Self Equivalence of the Alternating Direction Method of Multipliers

Wotao Yin (UCLA Math)
M. Yan and W. Yin, UCLA CAM 14-59, 2014.

Advanced Workshop at Shanghai U.

Brief history of ADMM

- Peaceman-Rachford Splitting (PRS) and Douglas-Rachford Splitting (DRS) appeared in 1950s
- For 30-40 years, they are used to solve PDEs and find $x \in C_{1} \cap C_{2}$
- Gabay ${ }^{1}$ established equivalence between ADM 2 and DRS on the dual
- Eckstein ${ }^{3}$ shows DRS is equivalent to DRS on the dual, for a special case
- Eckstein and Fukushima ${ }^{4}$ shows ADM is equivalent to ADM on the dual, for a special case $\mathbf{A} \mathbf{A}^{T}=I$. This result is rarely mention in the literature.

[^0]- Recently, ADM or ADMM revived and rediscovered as Split Bregman ${ }^{5}$
- Recent popularity starts in the imaging (total variation), compressed sensing (ℓ_{1}), and parallel and distributed computing
- Many new applications are found in statistical and machine learning, matrix completion, finance, control, and decentralized optimization
- On the other hand, primal-dual algorithms become popular

[^1]
Overall features of ADM

- easy to implement
- convergence requires very few conditions
- (nearly) state-of-the-art performance
- very versatile:
- as simple as alternating projection
- can handle two or more objective terms and constraints
- give rise to parallel and distributed algorithms for problems with big data

Original problem and its ADM

$$
\begin{align*}
& \underset{\mathbf{x}, \mathbf{y}}{\operatorname{minimize}} f(\mathbf{x})+g(\mathbf{y}) \tag{P1}\\
& \text { subject to } \mathbf{A x}+\mathbf{B y}=\mathbf{b}
\end{align*}
$$

Algorithm 1 ADM on (P1)

$$
\begin{aligned}
& \text { initialize } \mathbf{x}_{1}^{0}, \mathbf{z}_{1}^{0}, \lambda>0 \\
& \text { for } k=0,1, \cdots \text { do } \\
& \qquad \mathbf{y}_{1}^{k+1}=\underset{\mathbf{y}}{\arg \min } g(\mathbf{y})+(2 \lambda)^{-1}\left\|\mathbf{A} \mathbf{x}_{1}^{k}+\mathbf{B} \mathbf{y}-\mathbf{b}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2} \\
& \qquad \mathbf{x}_{1}^{k+1}=\underset{\mathbf{x}}{\arg \min } f(\mathbf{x})+(2 \lambda)^{-1}\left\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{y}_{1}^{k+1}-\mathbf{b}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2} \\
& \mathbf{z}_{1}^{k+1}=\mathbf{z}_{1}^{k}+\lambda^{-1}\left(\mathbf{A} \mathbf{x}_{1}^{k+1}+\mathbf{B} \mathbf{y}_{1}^{k+1}-\mathbf{b}\right) \\
& \text { end for }
\end{aligned}
$$

- Similar to the augmented Lagrangian method
- Deal with (f, \mathbf{A}) and (g, \mathbf{B}) only one at a time

Master-slave problem and its ADM

Define slave problems:

$$
\begin{align*}
& F(\mathbf{s}):=\min _{\mathbf{x}} f(\mathbf{x})+\iota_{\{\mathbf{x}: \mathbf{A} \mathbf{x}=\mathbf{s}\}}(\mathbf{x}), \tag{1a}\\
& G(\mathrm{t}):=\min _{\mathbf{y}} g(\mathbf{y})+\iota_{\{\mathbf{y}: \mathbf{B} \mathbf{y}=\mathbf{b}-\mathbf{t}\}}(\mathbf{y}) . \tag{1b}
\end{align*}
$$

Master formulation:

$$
\begin{array}{cl}
\underset{\mathbf{s}, \mathbf{t}}{\operatorname{minimize}} & F(\mathbf{s})+G(\mathbf{t}) \tag{P2}\\
\text { subject to } & \mathbf{s}-\mathbf{t}=\mathbf{0}
\end{array}
$$

(P2) is equivalent to (P1): they have the same solutions $\mathbf{x}^{*}, \mathbf{y}^{*}$ and objective.
Algorithm 2 ADM on (P2)
initialize $\mathbf{s}^{0}, \mathbf{z}_{2}^{0}, \lambda>0$
for $k=0,1, \cdots$ do

$$
\mathbf{t}^{k+1}=\arg \min G(\mathbf{t})+(2 \lambda)^{-1}\left\|\mathbf{s}^{k}-\mathbf{t}+\lambda \mathbf{z}_{2}^{k}\right\|_{2}^{2}
$$

$$
\mathbf{s}^{k+1}=\stackrel{\mathbf{t}}{\arg \min } F(\mathbf{s})+(2 \lambda)^{-1}\left\|\mathbf{s}-\mathbf{t}^{\mathbf{k}+1}+\lambda \mathbf{z}_{2}\right\|_{2}^{2}
$$

$$
\mathbf{z}_{2}^{k+1}=\mathbf{z}_{2}^{k}+\lambda^{-1}\left(\mathbf{s}^{k+1}-\mathbf{t}^{k+1}\right)
$$

end for

Lagrange dual problems of (P1) and (P2)

ADM is applied to both primal and dual problems.
Dual ADM examples: YALL1 package ${ }^{6}$, ADM for $\ell_{1}-\ell_{1}$ model 7, traffic equilibrium problem ${ }^{8}$

Lagrange dual of (P1) (where * means convex conjugate or adjoint):

$$
\underset{\mathbf{v}}{\operatorname{minimize}} \quad f^{*}\left(-\mathbf{A}^{*} \mathbf{v}\right)+g^{*}\left(-\mathbf{B}^{*} \mathbf{v}\right)+\langle\mathbf{v}, \mathbf{b}\rangle
$$

Apply variable splitting gives the ADM-ready reformulation:

$$
\begin{array}{ll}
\underset{\mathbf{u}, \mathbf{v}}{\operatorname{minimize}} & f^{*}\left(-\mathbf{A}^{*} \mathbf{u}\right)+\left(g^{*}\left(-\mathbf{B}^{*} \mathbf{v}\right)+\langle\mathbf{v}, \mathbf{b}\rangle\right) \tag{D1}\\
\text { subject to } & \mathbf{u}-\mathbf{v}=\mathbf{0}
\end{array}
$$

[^2]Similarly, the ADM-ready formulation of (P2)'s Lagrange dual:

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{v}}{\operatorname{minimize}} & F^{*}(-\mathbf{u})+G^{*}(\mathbf{v}) \tag{D2}\\
\text { subject to } & \mathbf{u}-\mathbf{v}=\mathbf{0}
\end{array}
$$

Problems (D1) and (D2) are equivalent through the identities:

$$
\begin{aligned}
F^{*}(-\mathbf{u}) & =f^{*}\left(-\mathbf{A}^{*} \mathbf{u}\right) \\
G^{*}(\mathbf{v}) & =g^{*}\left(-\mathbf{B}^{*} \mathbf{v}\right)+\langle\mathbf{v}, \mathbf{b}\rangle
\end{aligned}
$$

ADM on the Lagrange dual

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{v}}{\operatorname{minimize}} & F^{*}(-\mathbf{u})+G^{*}(\mathbf{v}) \tag{D2}\\
\text { subject to } & \mathbf{u}-\mathbf{v}=\mathbf{0}
\end{array}
$$

```
Algorithm 3 ADM on (D1)/(D2)
    initialize \(\mathbf{u}^{0}, \mathbf{z}_{3}^{0}, \lambda>0\)
    for \(k=0,1, \cdots\) do
        \(\mathbf{v}^{k+1}=\arg \min G^{*}(\mathbf{v})+\frac{\lambda}{2}\left\|\mathbf{u}^{k}-\mathbf{v}+\lambda^{-1} \mathbf{z}_{3}^{k}\right\|_{2}^{2}\)
        \(\mathbf{u}^{k+1}=\arg \min F^{*}(-\mathbf{u})+\frac{\lambda}{2}\left\|\mathbf{u}-\mathbf{v}^{\mathbf{k}+1}+\lambda^{-1} \mathbf{z}_{3}\right\|_{2}^{2}\)
        \(\mathbf{z}_{3}^{k+1}=\mathbf{z}_{3}^{k}+\lambda\left(\mathbf{u}^{k+1}-\mathbf{v}^{k+1}\right)\)
    end for
```


Self-equivalence theorem

Theorem

$$
A D M \text { on }(\mathrm{P} 1) \Longleftrightarrow A D M \text { on }(\mathrm{P} 2) \Longleftrightarrow A D M \text { on }(\mathrm{D} 1) /(\mathrm{D} 2)
$$

Suppose Algorithms 1-3 initialize $\mathbf{A} \mathbf{x}_{1}^{0}=\mathbf{s}^{0}=\mathbf{z}_{3}^{0}$ and $\mathbf{z}_{1}^{0}=\mathbf{z}_{2}^{0}=\mathbf{u}^{0}$ and use the same λ. Then, from the iterates of any algorithm, the iterates of the others can be explicitly recovered.

Proof.

The equivalence between ADMs on (P1) and (P2) follows from definitions. The equivalence between ADMs on (P2) and (D1)/(D2) follows from algebraic manipulation and the property: $x \in \partial f(y) \Longleftrightarrow y \in \partial f^{*}(x)$ for proper, closed, convex function f.

Remarks

- ADM essentially applies only to the master problem

$$
\underset{\mathbf{s}, \mathbf{t}}{\operatorname{minimize}} F(\mathbf{s})+G(\mathbf{t}) \quad \text { subject to } \quad \mathbf{s}-\mathbf{t}=\mathbf{0}
$$

which is an exchange problem and a zero-sum convex game.
(f, \mathbf{A}) and (g, \mathbf{B}) are only dealt in the subproblems, not by ADM.
The often-seen ADM, Algorithm 1, has obscured this fact.

- ADMs on (P2) and (D2) have the primal-dual mapping:

$$
\mathbf{u}^{k}=\mathbf{z}_{2}^{k}, \quad \mathbf{z}_{3}^{k}=\mathbf{s}^{k}
$$

The later updated variable, \mathbf{u} or \mathbf{s}, is the dual variable in the dual ADM.

- Penalty parameter λ in the primal ADM becomes λ^{-1} in the dual ADM. It balances primal-dual updates.
- The perfect symmetry between primal and dual ADMs suggest that ADM is a primal-dual algorithm to a saddle-point formulation (come later ...)

ADM with the swapped x / y-update order

```
Algorithm 4 "The other ADM" on (P1)
    initialize \(\mathbf{x}_{1}^{0}, \mathbf{z}_{1}^{0}, \lambda>0\)
    for \(k=0,1, \cdots\) do
        \(\mathbf{x}_{4}^{k+1}=\underset{\mathbf{x}}{\arg \min } f(\mathbf{x})+(2 \lambda)^{-1}\left\|\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{y}_{4}^{k}-\mathbf{b}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2}\)
        \(\mathbf{y}_{4}^{k+1}=\arg \min g(\mathbf{y})+(2 \lambda)^{-1}\left\|\mathbf{A} \mathbf{x}_{4}^{k+1}+\mathbf{B y}-\mathbf{b}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2}\)
        \(\mathbf{z}_{4}^{k+1}=\mathbf{z}_{1}^{k}+\lambda^{-1}\left(\mathbf{A} \mathbf{x}_{4}^{k+1}+\mathbf{B} \mathbf{y}_{4}^{k+1}-\mathbf{b}\right)\)
    end for
```

The only difference between Algorithms 1 (ADM) and 4 (the other ADM):

- Algorithm 1 updates \mathbf{y}, then \mathbf{x}
- Algorithm 4 updates \mathbf{x}, then \mathbf{y}

In general, they produce different iterates, but there are exceptions.

Affine proximal mapping

Definition

A mapping T is affine if, for any \mathbf{r}_{1} and \mathbf{r}_{2},

$$
T\left(\frac{1}{2} \mathbf{r}_{1}+\frac{1}{2} \mathbf{r}_{2}\right)=\frac{1}{2} T \mathbf{r}_{1}+\frac{1}{2} T \mathbf{r}_{2} .
$$

Proposition

Let G be a proper, closed, convex function. The following statements are equivalent:

1. $\operatorname{prox}_{G(\cdot)}$ is affine;
2. $\operatorname{prox}_{\lambda G(\cdot)}$ is affine for $\lambda>0$;
3. $a \operatorname{prox}_{G(\cdot)} \circ b \mathbf{I}+c \mathbf{I}$ is affine for any scalars a, b and c;
4. $\operatorname{prox}_{G^{*}(\cdot)}$ is affine;
5. G is convex quadratic (or, affine or constant) and has an affine domain (either \mathcal{G} or the intersection of hyperplanes in \mathcal{G}).
If function g obeys Part 5, then G defined in (1b) satisfies Part 5, too.

Order-swapping equivalence

Theorem

1. Assume prox_{G} is affine. Given the iterates of "the other ADM", if $\mathbf{z}_{4}^{0} \in \partial G\left(\mathbf{b}-\mathbf{B y}_{4}^{0}\right)$, then the iterates of ADM can be recovered as

$$
\mathbf{x}_{1}^{k}=\mathbf{x}_{4}^{k+1}, \quad \mathbf{z}_{1}^{k}=\mathbf{z}_{4}^{k}+\lambda^{-1}\left(\mathbf{A} \mathbf{x}_{4}^{k+1}+\mathbf{B} \mathbf{y}_{4}^{k}-\mathbf{b}\right)
$$

2. Assume prox_{F} is affine. Given the iterates of $A D M$, if $-\mathbf{z}_{1}^{0} \in \partial G\left(\mathbf{A} \mathbf{x}_{1}^{0}\right)$, then the iterates of "the other ADM" can be recovered as

$$
\mathbf{y}_{4}^{k}=\mathbf{y}_{1}^{k+1}, \quad \mathbf{z}_{4}^{k}=\mathbf{z}_{1}^{k}+\lambda^{-1}\left(\mathbf{A} \mathbf{x}_{1}^{k+1}+\mathbf{B} \mathbf{y}_{1}^{k+1}-\mathbf{b}\right) .
$$

Proof. Part 1 is based on algebraic manipulations, where a key step needs:

$$
\operatorname{prox}_{\lambda G}\left(2 \mathbf{r}_{1}-\mathbf{r}_{2}\right)=2 \operatorname{prox}_{\lambda G} \mathbf{r}_{1}-\operatorname{prox}_{\lambda G} \mathbf{r}_{2}
$$

which is equivalent to prox_{G} being affine.
Same on $\operatorname{prox}_{\lambda F}$ for Part 2.
Remark: Condition $\mathbf{z}_{4}^{0} \in \partial G\left(\mathbf{b}-\mathbf{B} \mathbf{y}_{4}^{0}\right)$ can be removed by adding 1 to all the iterates of $\mathbf{x}_{4}, \mathbf{y}_{4}, \mathbf{z}_{4}$ since $\mathbf{z}_{4}^{1} \in \partial G\left(\mathbf{b}-\mathbf{B} \mathbf{y}_{4}^{1}\right)$ always holds.

Same for Part 2.

Saddle-point formulation and its algorithm

The original problem (P1) is equivalent to

$$
\min _{\mathbf{y}} \max _{\mathbf{u}} g(\mathbf{y})+\langle\mathbf{u}, \mathbf{B} \mathbf{y}-\mathbf{b}\rangle-f^{*}\left(-\mathbf{A}^{*} \mathbf{u}\right) .
$$

Algorithm 5 Primal-dual saddle-point algorithm

$$
\begin{aligned}
& \text { initialize } \mathbf{u}^{0}, \mathbf{u}^{-1}, \mathbf{y}^{0}, \lambda>0 \\
& \text { for } k=0,1, \cdots \text { do } \\
& \qquad \begin{array}{l}
\overline{\mathbf{u}}^{k}=2 \mathbf{u}^{k}-\mathbf{u}^{k-1} \\
\mathbf{y}^{k+1}=\underset{\mathbf{y}}{\arg \min } g(\mathbf{y})+(2 \lambda)^{-1}\left\|\mathbf{B y}-\mathbf{B y}^{k}+\lambda \overline{\mathbf{u}}^{k}\right\|_{2}^{2}
\end{array} \\
& \quad \mathbf{u}^{k+1}=\underset{\mathbf{u}}{\arg \min } f^{*}\left(-\mathbf{A}^{*} \mathbf{u}\right)+\lambda / 2\left\|\mathbf{u}-\mathbf{u}^{k}-\lambda^{-1}\left(\mathbf{B} \mathbf{y}^{k+1}-\mathbf{b}\right)\right\|_{2}^{2} \\
& \text { end for }
\end{aligned}
$$

- If $\mathbf{B}=\mathbf{I}$, then it is equivalent to the primal-dual algorithm ${ }^{9}$; the paper also noted the equivalence between it and ADM.

[^3]
ADM equivalence to the primal-dual algorithm

Theorem
Suppose in Algorithms 1 and 5, the initial iterates satisfy $\mathbf{z}_{1}^{0}=\mathbf{u}^{0}$ and $\mathbf{A} \mathbf{x}^{0}=\lambda\left(\mathbf{u}^{0}-\mathbf{u}^{-1}\right)+\mathbf{b}-\mathbf{B y} \mathbf{y}^{0}$. Then Algorithms 1 and 5 are equivalent by

$$
\mathbf{A} \mathbf{x}^{k}=\lambda\left(\mathbf{u}^{k}-\mathbf{u}^{k-1}\right)+\mathbf{b}-\mathbf{B y}^{k}, \quad \mathbf{z}_{1}^{k}=\mathbf{u}^{k},
$$

for $k \geq 0$.

Application: total variation image processing

- Rudin-Osher-Fatemi model:

$$
\underset{x \in B V(\Omega)}{\operatorname{minimize}} \int_{\Omega}|D x|+\frac{\alpha}{2}\|x-b\|_{2}^{2}
$$

which recovers a piece-wise constant (thus noise-free) image from a noisy observation b.

- Discretization: $\|\nabla \mathbf{x}\|_{2,1}=\sum_{i j}\left|(\nabla \mathbf{x})_{i j}\right|$, where $|\cdot|$ is 2-norm.
- ADM-ready form:

$$
\underset{\mathbf{x}, \mathbf{y}}{\operatorname{minimize}}\|\mathbf{y}\|_{2,1}+\frac{\alpha}{2}\|\mathbf{x}-\mathbf{b}\|_{2}^{2}, \quad \text { subject to } \mathbf{y}-\nabla \mathbf{x}=\mathbf{0}
$$

- Chambolle's dual form:

$$
\begin{aligned}
& \underset{\mathbf{v}, \mathbf{u}}{\operatorname{minimize}} \frac{1}{2 \alpha}\|\operatorname{div} \mathbf{u}+\alpha \mathbf{b}\|_{2}^{2}+\iota_{\left\{\|\cdot\|_{2, \infty} \leq 1\right\}}(\mathbf{v}), \quad \text { subject to } \mathbf{u}-\mathbf{v}=\mathbf{0} \\
& \text { where }\|\mathbf{v}\|_{2, \infty}=\max _{i j}\left|(\mathbf{v})_{i j}\right|
\end{aligned}
$$

Equivalent algorithms

1. Algorithm 1 (primal ADM) is

$$
\begin{aligned}
\mathbf{x}_{1}^{k+1} & =\underset{\mathbf{x}}{\arg \min } \frac{\alpha}{2}\|\mathbf{x}-\mathbf{b}\|_{2}^{2}+(2 \lambda)^{-1}\left\|\nabla \mathbf{x}-\mathbf{y}_{1}^{k}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2} \\
\mathbf{y}_{1}^{k+1} & =\underset{\mathbf{y}}{\arg \min }\|\mathbf{y}\|_{2,1}+(2 \lambda)^{-1}\left\|\nabla \mathbf{x}_{1}^{k+1}-\mathbf{y}+\lambda \mathbf{z}_{1}^{k}\right\|_{2}^{2} \\
\mathbf{z}_{1}^{k+1} & =\mathbf{z}_{1}^{k}+\lambda^{-1}\left(\nabla \mathbf{x}_{1}^{k+1}-\mathbf{y}_{1}^{k+1}\right) .
\end{aligned}
$$

2. Algorithm 3 (dual ADM) is

$$
\begin{aligned}
& \mathbf{u}_{2}^{k+1}=\underset{\mathbf{u}}{\arg \min } \frac{1}{2 \alpha}\|\operatorname{div} \mathbf{u}+\alpha \mathbf{b}\|_{2}^{2}+\frac{\lambda}{2}\left\|\mathbf{v}_{2}^{k}-\mathbf{u}+\lambda^{-1} \mathbf{z}_{2}^{k}\right\|_{2}^{2}, \\
& \mathbf{v}_{2}^{k+1}=\underset{\mathbf{v}}{\arg \min } \iota_{\left\{\|\cdot\|_{2, \infty} \leq 1\right\}}(\mathbf{v})+\frac{\lambda}{2}\left\|\mathbf{v}-\mathbf{u}_{2}^{k+1}+\lambda^{-1} \mathbf{z}_{2}^{k}\right\|_{2}^{2}, \\
& \mathbf{z}_{2}^{k+1}=\mathbf{z}_{2}^{k}+\lambda\left(\mathbf{v}_{2}^{k+1}-\mathbf{u}_{2}^{k+1}\right) .
\end{aligned}
$$

3. Algorithm 5 (primal-dual) is

$$
\begin{aligned}
\overline{\mathbf{v}}_{3}^{k} & =2 \mathbf{v}_{3}^{k}-\mathbf{v}_{3}^{k-1} \\
\mathbf{x}_{3}^{k+1} & =\underset{\mathbf{x}}{\arg \min } \frac{\alpha}{2}\|\mathbf{x}-\mathbf{b}\|_{2}^{2}+\left\langle\overline{\mathbf{v}}_{3}^{k}, \nabla \mathbf{x}\right\rangle+(2 \lambda)^{-1}\left\|\nabla \mathbf{x}-\nabla \mathbf{x}_{3}^{k}\right\|_{2}^{2}, \\
\mathbf{v}_{3}^{k+1} & =\underset{\mathbf{v}}{\arg \min } \iota_{\left\{\mathbf{v}:\|\mathbf{v}\|_{2, \infty} \leq 1\right\}}-\left\langle\mathbf{v}, \nabla \mathbf{x}_{3}^{k+1}\right\rangle+\frac{\lambda}{2}\left\|\mathbf{v}-\mathbf{v}^{k}\right\|_{2}^{2} .
\end{aligned}
$$

4. Algorithm 4 (primal ADM with update order swapped) is

$$
\begin{aligned}
\mathbf{y}_{4}^{k+1} & =\underset{\mathbf{y}}{\arg \min }\|\mathbf{y}\|_{2,1}+(2 \lambda)^{-1}\left\|\nabla \mathbf{x}_{4}^{k}-\mathbf{y}+\lambda \mathbf{z}_{4}^{k}\right\|_{2}^{2}, \\
\mathbf{x}_{4}^{k+1} & =\underset{\mathbf{x}}{\arg \min } \frac{\alpha}{2}\|\mathbf{x}-\mathbf{b}\|_{2}^{2}+(2 \lambda)^{-1}\left\|\nabla \mathbf{x}-\mathbf{y}_{4}^{k+1}+\lambda \mathbf{z}_{4}^{k}\right\|_{2}^{2}, \\
\mathbf{z}_{4}^{k+1} & =\mathbf{z}_{4}^{k}+\lambda^{-1}\left(\nabla \mathbf{x}_{4}^{k+1}-\mathbf{y}_{4}^{k+1}\right) .
\end{aligned}
$$

Corollary

Let $\mathbf{x}_{4}^{0}=\mathbf{b}+\alpha^{-1} \operatorname{div} \mathbf{z}_{4}^{0}$. If initialize $\mathbf{y}_{1}^{0}=-\mathbf{z}_{2}^{0}=\nabla \mathbf{x}_{3}^{0}-\lambda\left(\mathbf{v}_{3}^{0}-\mathbf{v}_{3}^{-1}\right)=\mathbf{y}_{4}^{1}$ and $\mathbf{z}_{1}^{0}=\mathbf{v}_{2}^{0}=\mathbf{v}_{3}^{0}=\mathbf{z}_{4}^{0}+\lambda^{-1}\left(\nabla \mathbf{x}_{4}^{0}-\mathbf{y}_{4}^{1}\right)$. Then for $k \geq 1$, we have the following equivalence between the iterations of the four algorithms:

$$
\begin{array}{lll}
\mathbf{y}_{1}^{k}=-\mathbf{z}_{2}^{k}=\nabla \mathbf{x}_{3}^{k}-\lambda\left(\mathbf{v}_{3}^{k}-\mathbf{v}_{3}^{k-1}\right) & =\mathbf{y}_{4}^{k+1} \\
\mathbf{z}_{1}^{k}=\mathbf{v}_{2}^{k} & =\mathbf{v}_{3}^{k} & =\mathbf{z}_{4}^{k}+\lambda^{-1}\left(\nabla \mathbf{x}_{4}^{k}-\mathbf{y}_{4}^{k+1}\right)
\end{array}
$$

Conclusions

Concluding remarks:

- ADM is a primal-dual algorithm that is self-dual, though seemingly a variant of the augmented Lagrangian method.
- When one of function is quadratic, the update order can be swapped.
- This work bridges the studies of ADM and primal-dual algorithms.

Open questions: The equivalence and improved understanding for

- Variants of ADM.
- Multiple-block extension of ADM.

Also, apply the extensions of ADM to primal-dual algorithms in a parallel way.

[^0]: ${ }^{1}$ Gabay. Applications of the method of multipliers to variational inequalities, 1983.
 ${ }^{2}$ ADM or ADMM = alternating direction method of multipliers, appeared in 60 s and formalized in 80 s
 ${ }^{3}$ Eckstien. Splitting methods for monotone operators with applications to parallel optimization, PhD thesis, 89'.
 ${ }^{4}$ Eckstein and Fukushima. Some reformulations and applications of the alternating direction, 1994.

[^1]: ${ }^{5}$ T.Goldstein and S.Osher. The split Bregman method for L1-regularized problems, 2009.

[^2]: ${ }^{6}$ J.Yang and Y.Zhang, Alternating direction algorithms for ℓ_{1}-problems in compressive sensing, 2011.
 ${ }^{7}$ Y.Xiao, H.Zhu, S.-Y. Wu. Primal and dual alternating direction algorithms for I1-I1-norm minimization problems in compressive sensing, 2013.
 ${ }^{8}$ Primal: Fukushima'96; dual: Gabay'83.

[^3]: ${ }^{9}$ Chambolle and Pock.

