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Randomized block-coordinate descentgé
(RBCD) methods (1/2) N3

* Motivation

— Minimizing the sum of two convex functions:
min {F(x) & f(x) + Y(x)},

xeRN
where f is differentiable on R, and ¥ has a block
separable structure:

Yo = ) W),
=1

where each x; denotes a subvector of x with cardinality N;,
and each ¥;: RNi » R U {+x} is a closed convex function.
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Randomized block-coordinate descentgé
(RBCD) methods (2/2) N3

* |teration

— Given the current iterate x*, the RBCD method picks a block
i € {1,...,n} uniformly at random.

— Solving a block-wise proximal subproblem:

L.
di(x*) == arg drg?r}vi {(Vif(xk), d;) + ?l ;12 + W;(xk + di)},

where V; f (x) denotes the partial gradient of f with respect to x;, and
L; is the Lipschitz constant of ; f (x).

— Setting the new iterate as

k1 {xlk +d;(xk),  j=i
Xi =Y.k

! X, j#i
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Related works and contributions ¢

e Related works
— Nesterov (2012)

e Studying RBCD methods for two special cases
* Proposing an accelerated RBCD (ARCD) method for the problem with ¥ = 0

— Richtarik and Takac (2014)

e Extending Nesterov's RBCD methods to the general form

* Establishing a high-probability type of iteration complexity
* Contributions

— Obtaining sharper convergence rates for the RBCD method and for the
ARCD method in the case W = 0 by developing the randomized
estimate sequence technique

— Obtaining a better high-probability type of iteration complexity
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Technical preliminaries (1/7)

e Assumption 0. Problem mgi%IIIV{F(X) e f(x) + WY(x)} hasaminimum (F* >
xXE

— o0) and a nonempty optimal solution set, denoted by X~,
min {F(x) & f(x) + Y(x)}
x€RN

Permutation

— For any partition of x € R" into {x; € RNi:i =1, ...,n}, thereisan N X N
permutation U partitioned as U = [Uy -+ U, ], where U; € RN*Ni, such that

x =Y Ux;, and x;=Ulx,i=1,..,n.
— Forany x € RY, the partial gradient of f with respect to x; is defined as
Vif(x) =UlVf(x),i=1,..,n.

Assumption 1. The gradient of function f is block-wise Lipschitz continuous
with constants L, i.e.,,

IVif (x + Uihy) = Vif Ol < Lillll, Vh; € RV, i=1,..,n,x € R".
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Technical preliminaries (2/7)

 Norm ||-||; and norm ||-||;
— Define a pair of norms in the whole space x € R

n 1/2
x|, = (Z Li”xi”2> , Vx € RY,
i=1
n 1 1/2
lgll; = (2? IIgiII2> ,  VgeRV.
i=1 °

* Convexity parameter

— The convexity parameter of a convex function ¢p: RY - R U {+ 0} with
respect to the norm ||-||,, denoted by 14, is the largest u = 0 such that

forall x,y € domdg,

d() = ¢ +(s,y —x) + 5 lly —xllf, Vs € dgp(x).
Clearly, ¢ is strongly convex if and only if 4 > 0.
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Technical preliminaries (3/7)

7398
ez ¥

* Lemma 1. Suppose that ®(x) = X1, ®;(x;). For any x,d € RY, if we pick
i € {1, ...,n} uniformly at random, then

1 n—1
El[CD(x + Uldl)] = ECD(x + d) + TCD(X)

* Proof. Since each i is picked randomly with probability 1/n, we have

n

Ei[db(x + Uldl)] — iz (d) (Xl + d; ) + z o, (x])>

=1 JE!
ZCID (x; +d;) +— ZZCD (x])
i=1 j#i
1 —1
=—d(x+d)+ —CD(x).
n n
 For notational convenience, the author defines

1
H(x,d) = f(x) + (Vf (x), d) + 5 ldll7 + ¥(x + d).
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Technical preliminaries (4/7)

7398
ez ¥

Assume pir = 0 and py = 0 with respect to the norm ||-||, respectively.
Then up = pr + py. By Assumption 1, we have

f(x + Uihi) < f(.X') + (Vlf(X),hl> + % ”hillz, Vhl € ]RNi, i=1,...,n,x € ]RN, (*)
Which implies that ps < 1.
Lemma 2. Suppose x,d € RY. If we pick i € {1, ...,n} uniformly at random,

1
E,[F(x +Uid)] —F(x) < - (H(x,d) — F(x)).
Proof. According to Lemma 1 and inequality (*), we have

E;[F(x + U;d)] — F(x) = %(F(x +d) — F(x))
1 1
< 5<f(x) +(Vf(x),d) + > ldllf + ¥(x + d) — F(x)>

= %(H(x, d) — F(x)).
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Technical preliminaries (5/7)

* Block-wise composite gradient mapping

— There exists a subgradient s; € O‘Pi(xi + dl-(x)) such that
Vlf(x) + lel(X) + S;i = 0
— Letd(x) = Xiv, U;d;(x), we then have

L

d;(x) == arg min {<Vi FGO, ds) + =L ldsI1? + W, Cx; + dl-)} & d(x) = arg min H(x,d).
d.eRNi 2 deRrN

{ERTL

— We define the block-wise composite gradient mappings as
gi(x) ¥ —-Ld;(x),i=1,..,n,
g(x) = Y=, Uigi(x).
— Then we obtain
—Vif(x) + g;(x) € 0W¥;(x; + d;(x)),
—W%@+g@)emﬁx+d@n,
(g(x),d(x)) = =ld)If = —=(llgllz)>.

12
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Technical preliminaries (6/7)

« Lemma 3. For any fixed x,y € RY, if we pick i € {1, ..., n} uniformly at random,

1 n—1 1 1 N2
EF(Y) + TF(X) > E;|F(x + U;d;(x))] +E<<g(x);y — X) +§(”g(x)“L) )

o (Bl =yl + 22l + d )~ 12).
»  Proof. By convexity of f and ¥ and —Vf(x) + g(x) € a¥(x + d(x)),
H(x.d()) = £ () +(7F ), d) + 3 Il + ¥+ d)
< FO) +WF0,x = ) =Ll = Y2 + 477 (), dG) + 5 I + %)
HTL(O) + 900, x + d@) = y) = Sl +d () = v

1
= FO) + (9, x = ) =5 (gl = = llx = ylIZ = SEllx + d ) -yl

13
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Technical preliminaries (7/7)

Corollary 1. Given x € RY, if we pick i € {1, ..., n} uniformly at random,

then
F(x) = Ef[F (x + U;d; ()] = D2 =—=—lld@I}.
Corollary 1 also holds block-wise without taking expectation:
PG — F(x + Udy(9) 2 1l o2

If we do not have knowledge on ¢ or py,

Corollary 2. For any fixed x,y € R, if we pick i € {1, ..., n} uniformly at
random, then

1 n—1
—F(y) + —F(x)
n n

> Ei[F(x + Uidi ()] + = <<g(x> y—x)+= (||g<x)||L> )
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~

Randomized block-coordinate descentf

e Algorithm

Algorithm: RBCD(z")
Repeat for k. =0,1,2, ...
1. Choose i, € {1, ..., ,n} randomly with a uniform distribution.

2. Update 2%+t = 2% + U, d; (2%).

— Define the observed realization of the random variable after k
iterations

Ek 1 — = {lO:lll" iik——l}-
— Define the distance between x; and the optimal solution set
def . 0 __ %
Ro & min [lx” —x™[|,,
where X™ is the set of optimal solutions of problem
min{F(x) € f(x) + Y(x)}.
x€RN

16
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Convergence rate of expected values (&

* |Improvement to Nestrov (2012)

— Extending the function W from the indicator function of a block-separable
closed convex set to the general case by employing the block-wise composite

gradient mapping
* Theorem 1. Let F* be the optimal value, {x*} be the sequence generated by

the RBCD method, and Ez_ [F(x?)] = F(x°). Then for any k > 0, the
iterate x* satisfies

n (1
Ee,  |F(x¥)]-F* < % (5 R+ F(x%) —F ) .

Furthermore, If at least one of f and W Is strongly convex, i.e., us + ugy > 0,
then

k
a1 _ e < (1 2y + 1) )(M ) oy _ )
Ee,  |F(x*)|]-F s<1  CE S—RG+F(x%) —F).

17
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High probability complexity bound?"

ez XY

Theorem 2. Let {x*} be the sequence generated by the RBCD method. Let 0 < € <
F(x%) — F*and p € (0,1) be chosen arbitrarily.
(i) For all k = K, there holds

P(F(x*)—F* <¢)=1-p, (*)
where K = 2%¢ <1 + In (RSH[F(XO)_F*]) ) + 2 —n.
€ 4cp

(if) Furthermore, if at least one of f and W is strongly convex, i.e., us + uy > 0, then inequality (*)

n(1+pup+2uy) In <(1+MW)R§+2[F(JC°)—F*])
2 2pe '

holds when k > K, where K =

Theorem 3. Let 7 = In(1/p). Suppose we run the RBCD method starting with x° for
r times independently, each time for the same number of iterations k. Let xé‘j) denote

the output by the RBCD method at the kth iteration of the jth run. Then there holds:
P (1r£1]_i£1rF(x6)) —-F* < e) >1-p,

For all k > K, where K := [% GR(Z, + F(x%) — F*)] - n.
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Comparison with Richtarik and Takac 4
(2014)

 Comparison table to RBCD method

- Richtarik and Takac (2014) («) Lu and Xiao (2014) (B) Cor(nﬁp;;;on

g v General 2nc(F(x%) — F") LRz 4 R0 - Fr - 8
€ g setting k(F(x%) — F*) + 2nc n+k\2 =7
)
O ©T k
c o 2(ur +
o O S| <1 - (b + o) ) i k For sufficient
g o Do n(1+ s+ i) il = e (F(x%) —F*) largek,
g X case 1+ py R E (o) e n(l+ uy) &1
O © 2 0
2 RZ + 2[F(x°) — F* —

> © General ﬂ<1+ln( o + 2IF() ]>> 2nc -y 1 ) 2nc BZ a .
£ 3 setting € 4ep e * n; e F(x9) —F* < —ﬁln—
s 2 +2—-n - e 3
Q =
E 5 - L g o ) n(l+uy) (Fx°)—F For sufficient
< o Special 2 2 0 x U+ In pE€ small p and €,
2 £ case b (1+ puy)Ry + 2[F(x") — F7] frRY 2

S 2pe B
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Accelerated randomized coordinate
descent (ARCD) (1/4)

* Problem Algorithm: ARCD(z")
deﬁnition Set v? = 2, choose 4y = 0 arbitrarily, and repeat for k =0,1,2,...

1. Compute ay, € (0,n] from the equation

— An unconstrained

9 oy e
ap = (1 — %) 1+ Z=p
smooth = (1= 5) et S
minimization and set .
et = (1 — 55) e + SEp.
problem
: 2. Compute y* as
min f(x), prey
xeRN ko 1 ap ko ok
. . "?; - E".h—":'. i (f-! -;"illi + 'r"!"l_]'E .-} :
where f is convex in DA
N . .
R with convexity 3. Choose i, € {1,...,n} uniformly at random, and update

parameter u = Uus >
0 with respect to the
norm ||:||, and 4. Set

satisfies Assumption 1, el

and then u < 1. i+ ( : Y~ 1, S )

ol — .'{a’k - ﬁ';_i"ri'x-?fa-fmk-}‘

21
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Accelerated randomized coordinate
descent (ARCD) (2/4) Nird

* Existence of aj and yy
— In the ARCD algorithm

and

— Let ¥y > 0 be arbitrarily given and define
a a
h(a) = a? — (1 —E)y —E,u,‘v’a > 0.
We have
h(0) = —y <0, h(n) =n?—-pu=>0.
By continuity of h, there exists some a* € (0,n] such that h(a*) = 0.
Moreover, if u = 0, we have 0 < a™ < n.
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Accelerated randomized coordinate
descent (ARCD) (3/4)

e Algorithm after notation simplification

Algorithm: ARCD(z%)
Set 1% = 20, choose a1 # 0, and repeat for k =0,1,2, ...

1. Compute aj € (0, n| from the equation
(_'1% = ( — QT*) ﬂg_l + th,u

and set

_ nap—p 3, = 1 —
O), = mop=tt, =1— L

2. Compute y* as
= gt + (1— O ).

3. Choose i, € {1,..., n} uniformly at random, and update

;I'k+1 = 'yk - ﬁ{"rikv'ikf(yk)‘

4. Set

l‘k_'—l = .‘Jkl‘k —+ (l — f;b)yk — ﬁ[ﬁikvfkﬂyk}.

k k+1 k+1

— At each iteration k, the ARCD method generates y*, and v
where x**1and v**1 depend on the realization of the random varlable

&k = {ig, i1, ..., i}, While yk depends on the realization of &,_.

23
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Accelerated randomized coordinate
descent (ARCD) (4/4) Nird

* Theorem 4. Let £ be the optimal value of problem
m%%r}v f(x), and {x*} be the sequence generated by the ARCD
xXe

method. We define Ez__ [f(x°)] = f(x®). Then for any k > 0,
there holds:

: ., YoRG
Beoa[f() = F7 < 0 [ FGO) = 1+ °>,
where 1, = 1 and A, = [[¥4 (1 — %) In particular, if y, = u, then

| \/ﬁ>k noo\2
A, < min (1 -, .
‘ { n <n+k@> }
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Comparison with Nestrov (2012)(1/2) @

ez X ¥

 Comparison table of the convergence rate for the ARCD

1
H|2ZRE + = (Fx) = )
oar | ot k+]1 = () R+ e - )]
(2014) () <1+ﬂ> _(1_@) ] k1) 120752
2n

2n

min (1 - \/—ﬁ>k n i
Lu and Xiao n l(n o kﬂ) (

(2014) (8) ;
(ram -+ 180)

25
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Comparison with Nestrov (2012)(2/2) @

Nestrov N *

(2014) (@) Y <<1 i ﬂ) > (2n?R + f(xo) — f)/k?

Lu and Xiao Nn% 4n? .

(2014) (B) 0 <<1 - 7) ) <2n2R§ t (o) = f ))/k2
-2

Comparison (1 + \2/_5) >1— %ﬁ When ZO1> 4n?,
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Randomized estimate sequence (1/7)

FPE

* Improvement to Nestrov (2004)

— Extending the estimate sequence framework from for
accelerated full gradient methods to for a RBCD setup.

 Definition 1. Let ¢, (x) be a deterministic function and
¢ (x) be a random function depending on &, _; forall k > 1,
and A, = 0 for all kK = 0. The sequence {¢ (x), Ax}r=o IS
called a randomized estimate sequence of the function f(x) if
A, =0

and for any x € RY and all k > 0 we have
Eg, ,[fr(0)] < (1= 2)f (x) + A po(x),

where Ez__[¢o(x)] = ¢y.

27
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Randomized estimate sequence (2/7)

ez XY

* Lemma 4. Let x™ be the optimal solution to

problem min f(x) and f™* be the optimal value.
xeRN

Suppose that {¢; (x), Ay} r=( IS @ randomized
estimate sequence of the function f(x). Assume that

{x*} is a sequence such that for each k > 0,
Eg, ,[f(x")] < minEg, , [$ ()],
where E¢__ [f(x?)] & f(x?). Then we have
Eg,_ [(x%)] = f* < Ao (x) = f) = 0.
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Randomized estimate sequence (3/7) (& ?':

* Proof.
Eg, ,[f(x)] < minEg,_, [¢(x)]

< mxin{(l — M) f(x) + A po(x)}

< (1 —2AR)f(x) + A po(x)
="+ A (Po(x™) — )
Ak - (0
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Randomized estimate sequence (4/7)

* Lemma 5. Let Assume that f satisfies Assumption 1 with convexity parameter u > 0.
In addition, suppose that

— ¢ (x) is an arbitrary deterministic function on R";
—  {y*}7_, isasequence in RY such that y* depends on &,_;;
— {ak}r=1 is independent of &, and satisfies a;, € (0,n) forall k > 0 and .’ a) = .

Then the pair of sequences {¢ (x) }r-, and {4}, constructed by setting 1, = 1
and

Bers () = (1-75) 6, ()

1 U
(109 + i )1~ ) + el =4I

Is a randomized estimate sequence of f(x).
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Randomized estimate sequence (5/7) (@

ez ) ¥

 Proof.

In e =2 (1-%) < -5k a; - —oo

E§_1[¢0(x)] = (1 —=20)f(x) + Ag¢o(x),
E¢ [Pr+1(0)] = Eg,_ |E; pr1(x)]

<Eg, |(1-5) @) + 5 (0]
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Randomized estimate sequence (6/7)

Lemma 6. Let ¢y (x) = ¢ + % lx — v°||%. Then the randomized estimate sequence

constructed in Lemma 5 preserves the canonical form of the functions, i.e., for all
k>0,

2
|L'

B () = P + 5| - v*

where the sequences {y;}, {v*} and {v*} are defined as follows:

Vi1 = (1 - %) Vit %u,

1 a a a
k+1 k k k k k k
= 1—— — ——U; V. ,
v Vet (( n )]/kv + n uy Lik ix lkf(y )>

ay

N _ (047 N (047
Pr+1 = (1 _7) op +7f(yk) T el

1hi4;,

17, r I,

Ak
(04% 1-— 14 U
ol 1") (gl = ¥ + B ), v = 95)).

32
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Randomized estimate sequence (7/7)

ez XY

 Proof.
V2prr1(x) = Yiradiag(Lily,, -+, Lyly,)
V¢k+1(vk+1) =0

. 14
¢k+1(yk) = Pr1 k2+1 Hyk - vk+1Hi
Qr+1 1S quadratic, thus

. Y
bers (O = Py + 7t [lx = w41
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Proof of Theorem 4 (1/3)

* Setup

1. po(x) = fF(¥°) + % Ix — vOllf
2. {y*}, {ay} be generated in the ARCD method

3.{¢r (x), Ak } = be the randomized estimate
sequence of f(x) generated as in Lemma 5 using

v} {ar}
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Proof of Theorem 4 (2/3)

Be,_, [F ()] < Ee,_, | (i = mingi(0))|

4

Eg, , [f(x*)] < minEg, _ [¢)(x)]
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Proof of Theorem 4 (3/3)

Decay of A, (assume yo = )

. yk+1=(1——)yk+ U=u A = Vier1 Z VU
JE k

Thus 4 = [150 (1 - %) < (1 -E)

* Yk+1 2 (1 __) Yi 2 (1 __) Yok =YoAk+1
A = VVir1 = v Yoldk+1

Since {A;}is a decreasing seguence,

1 Tk
n >@,/10=1
\/Ak+1 N& 2 Agsr 2T
We obtain L >1+ Vro
A 2n

noo\2
Therefore Ak < ( m)
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