
Self Equivalence of

the Alternating Direction Method of Multipliers

Wotao Yin (UCLA Math)

M. Yan and W. Yin, UCLA CAM 14-59, 2014.

Advanced Workshop at Shanghai U.

1 / 22

Brief history of ADMM

• Peaceman-Rachford Splitting (PRS) and Douglas-Rachford Splitting

(DRS) appeared in 1950s

• For 30-40 years, they are used to solve PDEs and find x ∈ C1 ∩ C2

• Gabay1 established equivalence between ADM2 and DRS on the dual

• Eckstein3 shows DRS is equivalent to DRS on the dual, for a special case

• Eckstein and Fukushima4 shows ADM is equivalent to ADM on the dual,

for a special case AAT = I . This result is rarely mention in the literature.

1Gabay. Applications of the method of multipliers to variational inequalities, 1983.
2ADM or ADMM = alternating direction method of multipliers, appeared in 60s and formalized in 80s
3Eckstien. Splitting methods for monotone operators with applications to parallel optimization, PhD thesis, 89’.
4Eckstein and Fukushima. Some reformulations and applications of the alternating direction, 1994.

2 / 22

• Recently, ADM or ADMM revived and rediscovered as Split Bregman5

• Recent popularity starts in the imaging (total variation), compressed

sensing (`1), and parallel and distributed computing

• Many new applications are found in statistical and machine learning,

matrix completion, finance, control, and decentralized optimization

• On the other hand, primal-dual algorithms become popular

5T.Goldstein and S.Osher. The split Bregman method for L1-regularized problems, 2009.
3 / 22

Overall features of ADM

• easy to implement

• convergence requires very few conditions

• (nearly) state-of-the-art performance

• very versatile:

- as simple as alternating projection

- can handle two or more objective terms and constraints

- give rise to parallel and distributed algorithms for problems with big data

4 / 22

Original problem and its ADM

minimize
x,y

f (x) + g(y) (P1)

subject to Ax + By = b

Algorithm 1 ADM on (P1)

initialize x0
1, z0

1, λ > 0

for k = 0, 1, ∙ ∙ ∙ do

yk+1
1 = arg min

y
g(y) + (2λ)−1‖Axk

1 + By− b + λzk
1‖

2
2

xk+1
1 = arg min

x
f (x) + (2λ)−1‖Ax + Byk+1

1 − b + λzk
1‖

2
2

zk+1
1 = zk

1 + λ−1(Axk+1
1 + Byk+1

1 − b)

end for

• Similar to the augmented Lagrangian method

• Deal with (f ,A) and (g,B) only one at a time

5 / 22

Master-slave problem and its ADM
Define slave problems:

F(s) := min
x

f (x) + ι{x:Ax=s}(x), (1a)

G(t) := min
y

g(y) + ι{y:By=b−t}(y). (1b)

Master formulation:

minimize
s,t

F(s) + G(t) (P2)

subject to s− t = 0.

(P2) is equivalent to (P1): they have the same solutions x∗,y∗ and objective.

Algorithm 2 ADM on (P2)

initialize s0, z0
2, λ > 0

for k = 0, 1, ∙ ∙ ∙ do

tk+1 = arg min
t

G(t) + (2λ)−1‖sk − t + λzk
2‖

2
2

sk+1 = arg min
s

F(s) + (2λ)−1‖s− tk+1 + λz2‖22

zk+1
2 = zk

2 + λ−1(sk+1 − tk+1)

end for
6 / 22

Lagrange dual problems of (P1) and (P2)

ADM is applied to both primal and dual problems.

Dual ADM examples: YALL1 package6, ADM for `1-`1 model7, traffic

equilibrium problem8

Lagrange dual of (P1) (where ∗ means convex conjugate or adjoint):

minimize
v

f ∗(−A∗v) + g∗(−B∗v) + 〈v,b〉.

Apply variable splitting gives the ADM-ready reformulation:

minimize
u,v

f ∗(−A∗u) + (g∗(−B∗v) + 〈v,b〉) (D1)

subject to u− v = 0.

6J.Yang and Y.Zhang, Alternating direction algorithms for `1-problems in compressive sensing, 2011.
7Y.Xiao, H.Zhu, S.-Y. Wu. Primal and dual alternating direction algorithms for l1-l1-norm minimization

problems in compressive sensing, 2013.
8Primal: Fukushima’96; dual: Gabay’83.

7 / 22

Similarly, the ADM-ready formulation of (P2)’s Lagrange dual:

minimize
u,v

F∗(−u) + G∗(v) (D2)

subject to u− v = 0.

Problems (D1) and (D2) are equivalent through the identities:

F∗(−u) = f ∗(−A∗u)

G∗(v) = g∗(−B∗v) + 〈v,b〉.

8 / 22

ADM on the Lagrange dual

minimize
u,v

F∗(−u) + G∗(v) (D2)

subject to u− v = 0.

Algorithm 3 ADM on (D1)/(D2)

initialize u0, z0
3, λ > 0

for k = 0, 1, ∙ ∙ ∙ do

vk+1 = arg min
v

G∗(v) + λ
2 ‖u

k − v + λ−1zk
3‖

2
2

uk+1 = arg min
u

F∗(−u) + λ
2 ‖u− vk+1 + λ−1z3‖22

zk+1
3 = zk

3 + λ(uk+1 − vk+1)

end for

9 / 22

Self-equivalence theorem

Theorem

ADM on (P1) ⇐⇒ ADM on (P2) ⇐⇒ ADM on (D1)/ (D2)

Suppose Algorithms 1-3 initialize Ax0
1 = s0 = z0

3 and z0
1 = z0

2 = u0 and use

the same λ. Then, from the iterates of any algorithm, the iterates of the others

can be explicitly recovered.

Proof.

The equivalence between ADMs on (P1) and (P2) follows from definitions.

The equivalence between ADMs on (P2) and (D1)/(D2) follows from algebraic

manipulation and the property: x ∈ ∂f (y)⇐⇒ y ∈ ∂f ∗(x) for proper, closed,

convex function f .

10 / 22

Remarks

• ADM essentially applies only to the master problem

minimize
s,t

F(s) + G(t) subject to s− t = 0,

which is an exchange problem and a zero-sum convex game.

(f ,A) and (g,B) are only dealt in the subproblems, not by ADM.

The often-seen ADM, Algorithm 1, has obscured this fact.

• ADMs on (P2) and (D2) have the primal-dual mapping:

uk = zk
2, zk

3 = sk .

The later updated variable, u or s, is the dual variable in the dual ADM.

• Penalty parameter λ in the primal ADM becomes λ−1 in the dual ADM. It

balances primal-dual updates.

• The perfect symmetry between primal and dual ADMs suggest that ADM

is a primal-dual algorithm to a saddle-point formulation (come later ...)

11 / 22

ADM with the swapped x/y-update order

Algorithm 4 “The other ADM” on (P1)

initialize x0
1, z0

1, λ > 0

for k = 0, 1, ∙ ∙ ∙ do

xk+1
4 = arg min

x
f (x) + (2λ)−1‖Ax + Byk

4 − b + λzk
1‖

2
2

yk+1
4 = arg min

y
g(y) + (2λ)−1‖Axk+1

4 + By− b + λzk
1‖

2
2

zk+1
4 = zk

1 + λ−1(Axk+1
4 + Byk+1

4 − b)

end for

The only difference between Algorithms 1 (ADM) and 4 (the other ADM):

• Algorithm 1 updates y, then x

• Algorithm 4 updates x, then y

In general, they produce different iterates, but there are exceptions.

12 / 22

Affine proximal mapping

Definition

A mapping T is affine if, for any r1 and r2,

T
(1

2
r1 +

1
2

r2

)
=

1
2

Tr1 +
1
2

Tr2.

Proposition

Let G be a proper, closed, convex function. The following statements are

equivalent:

1. proxG(∙) is affine;

2. proxλG(∙) is affine for λ > 0;

3. aproxG(∙) ◦ bI + cI is affine for any scalars a, b and c;

4. proxG∗(∙) is affine;

5. G is convex quadratic (or, affine or constant) and has an affine domain

(either G or the intersection of hyperplanes in G).

If function g obeys Part 5, then G defined in (1b) satisfies Part 5, too.

13 / 22

Order-swapping equivalence

Theorem

1. Assume proxG is affine. Given the iterates of “the other ADM”, if

z0
4 ∈ ∂G(b−By0

4), then the iterates of ADM can be recovered as

xk
1 = xk+1

4 , zk
1 = zk

4 + λ−1(Axk+1
4 + Byk

4 − b).

2. Assume proxF is affine. Given the iterates of ADM, if −z0
1 ∈ ∂G(Ax0

1) ,

then the iterates of “the other ADM” can be recovered as

yk
4 = yk+1

1 , zk
4 = zk

1 + λ−1(Axk+1
1 + Byk+1

1 − b).

14 / 22

Proof. Part 1 is based on algebraic manipulations, where a key step needs:

proxλG(2r1 − r2) = 2proxλGr1 − proxλGr2,

which is equivalent to proxG being affine.

Same on proxλF for Part 2.

Remark: Condition z0
4 ∈ ∂G(b−By0

4) can be removed by adding 1 to all the

iterates of x4,y4, z4 since z1
4 ∈ ∂G(b−By1

4) always holds.

Same for Part 2.

15 / 22

Saddle-point formulation and its algorithm

The original problem (P1) is equivalent to

min
y

max
u

g(y) + 〈u,By− b〉 − f ∗(−A∗u).

Algorithm 5 Primal-dual saddle-point algorithm

initialize u0, u−1, y0, λ > 0

for k = 0, 1, ∙ ∙ ∙ do

ūk = 2uk − uk−1

yk+1 = arg min
y

g(y) + (2λ)−1‖By−Byk + λūk‖22

uk+1 = arg min
u

f ∗(−A∗u) + λ/2‖u− uk − λ−1(Byk+1 − b)‖22

end for

• If B = I, then it is equivalent to the primal-dual algorithm 9; the paper

also noted the equivalence between it and ADM.

9Chambolle and Pock.
16 / 22

ADM equivalence to the primal-dual algorithm

Theorem

Suppose in Algorithms 1 and 5, the initial iterates satisfy z0
1 = u0 and

Ax0 = λ(u0 − u−1) + b−By0. Then Algorithms 1 and 5 are equivalent by

Axk = λ(uk − uk−1) + b−Byk , zk
1 = uk ,

for k ≥ 0.

17 / 22

Application: total variation image processing

• Rudin-Osher-Fatemi model:

minimize
x∈BV(Ω)

∫

Ω

|Dx|+
α

2
‖x − b‖22,

which recovers a piece-wise constant (thus noise-free) image from a noisy

observation b.

• Discretization: ‖∇x‖2,1 =
∑

ij |(∇x)ij |, where | ∙ | is 2-norm.

• ADM-ready form:

minimize
x,y

‖y‖2,1 +
α

2
‖x− b‖22, subject to y−∇x = 0.

• Chambolle’s dual form:

minimize
v,u

1
2α
‖div u + αb‖22 + ι{‖∙‖2,∞≤1}(v), subject to u− v = 0,

where ‖v‖2,∞ = max
ij
|(v)ij |.

18 / 22

Equivalent algorithms

1. Algorithm 1 (primal ADM) is

xk+1
1 = arg min

x

α

2
‖x− b‖22 + (2λ)−1‖∇x− yk

1 + λzk
1‖

2
2,

yk+1
1 = arg min

y
‖y‖2,1 + (2λ)−1‖∇xk+1

1 − y + λzk
1‖

2
2,

zk+1
1 =zk

1 + λ−1(∇xk+1
1 − yk+1

1).

2. Algorithm 3 (dual ADM) is

uk+1
2 = arg min

u

1
2α
‖div u + αb‖22 +

λ

2
‖vk

2 − u + λ−1zk
2‖

2
2,

vk+1
2 = arg min

v
ι{‖∙‖2,∞≤1}(v) +

λ

2
‖v− uk+1

2 + λ−1zk
2‖

2
2,

zk+1
2 =zk

2 + λ(vk+1
2 − uk+1

2).

19 / 22

3. Algorithm 5 (primal-dual) is

v̄k
3 =2vk

3 − vk−1
3

xk+1
3 = arg min

x

α

2
‖x− b‖22 + 〈v̄k

3,∇x〉+ (2λ)−1‖∇x−∇xk
3‖

2
2,

vk+1
3 = arg min

v
ι{v:‖v‖2,∞≤1} − 〈v,∇xk+1

3 〉+
λ

2
‖v− vk‖22.

4. Algorithm 4 (primal ADM with update order swapped) is

yk+1
4 = arg min

y
‖y‖2,1 + (2λ)−1‖∇xk

4 − y + λzk
4‖

2
2,

xk+1
4 = arg min

x

α

2
‖x− b‖22 + (2λ)−1‖∇x− yk+1

4 + λzk
4‖

2
2,

zk+1
4 =zk

4 + λ−1(∇xk+1
4 − yk+1

4).

20 / 22

Corollary

Let x0
4 = b + α−1div z0

4. If initialize y0
1 = −z0

2 = ∇x0
3 − λ(v

0
3 − v−1

3) = y1
4

and z0
1 = v0

2 = v0
3 = z0

4 + λ−1(∇x0
4 − y1

4). Then for k ≥ 1, we have the

following equivalence between the iterations of the four algorithms:

yk
1 = −zk

2 = ∇xk
3 − λ(v

k
3 − vk−1

3) = yk+1
4 ,

zk
1 = vk

2 = vk
3 = zk

4 + λ−1(∇xk
4 − yk+1

4).

21 / 22

Conclusions

Concluding remarks:

• ADM is a primal-dual algorithm that is self-dual, though seemingly a

variant of the augmented Lagrangian method.

• When one of function is quadratic, the update order can be swapped.

• This work bridges the studies of ADM and primal-dual algorithms.

Open questions: The equivalence and improved understanding for

• Variants of ADM.

• Multiple-block extension of ADM.

Also, apply the extensions of ADM to primal-dual algorithms in a parallel way.

22 / 22

