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Linearly Constrained Separable Problem

minimize fi(x1)+ -+ fv(xn)
subject to Aix; +---+ Ayxy = ¢,
x1 € X, ..., Xy € Xp.

= fi : R"™ — (—00, +00] are convex functions. N > 2.
= a.k.a. extended monotropic programming [Bertsekas, 2008]
= Examples:

= Linear programming

= Multi-agent network optimization

= Exchange problem

= Regularization model



Parallel and Distributed Algorithms

Motivation:

= Data may be collected and stored in a distributed way

= Often difficult to minimize all the f;'s jointly

Strategy:

= Decompose the problem into N simpler and smaller subproblems
= Solve subproblems in parallel

= Coordinate by passing some information



u iti
Dual Decomposition

k1 k1 k41 : k
(=P x5t xh ) =argming, , L(x1,...,%xn,A"),

AP = 2P — (Zszl Aix,][c+1 — c) , ag>0.

Lagrangian:

N N
L(X1,..., XN, A) = Zfi(x,») Y (Z Aix; — c>
=1

i=1

x-step has N decoupled x;-subproblems, parallelizable:

xf'H = argmin f;(x;) — ()\k,Aixi>, fori=1,2,..., N,

Xi

Convergence rate: O(1/v/k) (for general convex problems)

Often slow convergence in practice



Distributed ADMM
[Bertsekas and Tsitsiklis, 1997, Boyd et al., 2010, Wang et al., 2013]

= Variable splitting:

min (X
{xit{z} ;ﬁ( 2

s.t. AiXZ‘ — Z; =

k N k
k+1 Y 1 k€A :

Xi_“rl = argmin f;(x;) + g ’

Xi

AL Nk (Aixf“ _h £) Vi.



Jacobi ADMM

= Augmented Lagrangian:

N N
Lo(X1,...,XN,A\) = Zfi(xi)f)\T (Z Aixi — c) +§
i=1 i=1

N
E Aixi — C
i=1

= Do not introduce {z;}, directly apply Jacobi-type block minimization:

k+1 . k k k kK
x; - =argmin L,(X7, ..., Xi1,Xi; Xia1s---r XN A")
Xg
N
. P k A"
=argmin fi(x;) + = ||Axi + E Ajxi —c— —
x; 2 — p
J#i
for i =1,..., N in parallel;

N
ALk p (Z A,;xi-C+1 — c) .
i=1

= Not necessarily convergent (even if N = 2)

= Need either conditions or modifications to converge
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A Sufficient Condition for Convergence

Theorem

Suppose that there exists § > 0 such that

|A] Ajl| <6, Vi#j, and Amin(A; As) > 3(N —1)6, Vi,
Then Jacobi ADMM converges to a solution.
The assumption basically says:

= {4;, i=1,2,..., N} are mutually “near-orthogonal”

= every A; has full column rank and is sufficiently strong.



Proximal Jacobi ADMM

1. for i =1,..., N in parallel,
2

. 2P 1
xi?+1 = argx?’unfi(xi) + g Aix; + Z ij_;? —b— ? + 5 ’
J#i

2. ML = X\F —qp (Zﬁil Axh - b) , v > 0.

2
k .
Xi =X HP,,’

= The added proximal term is critical to convergence.
= Some forms of P; > 0 make subproblems easier to solve and more stable.
= Global o(1/k) convergence if P; and -y are properly chosen.

= Suitable for parallel and distributed computing.



Little-o convergence

Lemma

If a sequence {a} C R obeys:

oo}

ar, >0 and Zat<oo,

t=1
then we have:
1. (convergence) limy_.oo ar, = 0;
2. (ergodic convergence) + Z'Zzl a=0 (%)
1

3. (running best) l}lgiil{at} =0 (E)

4. (non-ergodic convergence) if aj. is monotonically nonincreasing, then

w=o(})
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Convergence of Proximal Jacobi ADMM

Sufficient condition: there exist ¢; > 0, ¢ =1,2,..., N such that

Pi=p(: -1)AA;, i=1,2,...,N
(C1) N N
Dl € <279

. oge . ) 2—ry .
Simplification to (C1): set ¢; < =57

Pi>p<2]_vfy1>A,;TAi, i=1,2,...,N

= P; = ;I (standard proximal method): 7 > p (— — 1) 1 4; ]2
» P; =10 — pA] A; (prox-linear method): 7; > ”N ||A II?



o(1/k) Convergence Rate

Notation:

G, = , Ghi=G,—pATA
PN —|—pA;\V/AN

Theorem
If G, = 0 and the condition (C1) holds, then

I = "G, = o(1/k) and |IN" = X = o(1/k).

Note: (x"*', \**1) is optimal if [[x" —x**!|[Z, =0, []A* = A*"!||> = 0. The

quantity ||u® — uk“HQG, as a measure of the convergence rate. Proof is similar

to He and Yuan [2012], He et al. [2013].



Adaptive Parameter Tuning

= Condition (C1) may be rather conservative.

= Adaptively adjusting the matrices {P;} with guaranteed convergence.

1 Initialize with small P =0 (i =1,2,...,N) and a small n > 0;

2 fork=1,2,...do

3 if AWt uf) > 75 [u"! — u”||% then

s | P — P Vi

5 else

6 Increase P;: Pf“ — iPF 4 3:Qi (i > 1, 3 >0, Q; > 0),V4;
7 L Restart: u* «— u*1;

Note: h(u”, u**') can be computed at little extra cost in the algorithm.

= Often yields much smaller paramters {P;} than those required by

condition (C1), leading to substantially faster convergence in practice.



Numerical Experiments

Compare several parallel splitting algorithms:

= Prox-JADMM: Proximal Jacobi ADMM [this work]
= VSADMM: distributed ADMM, variable splitting [Bertsekas, 2008]
= Corr-JADMM: Jacobian ADMM with correction steps [He et al., 2013]

They have roughly the same per-iteration cost (in terms of both computation

and communication).



Exchange Problem

Consider a network of N agents that exchange n commodities.

N N
min (X4 s.t. x; = 0.
{xi} Z Jiloxi) Z
=1 =1
= x;, €R" (i =1,2,..., N): quantities of commodities that are exchanged

by agents 1.

= f; : R" — R: cost function for agent 1.



Numerical Result

Let fi(x:) == || Cix; — di||>, C; € RP*" and d; € R.
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Figure: Exchange problem (n = 100, N = 100, p = 80).
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Basis Pursuit

Finding sparse solutions of an under-determined linear system:

min [|x[1 st Ax=¢
X

= xeR", AcR™" (m < n)

= Partition data into NV blocks:
X = [x17x25 e aXNL A = [A17A27 DR AN]7 fl(x’b) = HXTH1

= YALL1: a dual-ADMM solver for the basis pursuit problem.



Relative Error

Numerical Result
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Figure: £1-problem (n = 1000, m = 300, k = 60).
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Amazon EC2

Tested solve two basis pursuit problems.

m n k Size
dataset 1 1.0 x 10° 2.0 x 10° 2.0x 10® 150GB
dataset 2 1.5x 10° 3.0x10° 3.0x10® 337GB

Environment:

» C code uses GSL and MPI, about 300 lines

= 10 instances from Amazon, each with 8 cores and 68GB RAM

= price: $17 each hour
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150GB Test 337GB Test

ltr  Time(s) Cost($) Itr Time(s) Cost($)
Data generation - 44.4 0.21 - 99.5 0.5
CPU per iteration - 1.32 - - 2.85 -
Comm. per iteration - 0.07 - - 0.15 -
Reach 107! 23 30.4 0.14 27 79.08 0.37
Reach 1072 30 39.4 0.18 39 113.68 0.53
Reach 1073 86 112.7 0.53 84 244 .49 1.15
Reach 107* 234 307.9 1.45 89 259.24 1.22




Summary

It is feasible to extend ADMM from 2 blocks to 3 or more blocks
Jacobi ADMM is good for problems with large and distributed data

Gauss-Seidel ADMM is good for 3 or a few more blocks,
Jacobi ADMM is good for many blocks

Asynchronous subproblems become a real need (talk to Dong Qian)
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