupled \mathbf{x}_i -subproblems, parallelizable:

$$\mathbf{x}_i^{k+1} = \arg\min_{\mathbf{x}_i} f_i(\mathbf{x}_i) - \langle \lambda^k, A_i \mathbf{x}_i \rangle, \text{ for } i = 1, 2, \dots, N,$$

- Convergence rate: $O(1/\sqrt{k})$ (for general convex problems)
- Often slow convergence in practice

Distributed ADMM

[Bertsekas and Tsitsiklis, 1997, Boyd et al., 2010, Wang et al., 2013]

Variable splitting:

$$\min_{\{\mathbf{x}_i\}, \{\mathbf{z}_i\}} \quad \sum_{i=1}^{N} f_i(\mathbf{x}_i)$$
s.t.
$$A_i \mathbf{x}_i - \mathbf{z}_i = \frac{c}{N}, \ i = 1, 2, \dots, N,$$

$$\sum_{i=1}^{N} \mathbf{z}_i = 0.$$

• Apply ADMM, alternatively update $\{x_i\}$ and $\{z_i\}$, then multipliers $\{\lambda_i\}$:

$$\mathbf{z}_{i}^{k+1} = \left(A_{i}\mathbf{x}_{i}^{k} - \frac{c}{N} - \frac{\lambda_{i}^{k}}{\rho}\right) - \frac{1}{N}\sum_{j=1}^{N} \left(A_{j}\mathbf{x}_{j}^{k} - \frac{c}{N} - \frac{\lambda_{j}^{k}}{\rho}\right), \forall i;$$

$$\mathbf{x}_{i}^{k+1} = \underset{\mathbf{x}_{i}}{\operatorname{arg\,min}} f_{i}(\mathbf{x}_{i}) + \frac{\rho}{2} \left\|A_{i}\mathbf{x}_{i} - \mathbf{z}_{i}^{k+1} - \frac{c}{N} - \frac{\lambda_{i}^{k}}{\rho}\right\|^{2}, \forall i;$$

$$\lambda_{i}^{k+1} = \lambda_{i}^{k} - \rho \left(A_{i}\mathbf{x}_{i}^{k+1} - \mathbf{z}_{i}^{k+1} - \frac{c}{N}\right), \forall i.$$

Jacobi ADMM

Augmented Lagrangian:

$$\mathcal{L}_{\rho}(\mathbf{x}_{1},\ldots,\mathbf{x}_{N},\lambda) = \sum_{i=1}^{N} f_{i}(\mathbf{x}_{i}) - \lambda^{\top} \left(\sum_{i=1}^{N} A_{i}\mathbf{x}_{i} - c \right) + \frac{\rho}{2} \left\| \sum_{i=1}^{N} A_{i}\mathbf{x}_{i} - c \right\|^{2}$$

• Do not introduce $\{z_i\}$, directly apply Jacobi-type block minimization:

$$\mathbf{x}_{i}^{k+1} = \underset{\mathbf{x}_{i}}{\operatorname{arg \, min}} \ \mathcal{L}_{\rho}(\mathbf{x}_{1}^{k}, \dots, \mathbf{x}_{i-1}^{k}, \mathbf{x}_{i}, \mathbf{x}_{i+1}^{k}, \dots, \mathbf{x}_{N}^{k}, \lambda^{k})$$

$$= \underset{\mathbf{x}_{i}}{\operatorname{arg \, min}} \ f_{i}(\mathbf{x}_{i}) + \frac{\rho}{2} \left\| A_{i}\mathbf{x}_{i} + \sum_{j \neq i} A_{j}\mathbf{x}_{j}^{k} - c - \frac{\lambda^{k}}{\rho} \right\|^{2}$$

for $i = 1, \dots, N$ in parallel;

$$\lambda^{k+1} = \lambda^k - \rho \left(\sum_{i=1}^N A_i \mathbf{x}_i^{k+1} - c \right).$$

- Not necessarily convergent (even if N=2)
- Need either conditions or modifications to converge

A Sufficient Condition for Convergence

Theorem

Suppose that there exists $\delta > 0$ such that

$$\|A_i^{\top} A_j\| \leq \delta, \ \forall \ i \neq j, \quad \text{and} \quad \lambda_{\min}(A_i^{\top} A_i) > 3(N-1)\delta, \ \forall \ i,$$

Then Jacobi ADMM converges to a solution.

The assumption basically says:

- $\{A_i,\ i=1,2,\ldots,N\}$ are mutually "near-orthogonal"
- ullet every A_i has full column rank and is sufficiently strong.

Proximal Jacobi ADMM

1. for $i = 1, \ldots, N$ in parallel,

$$\mathbf{x}_{i}^{k+1} = \operatorname*{arg\,min}_{\mathbf{x}_{i}} f_{i}(\mathbf{x}_{i}) + \frac{\rho}{2} \left\| A_{i}\mathbf{x}_{i} + \sum_{j \neq i} A_{j}\mathbf{x}_{j}^{k} - b - \frac{\lambda^{k}}{\rho} \right\|^{2} + \frac{1}{2} \left\| \mathbf{x}_{i} - \mathbf{x}_{i}^{k} \right\|_{P_{i}}^{2};$$

- 2. $\lambda^{k+1} = \lambda^k \gamma \rho \left(\sum_{i=1}^N A_i \mathbf{x}_i^{k+1} b \right), \ \gamma > 0.$
 - The added proximal term is critical to convergence.
 - Some forms of $P_i \succeq 0$ make subproblems easier to solve and more stable.
 - Global o(1/k) convergence if P_i and γ are properly chosen.
 - Suitable for parallel and distributed computing.

Little-o convergence

Lemma

If a sequence $\{a_k\} \subset \mathbb{R}$ obeys:

$$a_k \geq 0$$
 and $\sum_{t=1}^{\infty} a_t < \infty,$

then we have:

- 1. (convergence) $\lim_{k\to\infty} a_k = 0$;
- 2. (ergodic convergence) $\frac{1}{k} \sum_{t=1}^{k} a_t = O\left(\frac{1}{k}\right)$;
- 3. (running best) $\min_{t \le k} \{a_t\} = o\left(\frac{1}{k}\right)$;
- 4. (non-ergodic convergence) if a_k is monotonically nonincreasing, then $a_k=o\left(\frac{1}{k}\right)$.

Convergence of Proximal Jacobi ADMM

Sufficient condition: there exist $\epsilon_i > 0$, i = 1, 2, ..., N such that

(C1)
$$\begin{cases} P_i \succ \rho(\frac{1}{\epsilon_i} - 1)A_i^{\top} A_i, & i = 1, 2, \dots, N \\ \sum_{i=1}^N \epsilon_i < 2 - \gamma. \end{cases}$$

Simplification to (C1): set $\epsilon_i < \frac{2-\gamma}{N}$:

$$P_i \succ \rho \left(\frac{N}{2-\gamma} - 1\right) A_i^{\top} A_i, \ i = 1, 2, \dots, N$$

- $P_i = \tau_i \mathbf{I}$ (standard proximal method): $\tau_i > \rho \left(\frac{N}{2-\gamma} 1 \right) \|A_i\|^2$
- $P_i = \tau_i \mathbf{I} \rho A_i^\top A_i$ (prox-linear method): $\tau_i > \frac{\rho N}{2-\gamma} ||A_i||^2$

o(1/k) Convergence Rate

Notation:

$$G_x := \begin{pmatrix} P_1 + \rho A_1^\top A_1 & & \\ & \ddots & \\ & & P_N + \rho A_N^\top A_N \end{pmatrix}, \ G_x' := G_x - \rho A^\top A$$

Theorem

If $G'_x \succeq 0$ and the condition (C1) holds, then

$$\|\mathbf{x}^k - \mathbf{x}^{k+1}\|_{G_x'}^2 = o(1/k)$$
 and $\|\lambda^k - \lambda^{k+1}\|^2 = o(1/k)$.

Note: $(\mathbf{x}^{k+1}, \lambda^{k+1})$ is optimal if $\|\mathbf{x}^k - \mathbf{x}^{k+1}\|_{G_x'}^2 = 0$, $\|\lambda^k - \lambda^{k+1}\|^2 = 0$. The quantity $\|\mathbf{u}^k - \mathbf{u}^{k+1}\|_{G'}^2$ as a measure of the convergence rate. Proof is similar to He and Yuan [2012], He et al. [2013].

Adaptive Parameter Tuning

- Condition (C1) may be rather conservative.
- Adaptively adjusting the matrices $\{P_i\}$ with guaranteed convergence.

```
 \begin{array}{lll} \text{I Initialize with small} & P_i^0 \succeq 0 \; (i=1,2,\ldots,N) \; \text{and a small} \; \eta > 0; \\ \text{2 for} & k=1,2,\ldots \; \text{do} \\ \text{3} & & \text{if} \; h(\mathbf{u}^{k-1},\mathbf{u}^k) > \eta \cdot \|\mathbf{u}^{k-1} - \mathbf{u}^k\|_G^2 \; \text{then} \\ \text{4} & & | \; P_i^{k+1} \leftarrow P_i^k, \; \forall i; \\ \text{5} & & \text{else} \\ \text{6} & & | \; \text{Increase} \; P_i \colon \; P_i^{k+1} \leftarrow \alpha_i P_i^k + \beta_i \, Q_i \; (\alpha_i > 1, \; \beta_i \geq 0, \; Q_i \succ 0), \forall i; \\ \text{7} & & | \; \text{Restart:} \; \mathbf{u}^k \leftarrow \mathbf{u}^{k-1}; \\ \end{array}
```

Note: $h(\mathbf{u}^k, \mathbf{u}^{k+1})$ can be computed at little extra cost in the algorithm.

• Often yields much smaller paramters $\{P_i\}$ than those required by condition (C1), leading to substantially faster convergence in practice.

Numerical Experiments

Compare several parallel splitting algorithms:

- Prox-JADMM: Proximal Jacobi ADMM [this work]
- VSADMM: distributed ADMM, variable splitting [Bertsekas, 2008]
- Corr-JADMM: Jacobian ADMM with correction steps [He et al., 2013]

They have roughly the same per-iteration cost (in terms of both computation and communication).

Exchange Problem

Consider a network of N agents that exchange n commodities.

$$\min_{\{\mathbf{x}_i\}} \sum_{i=1}^{N} f_i(\mathbf{x}_i) \quad \text{s.t. } \sum_{i=1}^{N} \mathbf{x}_i = 0.$$

- $\mathbf{x}_i \in \mathbb{R}^n \ (i=1,2,\ldots,N)$: quantities of commodities that are exchanged by agents i.
- $f_i: \mathbb{R}^n \to \mathbb{R}$: cost function for agent i.

Numerical Result

Let $f_i(\mathbf{x}_i) := \frac{1}{2} \|C_i \mathbf{x}_i - d_i\|^2$, $C_i \in \mathbb{R}^{p \times n}$ and $d_i \in \mathbb{R}^p$.

Figure: Exchange problem (n = 100, N = 100, p = 80).

Basis Pursuit

Finding sparse solutions of an under-determined linear system:

$$\min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{s.t. } A\mathbf{x} = c$$

- $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ (m < n)
- Partition data into N blocks:

$$\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N], \ A = [A_1, A_2, \dots, A_N], \ f_i(\mathbf{x}_i) = \|\mathbf{x}_i\|_1$$

• YALL1: a dual-ADMM solver for the basis pursuit problem.

Numerical Result

Figure: ℓ_1 -problem $(n=1000,\ m=300,\ k=60).$

Amazon EC2

Tested solve two basis pursuit problems.

	m	n	k	Size
dataset 1	1.0×10^5	2.0×10^5	2.0×10^3	150 G B
dataset 2	1.5×10^5	3.0×10^5	3.0×10^3	337 G B

Environment:

- C code uses GSL and MPI, about 300 lines
- 10 instances from Amazon, each with 8 cores and 68GB RAM
- price: \$17 each hour

	150GB Test			337GB Test		
	ltr	Time(s)	Cost(\$)	ltr	Time(s)	Cost(\$)
Data generation	_	44.4	0.21	_	99.5	0.5
CPU per iteration	_	1.32	_	_	2.85	_
Comm. per iteration	_	0.07	_	_	0.15	_
Reach 10^{-1}	23	30.4	0.14	27	79.08	0.37
Reach 10^{-2}	30	39.4	0.18	39	113.68	0.53
Reach 10^{-3}	86	112.7	0.53	84	244.49	1.15
$Reach\ 10^{-4}$	234	307.9	1.45	89	259.24	1.22

Summary

- It is feasible to extend ADMM from 2 blocks to 3 or more blocks
- Jacobi ADMM is good for problems with large and distributed data
- Gauss-Seidel ADMM is good for 3 or a few more blocks,
 Jacobi ADMM is good for many blocks
- Asynchronous subproblems become a real need (talk to Dong Qian)

References

- D. P. Bertsekas. Extended monotropic programming and duality. *Journal of optimization theory and applications*, 139(2):209–225, 2008.
- D. Bertsekas and J. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods, Second Edition. Athena Scientific, 1997.
- S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. *Machine Learning*, 3(1):1–122, 2010.
- X. F. Wang, M. Y. Hong, S. Q. Ma, and Z.-Q. Luo. Solving multiple-block separable convex minimization problems using two-block alternating direction method of multipliers. arXiv preprint arXiv:1308.5294, 2013.
- B. S. He and X. M. Yuan. On non-ergodic convergence rate of Douglas-Rachford alternating direction method of multipliers. 2012.
- B. S. He, L. S. Hou, and X. M. Yuan. On full Jacobian decomposition of the augmented lagrangian method for separable convex programming. 2013.