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Abstract

Optimization problems in which the variable is not a vector but a symmetric matrix
which is required to be positive semidefinite have been intensely studied in the last ten
years. Part of the reason for the interest stems from the applicability of such problems
to such diverse areas as designing the strongest column, checking the stability of a
differential inclusion, and obtaining tight bounds for hard combinatorial optimization
problems. Part also derives from great advances in our ability to solve such problems
efficiently in theory and in practice (perhaps “or” would be more appropriate: the most
effective computational methods are not always provably efficient in theory, and vice
versa). Here we describe this class of optimization problems, give a number of examples
demonstrating its significance, outline its duality theory, and discuss algorithms for
solving such problems.
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1 Introduction

Semidefinite optimization is concerned with choosing a symmetric matrix to optimize
a linear function subject to linear constraints and a further crucial constraint that the
matrix be positive semidefinite. It thus arises from the well-known linear programming
problem by replacing the vector of variables with a symmetric matrix and replacing
the nonnegativity constraints with a positive semidefinite constraint. (An alternative
way to write such a problem is in terms of a vector of variables, with a linear objective
function and a constraint that some symmetric matrix that depends affinely on the
variables be positive semidefinite.) This generalization nevertheless inherits several
important properties from its vector counterpart: it is convex, has a rich duality theory
(although not as strong as linear programming’s), and admits theoretically efficient
solution procedures based on iterating interior points to either follow the central path
or decrease a potential function. Here we will investigate this class of problems and
survey the recent results and methods obtained.

While linear programming (LP) as a subject grew very fast during the ’50s and
’60s, due to the availability of the very efficient simplex method of G.B. Dantzig,
semidefinite optimization (also known as semidefinite programming or SDP, the term
we shall use) was slower to attract as much attention. Partly this was because, since the
feasible region is no longer polyhedral, the simplex method was not applicable, although
related methods do exist. As soon as theoretically efficient (as well as practically useful)
algorithms became available in the late ’80s and ’90s, research in the area exploded.
The recent Handbook of Semidefinite Programming [67] lists 877 references, while the
online bibliography on semidefinite programming collected by Wolkowicz [66] lists 722,
almost all since 1990.

The development of efficient algorithms was only one trigger of this explosive
growth: another key motivation was the power of SDP to model problems arising
in a very wide range of areas. We will describe some of these applications in Sec-
tion 3, but these only cover part of the domain. The handbook [67] has chapters on
applications in combinatorial optimization, on nonconvex quadratic programming, on
eigenvalue and nonconvex optimization, on systems and control theory, on structural
design, on matrix completion problems, and on problems in statistics.

Bellman and Fan seem to have been the first to formulate a semidefinite program-
ming problem, in 1963. Instead of considering a linear programming problem in vector
form and replacing the vector variable with a matrix variable, they started with a
scalar LP formulation and replaced each scalar variable with a matrix. The resulting
problem (although equivalent to the general formulation) was somewhat cumbersome,
but they derived a dual problem and established several key duality theorems, showing
that additional regularity is needed in the SDP case to prove strong duality. However,
the importance of constraints requiring that a certain matrix be positive (semi)definite
had been recognised much earlier in control theory: Lyapunov’s characterization of the
stability of the solution of a linear differential equation in 1890 involved just such a
constraint (called a linear matrix inequality, or LMI), and subsequent work of Luré,
Postnikov, and Yakubovich in the Soviet Union in the ’40s, ’50s, and ’60s established
the importance of LMIs in control theory (see Boyd at al. [9]). In the early ’70s, Do-
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nath and Hoffman [13] and then Cullum, Donath, and Wolfe [12] showed that some
hard graph-partitioning problems could be attacked by considering a related eigenvalue
optimization problem – as we shall see, these are closely connected with SDP. Then in
1979, Lovász [35] formulated an SDP problem that provided a bound on the Shannon
capacity of a graph and thereby found the capacity of the pentagon, solving a long-
open conjecture. At that time, the most efficient method known for SDP problems was
the ellipsoid method, and Grötschel, Lovász, and Schrijver [24] investigated in detail
its application to combinatorial optimization problems by using it to approximate the
solution of both LP and SDP relaxations. Lovász and Schrijver [36] later showed how
SDP problems can provide tighter relaxations of (0, 1)-programming problems than
can LP.

Fletcher [17, 18] revived interest in SDP among nonlinear programmers in the ’80s,
and this led to a series of papers by Overton and Overton and Womersley; see [50]
and the references therein. The key contributions of Nesterov and Nemirovski [44, 45]
and Alizadeh [1] showed that the new generation of interior-point methods pioneered
by Karmarkar [30] for LP could be extended to SDP. In particular, Nesterov and
Nemirovski established a general framework for solving nonlinear convex optimization
problems in a theoretically efficient way using interior-point methods, by developing
the powerful theory of self-concordant barrier functions. These works led to the huge
recent interest in semidefinite programming, which was further increased by the result
of Goemans and Williamson [22] which showed that an SDP relaxation could provide
a provably good approximation to the max-cut problem in combinatorial optimization.

Our coverage will necessarily be incomplete and biased. Let us therefore refer the
reader to a survey paper by Vandenberghe and Boyd [63] which discusses in particular
a number of applications, especially in control theory; the book of Boyd et al. which
describes the latter in much further detail and gives the history of SDP in control
theory; the excellent paper of Lewis and Overton [34] in this journal on the very closely
related topic of eigenvalue optimization; and the aforementioned handbook edited by
Wolkowicz et al. [67]. We also mention that SDP is both an extension of LP and a
special case of more general conic optimization problems. Nesterov and Nemirovski
[44, 45] consider general convex cones, with the sole proviso that a self-concordant
barrier is known for the cone. Nesterov and Todd [46, 47] consider the subclass of
self-scaled cones, which admit symmetric primal-dual algorithms (these cones turn
out to coincide with symmetric (homogeneous self-dual) cones). Another viewpoint
is that of Euclidean Jordan Algebras, developed by Faybusovich [15, 16] and now
investigated by a number of authors: see Alizadeh and Schmieta [5]. Since the area
is receiving so much attention, it is hard to keep abreast of recent developments, but
this is immeasurably assisted by three web sites, those of Helmberg [25] and Alizadeh
[2] on semidefinite programming, and that of Wright [68] on interior-point methods.
The latter also allows one to sign up for the interior-point methods mailing list, where
almost all papers addressing interior-point methods for SDP are announced.

The rest of the paper is organised as follows. In the next section, we define the
SDP problem in both primal and dual form and introduce some useful notation for
expressing it. We also establish weak duality. Then Section 3 gives nine examples
of the application of SDP to diverse areas; along the way, we list a number of useful
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facts about symmetric matrices that allow this development. The following section
is devoted to duality, and presents some examples demonstrating the anomalies that
can occur; then conditions sufficient for strong duality to hold are established. Section
5 introduces the very important logarithmic barrier function for the cone of positive
semidefinite matrices and uses it to define, and then prove some important properties of,
the central path. Then in Section 6 we consider path-following and potential-reduction
algorithms and also methods based on nonlinear programming reformulations of the
SDP problem. Section 7 contains some concluding remarks.

Notation. Most matrices occurring in this paper will be real symmetric matrices
of order n: we let SIR

n×n denote the space of such matrices. U • V denotes the inner
product between two such matrices, defined by trace (UT V ) (the transpose makes this
valid for nonsymmetric and even nonsquare matrices also). The associated norm is the

Frobenius norm, written ‖U‖F := (U • U)
1

2 or just ‖U‖, while ‖P‖2 denotes the L2-
operator norm of a matrix. Norms on vectors will always be Euclidean unless otherwise
noted.

We write U � 0 to mean that U is positive semidefinite. Similarly, U ≻ 0 indicates
that U is positive definite, and these terms always refer to symmetric matrices unless
there is an explicit statement otherwise. We write SIR

n×n
+ (SIR

n×n
++ ) to denote the set of

positive semidefinite (positive definite) symmetric matrices of order n. We use U � V
or V � U to mean V − U � 0, and U ≺ V and V ≻ U similarly mean V − U ≻ 0. If
U � 0, we write U

1

2 for the (symmetric) positive semidefinite square root of U .
We write diag(U) for the vector of diagonal entries of U ∈ SIR

n×n, and Diag(u)
for the diagonal matrix with the vector u ∈ IR

n on its diagonal. We extend this
to general block diagonal matrices: if U1, U2, ..., Uk are symmetric matrices, then
Diag(U1, U2, . . . , Uk) denotes the block diagonal matrix with the Ui’s down its diagonal.

As is customary, lower-case Roman letters usually denote vectors and upper-case
letters n × n matrices; we reserve K, L, P , and Q (Q will usually be orthogonal) for
not necessarily symmetric matrices, with all other letters denoting members of SIR

n×n.
We use lower-case Greek letters for scalars, and script letters for linear operators on
(usually symmetric) matrices. We introduce the useful notation P⊙Q for n×n matrices
P and Q (usually P and Q are symmetric). This is an operator from SIR

n×n to itself
defined by

(P ⊙ Q)U :=
1

2
(PUQT + QUP T ). (1)

2 Problems

The SDP problem in primal standard form is

(P ) minX C • X
Ai • X = bi, i = 1, . . . ,m

X � 0,
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where all Ai ∈ SIR
n×n, b ∈ IR

m, C ∈ SIR
n×n are given, and X ∈ SIR

n×n is the variable.
We also consider SDP problems in dual standard form:

(D) maxy,S bT y
∑m

i=1 yiAi + S = C
S � 0,

where y ∈ IR
m and S ∈ SIR

n×n are the variables. This can also be written as

max
y

bT y,
m
∑

i=1

yiAi � C,

or

max
y

bT y, C −
m
∑

i=1

yiAi � 0,

but we shall see the benefit of having the “slack matrix” S available when we discuss
algorithms.

We should strictly write “inf” and “sup” instead of “min” and “max” above, not
just because the problems might be unbounded, but also because even if the optimal
values are finite they might not be attained. We stick to “min” and “max” both to
highlight the fact that we are interested in optimal solutions, not just values, and
because we shall often impose conditions that ensure that the optimal values are in
fact attained where finite.

The last form of the problem in dual standard form shows that we are trying
to optimize a linear function of several variables, subject to the constraint that a
symmetric matrix that depends affinely on the variables is restricted to be positive
semidefinite. (Henceforth, as is common in mathematical programming, we use “linear”
to mean “affine” in most cases: however, linear operators will always be linear, not
affine.) We will encounter several examples of such problems, and will not see the need
to express them explicitly in the form above, but it is straightforward to do so.

We have been somewhat coy in referring to the problems above as SDP problems in
primal and dual form respectively. If they are defined by the same data Ai, i = 1, . . . ,m,
b, and C, they are in fact dual problems, and have a beautiful theory that will be studied
in Section 4. However, we find it useful to discuss some examples before we investigate
duality in detail. Here we just note the following trivial but key fact:

Proposition 2.1 (Weak Duality) If X is feasible in (P) and (y, S) in (D), then

C • X − bT y = X • S ≥ 0. (2)

Proof:
We find

C •X − bT y = (
m
∑

i=1

yiAi +S)•X − bT y =
m
∑

i=1

(Ai •X)yi +S •X − bT y = S •X = X •S.

Moreover, since X is positive semidefinite, it has a square root X
1

2 , and so X • S =
trace (XS) = trace (X

1

2 X
1

2 S) = trace (X
1

2 SX
1

2 ) ≥ 0. Here we used the facts that
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trace (PQ) = trace (QP ), that X
1

2 SX
1

2 is positive semidefinite since S is (from the
definition), and that the trace of a positive semidefinite matrix is nonnegative (as the
sum of its nonnegative diagonal elements or the sum of its nonnegative eigenvalues).

It is convenient to introduce some notation to make the problems above easier to
state. We define the linear operator A : SIR

n×n → IR
m by

AX := (Ai • X)mi=1 ∈ IR
m.

Note that, for any X ∈ SIR
n×n and v ∈ IR

m, (AX)T v =
∑m

i=1(Ai•X)vi = (
∑m

i=1 viAi)•
X, so the adjoint of A is given by

A∗v =
m
∑

i=1

viAi,

a mapping from IR
m to SIR

n×n. Using this notation, we can rewrite our problems as

(P ) min C • X, AX = b, X � 0,

and
(D) max bT y, A∗y + S = C, S � 0.

The weak duality chain of equations can then be written as

C • X − bT y = (A∗y + S) • X − bT y = (AX)T y + S • X − bT y = X • S.

We call the difference between the optimal value of (P) and that of (D), which is always
nonnegative by the result above, the duality gap. Strong duality is the assertion that
the duality gap is zero and both problems attain their optima whenever both problems
are feasible, but it does not always hold for SDP problems. We investigate this in
detail in Section 4.

3 Examples

In this section we present a number of examples of SDP problems. In order to do so, we
also introduce some simple facts about symmetric matrices. Here is our first example:

Example 1: minimizing the maximum eigenvalue. This problem arises in
stabilizing a differential equation, for instance. Suppose we have a symmetric matrix,
say M(z), depending linearly (affinely) on a vector z. We wish to choose z to minimize
the maximum eigenvalue of M(z). Note that λmax(M(z)) ≤ η iff λmax(M(z)−ηI) ≤ 0,
or equivalently iff λmin(ηI − M(z)) ≥ 0. This holds iff ηI − M(z) � 0. So we get the
SDP problem in dual form:

max −η, ηI − M(z) � 0, (3)

where the variable is y := (η; z).
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To introduce other examples, we need to use a collection of very handy tools con-
cerning symmetric matrices. We list these below (usually) without proof, but most are
not hard to show.

Fact 1. If P ∈ IR
m×n and Q ∈ IR

n×m, then trace (PQ) = trace (QP ).

Fact 2. A and A∗ above are adjoints.

Fact 3. If U, V ∈ SIR
n×n, and Q is orthogonal, then U • V = (QT UQ) • (QT V Q).

More generally, if P is nonsingular, U • V = (PUP T ) • (P−T V P−1).

Fact 4. Every U ∈ SIR
n×n can be written as U = QΛQT , where Q is orthogonal

and Λ is diagonal. Then UQ = QΛ, so the columns of Q are the eigenvectors, and
the diagonal entries of Λ the corresponding eigenvalues of U . We write Q(U) := Q,
Λ(U) := Λ and λ(U) := diag(Λ). (Together with Fact 3, this means that we can often
assume that one symmetric matrix under study is diagonal, which can simplify some
proofs.)

Fact 5. The following are norms on SIR
n×n: ‖λ(U)‖2 = ‖U‖F , ‖λ(U)‖∞ = ‖U‖2,

and ‖λ(U)‖1. If U � 0, ‖λ(U)‖1 =
∑

j |λj(U)| =
∑

j λj(U) = I • Λ(U) = trace (U) =
I • U .

Fact 6. For U ∈ SIR
n×n, the following are equivalent:

a) U � 0 (U ≻ 0);
b) vT Uv ≥ 0 for all v ∈ IR

n (vT Uv > 0 for nonzero v ∈ IR
n);

c) λ(U) ≥ 0 (λ(U) > 0); and
d) U = P T P for some matrix P (U = P T P for some square nonsingular matrix P ).

Immediate corollaries are that uuT � 0 for all u ∈ IR
n, that every U � 0 has a positive

semidefinite square root U
1

2 (take U
1

2 = Q(U)Λ
1

2 (U)QT (U), where Λ
1

2 (U) is the diago-
nal matrix whose diagonal contains the (nonnegative) square roots of the eigenvalues of
U), and that if U ≻ 0, then U is nonsingular, with U−1 = Q(U)Λ−1(U)QT (U). It also
follows that SIR

n×n
+ is a closed convex cone, pointed (i.e., (SIR

n×n
+ )∩(−SIR

n×n
+ ) = {0})

and with nonempty interior SIR
n×n
++ , an open convex cone. Finally, hence we get

{(η; z) : η ≥ λmax(M(z))} = {(η; z) : ηI − M(z) � 0}, as used above, and since
this is a convex set, λmax(M(·)) is a convex function.

Fact 7. If U � 0, then each ujj ≥ 0, and if ujj = 0, ujk = ukj = 0 for all k.
Similarly, if U ≻ 0, then each ujj > 0.

Fact 8. If U � 0, then PUP T � 0 for any P of appropriate column dimension. If
P is square and nonsingular, then U ≻ 0 iff PUP T ≻ 0.

Fact 9. If U =

(

U11 U12

UT
12 U22

)

� 0 (≻ 0), then U11 � 0 (≻ 0). Using Fact 8 with P

a permutation matrix, we see that every principal submatrix of a positive semidefinite
(definite) matrix is also positive semidefinite (definite).

Fact 10. U � 0 (≻ 0) iff every principal minor is nonnegative (positive). In fact,
U ≻ 0 iff every leading principal minor is positive. Also, U ≻ 0 iff U = LLT for some
nonsingular lower triangular matrix L (the Cholesky factorization).
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We can prove Fact 10 using the preceding facts, induction, and the following very
useful property:

Fact 11. Suppose U =

(

A B
BT C

)

with A and C symmetric and A ≻ 0. Then

U � 0 (≻ 0) iff C − BT A−1B � 0 (≻ 0).

The matrix C − BT A−1B is called the Schur complement of A in U . This is easily
proved using the factorization

(

A B
BT C

)

=

(

I 0
BTA−1 I

)(

A 0
0 C − BT A−1B

)(

I A−1B
0 I

)

.

Fact 12. (Representing quadratics) If U ∈ SIR
n×n, then xT Ux = U • xxT .

Fact 13. (Self-duality) SIR
n×n
+ = (SIR

n×n
+ )∗ := {V : U •V ≥ 0 for all U ∈ SIR

n×n
+ }.

Proof:
(i) SIR

n×n
+ ⊆ (SIR

n×n
+ )∗: We want to show that U • V ≥ 0 for all positive semidef-

inite U and V . We can show this directly using Facts 3 and 4 to assume that
one is diagonal, or use Fact 6 to obtain a square root of U , and then note that
U • V = trace UV = trace U

1

2 V U
1

2 ≥ 0 since U
1

2 V U
1

2 is positive semidefinite.
(ii) SIR

n×n
+ ⊆ (SIR

n×n
+ )∗: We show that if U /∈ SIR

n×n
+ , then U /∈ (SIR

n×n
+ )∗. Indeed,

in this case we have vT Uv < 0 for some v ∈ IR
n, and then U • vvT < 0 shows that U

is not in (SIR
n×n
+ )∗.

Fact 14. If U ≻ 0, then U • V > 0 for every nonzero V � 0, and {V � 0 :
U • V ≤ β} is bounded for every positive β. Indeed, if λ := λmin(U) > 0, then
U • V = (U − λI) • V + λI • V ≥ λI • V = λI • Λ(V ) = λ‖λ(V )‖1 ≥ λ‖V ‖F for
V � 0. This shows the first part directly, and the second since then any V in the set
has Frobenius norm at most β/λ.

Fact 15. If U, V � 0, then U • V = 0 iff UV = 0. This is easy to show using
the eigenvalue decomposition of U , and considering separately its positive and zero
eigenvalues.

Fact 16. If U, V ∈ SIR
n×n, then U and V commute iff UV is symmetric, iff U and

V can be simultaneously diagonalised (i.e., they have eigenvalue decompositions with
the same Q).

We can now return to considering other examples of semidefinite programming
problems.

Example 2: minimizing the L2-operator norm of a matrix. By considering
the two cases where P ∈ IR

m×n is zero and nonzero, and using Fact 11, we can easily

see that η ≥ ‖P‖2 iff

(

ηI P
P T ηI

)

� 0. Hence we can solve the problem of minimizing

‖P (z)‖2, where P (z) depends affinely on z, by solving the SDP problem

max −η,

(

ηI P (z)
P (z)T ηI

)

� 0, (4)
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where the variable is y := (η; z).

Example 3: LP. The linear programming max{bT y : AT y ≤ c}, where A ∈ IR
m×n

and the vectors have appropriate dimensions, can be written as the SDP problem in
dual form

max bT y, Diag(c − AT y) � 0.

Here, in our standard notation, C = Diag(c) and Ai = Diag(ai), with ai the ith column
of AT . Note that its semidefinite dual problem involves a symmetric n × n matrix X,
and hence seems to differ from the usual linear programming dual. We will discuss this
further very shortly.

Example 4: a quasi-convex nonlinear programming problem. Consider
now the problem

min
(bT y)2

dT y
, AT y ≤ c,

where we assume that dT y > 0 for all feasible y. If we note that the objective function
can be written as (bT y)(dT y)−1(bT y) we see the resemblance to the Schur complement,
and then it is easy to check that (for feasible y),

η ≥ (bT y)2

dT y
iff

(

η bT y
bT y dT y

)

� 0.

It follows that our nonlinear programming problem can be written as

max
η,y

−η, Diag(c − AT y) � 0,

(

η bT y
bT y dT y

)

� 0.

This has two semidefinite constraints, but of course they can be combined into a single
constraint:

Diag

(

Diag(c − AT y),

(

η bT y
bT y dT y

))

� 0.

Here C and the Ai’s are all block diagonal, with m 1 × 1 blocks and one 2 × 2 block.

In the last two examples we have seen cases where the data matrices C and the Ai’s
share the same block diagonal structure. Indeed, as in the last example, this arises
whenever several semidefinite constraints are combined into a single constraint. Let S
denote the space of block diagonal symmetric matrices of the form

M =













M11 0 · · · 0
0 M22 · · · 0
...

...
. . .

...
0 0 · · · Mkk













,

where Mjj ∈ IR
nj×nj for j = 1, . . . , k. Let us suppose C and all Ai’s lie in S. Then

any feasible S in the dual problem, with A∗y + S = C, also lies in S. So (D) can
alternatively be written as

max
(y,S)∈IRm×S

bT y, A∗y + S = C, S � 0.
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Its dual is
min

X∈SIR
n×n

C • X, AX = b, X � 0;

can we restrict X also to S? If so, then in the LP case, X will be block diagonal with
1 × 1 blocks, and thus we regain the usual LP dual. Consider any X ∈ SIR

n×n, and
partition it as M above:

X =













X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xk1 Xk2 · · · Xkk













.

Then, with obvious notation,

Ai • X = Ai11 • X11 + · · · + Aikk • Xkk for each i,

C • X = C11 • X11 + · · · + Ckk • Xkk.

Also, if X � 0, then Xjj � 0 for j = 1, . . . , k, and then

X̃ :=













X11 0 · · · 0
0 X22 · · · 0
...

...
. . .

...
0 0 · · · Xkk













� 0.

Hence, if X is feasible in (P), then so is X̃ ∈ S, and with the same objective value. It
follows that we can restrict X to S without loss of generality.

It is important to realize that, if S denotes instead the set of symmetric matrices
with a given sparsity structure and all Ai’s and C lie in S, then any feasible S also lies
in S but it is no longer the case that we can restrict feasible X’s to S.

Let us mention two ways in which block diagonal structure arises in SDP problems in
primal form. First, if we have inequality constraints like Ai •X ≤ bi, i = 1, . . . ,m,X �
0, then we can add slack variables to reach Ai •X + ξi = bi, i = 1, . . . ,m,X � 0, ξ ≥ 0.
But these can be written as equality constraints in the positive semidefinite variable
X̃ := Diag(X,Diag(ξ)), and then all matrices have the same block diagonal structure
with one n × n block followed by m 1 × 1 blocks.

Similarly, if we have several matrix variables and our problem is

min C11 • X11 + · · · + Ckk • Xkk,
Ai11 • X11 + · · · + Aikk • Xkk = bi, i = 1, . . . ,m,

X11 � 0, . . . Xkk � 0,

then we can express this as an SDP problem involving just one positive semidefinite
variable

X :=













X11 0 · · · 0
0 X22 · · · 0
...

...
. . .

...
0 0 · · · Xkk













� 0,
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and again we have common block diagonal structure in all the matrices.
All of our results below and all algorithms can exploit this block diagonal structure

(and obviously must to be efficient), but for simplicity we write SIR
n×n as the matrix

space henceforth.
Now we return to our examples of SDP problems with

Example 5: convex quadratically constrained programming. Here we consider
optimizing a linear function subject to convex quadratic constraints (we can easily
convert the minimization of a convex quadratic constraint subject to similar constraints
to this form). So we address

max bT y, fi(y) ≤ 0, i = 1, . . . , l.

where fi(y) := yT Ciy − dT
i y − ǫi, Ci � 0, i = 1, . . . , l. Let Ci = GT

i Gi. Then fi(y) ≤ 0
can be written as

(

I Giy
(Giy)T dT

i y + ǫi

)

� 0

using Schur complements, or alternatively as













(1 + dT
i y + ǫi)I

(

1 − dT
i y − ǫi

2Giy

)

(

1 − dT
i y − ǫi

2Giy

)T

1 + dT
i y + ǫi













� 0.

The advantage of the second formulation is that the semidefinite constraint
(

αI v
vT α

)

� 0 can be expressed as

(

α
v

)

∈ K2 :=

{(

β
w

)

: β ≥ ‖w‖2

}

, the

second-order or Lorentz cone. This is a more efficient way to solve the problem —
second-order cones are to be preferred to semidefinite cones in general: see Nesterov
and Nemirovski [44, 45].

Example 6: robust mathematical programming. This is a way to model
uncertainty in the data of an optimization problem (or in the implementation of a
solution) by requiring that the solution be feasible whatever the realization of the
data (see Ben-Tal and Nemirovski [7]). Without loss of generality we can assume
that the objective function is deterministic. Let us consider robust LP with ellipsoidal
uncertainty. The problem

max bT y, aT
j y ≤ cj for all (aj ; cj) ∈ Ej, j = 1, . . . , n,

can be rewritten, after introducing an extra variable and changing notation, as

max bT y
aT

j y ≤ 0, for all aj ∈ Ej and j = 1, . . . , k,

aT
j y ≤ 0, for j = k + 1, . . . , n.

Suppose Ej = {āj +Gjuj : ‖uj‖2 ≤ 1}. Then, for a given vector y, we have aT
j y ≤ 0 for

all aj ∈ Ej iff āT
j y + (Gjuj)

T y ≤ 0 for all uj of norm at most one, iff ‖GT
j y‖2 ≤ −āT

j y
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or (−āT
j y;GT

j y) ∈ K2, the second-order cone. So we can model the robust LP above
using second-order cones, or if we wish as an SDP problem. Ben-Tal and Nemirovski
discuss a number of other robust mathematical programming problems; for instance
the robust version of the convex quadratically constrained programming problem above
can be formulated as an SDP problem, see [7].

Example 7: control theory. There are many applications of semidefinite pro-
gramming (or the feasibility version, called a linear matrix inequality in the field) in
control systems. We will describe a very simple case, leaving the discussion of more
general and realistic situations to Vandenberghe and Boyd [63] and Boyd et al. [9].

Suppose x = x(t) satisfies the differential inclusion

ẋ ∈ conv{A1, . . . , Am}x, x(0) = x0,

where A1, . . . , Am are given matrices in IR
n×n. We want to determine whether x(t)

necessarily remains bounded.
This holds iff there is some P ≻ 0 so that v(x) := xT Px remains uniformly bounded,

and this certainly follows if v is nonincreasing. Such a function is called a Lyapunov
function. Hence a sufficient condition for uniform boundedness is that

d

dt
(xT Px) = ẋT Px + xT Pẋ ≤ 0.

If x0 is arbitrary, and ẋ(0) can be anywhere in the appropriate convex set, then we
need

AT
i P + PAi � 0, for all i = 1, . . . ,m.

We also want P ≻ 0, and since the constraints above are homogeneous, we may require
P � I. If we seek a matrix P with say minimum condition number, we are then led to
the SDP problem

max −η
AT

i P + PAi � 0, for all i = 1, . . . ,m
ηI � P � I,

where the variables are η and the entries of the symmetric matrix P . Note that again
we have block diagonal structure in this SDP problem.

Now we turn to applications of SDP in obtaining good relaxations of combinatorial
optimization problems. Here relaxations mean optimization problems where the feasi-
ble region of the problem of interest is enlarged to obtain a tractable problem whose
optimal value provides a bound for that of the problem of interest (in some cases, the
optimal solution of the relaxed problem is also of great use). We discuss two: Lovász’s
theta function and the max-cut problem.

Example 8: Lovász’s theta function [35]. Here we seek a bound on the Shan-
non capacity, or on the stability number, of an undirected graph G = (N,E) with
node set N and edge set E; we write ij instead of {i, j} for an edge linking nodes
i and j. We will assume that N = {1, . . . , n}. A stable or independent set is a set
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of mutually nonadjacent nodes, and α(G) is the maximum size of a stable set: it is
NP-hard to compute. A clique of G is a set of mutually adjacent nodes, and χ̄(G) is
the minimum cardinality of a collection of cliques that together include all the nodes
of G (a clique cover): this is also NP-hard to compute. Note that χ̄(G) = χ(Ḡ), the
chromatic number of the complement Ḡ of G in which two nodes are adjacent iff they
are nonadjacent in G. Clearly, since each node in a stable set must be in a different
clique in a clique cover,

α(G) ≤ χ̄(G).

Our aim is to find approximations to these numbers: in particular, we’ll define θ(G),
which lies between α(G) and χ̄(G) and is the optimal value of an SDP problem. If G
is a so-called perfect graph, then α(G) = χ̄(G) and we can calculate these invariants of
the graph exactly by computing θ(G).

We define

θ(G) := max{eeT • X : I • X = 1, xij = 0 if ij ∈ E, X � 0}, (5)

where e ∈ IR
n denotes the vector of ones. Clearly this is an SDP problem in primal form,

but in maximization form. Its dual can be written as min{η : ηI+
∑

ij∈E yijMij � eeT },
where Mij is the symmetric matrix that is all zero except for ones in the ijth and jith
positions. The constraint on η can also be written as ηI � V + eeT , where V is a
symmetric matrix that is zero on the diagonal and in positions ij /∈ E. As we shall see
in the next section, strong duality holds for this pair of SDP problems, so we can also
define

θ(G) := min{λmax(V + eeT ) : vii = 0 for all i, vij = 0 for all ij /∈ E, V ∈ SIR
n×n}.

It is also instructive to give another definition of θ(G). An orthonormal representation
of G is a set {ui : i ∈ N} of unit vectors in IR

n with ui and uj orthogonal if ij /∈ E.
Then θ(G) can also be defined as the minimum, over all orthonormal representations
{ui : i ∈ N} of G and all unit vectors c, of

max
i∈N

1

(cT ui)2
,

where 1/0 is taken to be +∞. To illustrate these three definitions, consider the square
viewed as a graph on four nodes, with edges 12, 23, 34, and 14. Then α(G) = χ̄(G) = 2,
so θ(G) = 2 also. For the first definition, an optimal X has 1/4 in positions 11, 13,
22, 24, 31, 33, 42, and 44, with zeroes elsewhere. An optimal V + eeT for the second
definition is 4 times this matrix. And to get an optimal orthonormal representation,
consider an umbrella with just four ribs, and imagine opening it up until nonadjacent
ribs are orthogonal. Then the ui’s are unit vectors along the ribs ((±1; 0;−1)/

√
2 and

(0;±1;−1)/
√

2) and the unit vector c is a unit vector along the handle: (0; 0;−1).
(A similar example for the pentagon uses a five-ribbed umbrella, and gives θ =

√
5,

while α = 2 and χ̄ = 3;
√

5 is also the Shannon capacity of the pentagon.) It is not
immediately apparent that this last definition gives the same value as the previous
ones: we refer to Grötschel, Lovász, and Schrijver [24] for a proof of this (and several
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other definitions of θ = θ(G)). See also the survey article of Goemans [21]. We just
note here the relationship between positive semidefinite matrices and sets of vectors. If
V gives an optimal solution to the problem defining θ as a maximum eigenvalue, then
θI − V − eeT is positive semidefinite and hence can be factored as W TW , and clearly
we then know something about the inner products of the columns wi of W . We obtain
an orthonormal system for G by manipulating these vectors wi.

We conclude our discussion of this application by showing that all three definitions
give an upper bound on α(G). Let K ⊆ N be a maximum-cardinality stable set of
G, with cardinality k = α(G). For the first definition, choose for X the symmetric
matrix that is all zeroes, except that xij = 1/k for all i, j ∈ K. It is clear that this
is feasible, and it gives an objective value of k. The maximum value is thus at least
as large. For the second definition, consider any feasible V , and note that the (K,K)
principal submatrix of V +eeT consists of all ones, and hence has maximum eigenvalue
equal to its order, k. Since the largest eigenvalue of any matrix is at least that of any
principal submatrix (e.g., from considering Rayleigh quotients), we conclude that the
optimal value of the eigenvalue problem is at least k. Finally, let {ui : i ∈ N} be an
orthonormal representation of G and c a unit vector. Then {ui : i ∈ K} is a set of
orthonormal vectors (which can be completed to an orthonormal basis), and so

1 = ‖c‖2 ≥
∑

j∈K

(cT uj)
2.

It follows that one of the summands is at most 1/k, and hence

max
i∈N

1

(cT ui)2
≥ max

j∈K

1

(cT uj)2
≥ k.

Example 9: the max-cut problem. Once again we have an undirected graph
G = (N,E), and a nonnegative vector w = (wij) ∈ IR

E
+. For K ⊆ N , δ(K) denotes

{ij ∈ E : i ∈ K, j /∈ K}, the cut determined by K, with weight equal to w(δ(K)) :=
∑

ij∈δ(K) wij . We want to find the cut of maximum weight. (This problem arises in
VLSI and in finding the ground state of a spin glass; see Poljak and Tuza [52].) We
can assume that the graph is complete (each node is adjacent to all others) by setting
wij = 0 for all non-edges ij; we also set wii = 0 for all i.

We start with two (nonconvex) quadratic programming formulations. We use x ∈
IR

n, with each xi = ±1, to represent the cut δ(K), where xi = 1 iff i ∈ K. Then
clearly xixj is −1 if ij ∈ δ(K), +1 otherwise. Let us define C ∈ SIR

n×n by setting
cij = −wij/4 for i 6= j and cii =

∑

j wij/4 for all i. Then for the x above, we have

w(δ(K)) =
1

2

∑

i<j

wij(1 − xixj) =
1

4

∑

i

∑

j

wij(1 − xixj) = xT Cx.

Since every (+1,−1)-vector corresponds to a cut, the max-cut problem can be written
as the integer quadratic programming problem

(IQP ) : maxxT Cx, xi ∈ {+1,−1}, i ∈ N,
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or as the nonconvex quadratically constrained quadratic problem

(NQCQP ) : maxxT Cx, x2
i = 1, i ∈ N.

We now discuss three different ways to arrive at an SDP relaxation of this problem.
First, we note that (NQCQP) is linear in the products xixj, and these are the entries
of the rank one matrix X = xxT . Note that X ∈ SIR

n×n, with Xii = 1 for all i
and X � 0. (We write the entries of X as Xij to avoid confusion with the vector
x.) Conversely, it is easy to see that any such matrix that also has rank one is of the
form xxT for some (+1,−1)-vector x. Since xT Cx = C • (xxT ), we see that (IQP) is
equivalent to

max C • X, Xii = 1, i ∈ N, X � 0, X rank one.

If we relax the last constraint, we get the SDP problem

max C • X, Xii = 1, i ∈ N, X � 0. (6)

Secondly, note that in (IQP), we associate a 1-dimensional unit vector xi (±1)
with each node. As in the previous example, we now associate an n-dimensional unit
vector pi with each node, and let P be the matrix whose rows are these vectors. (P
corresponds to the vector x, whose rows correspond to the 1-dimensional vectors.) We
then replace the objective C •(xxT ) with C •(PP T ), and the constraints xi ∈ {+1,−1}
by diag(PP T ) = e. Since PP T is positive semidefinite, and every such matrix can be
factored as PP T , we see that our problem has become the SDP problem above. It
is clearly a relaxation, since if we restrict each row of P to a multiple of a fixed unit
vector (±1), then we recover (IQP).

The third way to derive the SDP relaxation is by taking the dual twice. (This
approach was apparently first considered by Shor [57]; see also Poljak et al. [51].) Given
any optimization problem max{f(x) : g(x) = b, x ∈ Ξ}, where we have distinguished
a certain set of m equality constraints and left the rest as an abstract set restriction,
the Lagrangian dual obtained by dualizing the g(x) = b constraints is defined to be

min
y∈IR

m
h(y), where h(y) := max

x∈Ξ
[f(x) − yT (g(x) − b)].

Note that h, as the pointwise maximum of a set of linear functions, is always convex.
It is easy to see that the optimal value of this dual problem always provides an upper
bound on that of the original.

We now apply this scheme to (NQCQP), dualizing the constraints x2
i = 1, i =

1, . . . , n. The dual problem is to minimize over all y ∈ IR
n

h(y) := max
x∈IR

n
(xT Cx −

∑

i

yi(x
2
i − 1))

= eT y − min
x∈IR

n
(xT (Diag(y) − C)x).

The minimum here is 0 if Diag(y) − C is positive semidefinite, and −∞ otherwise.
Hence there is an implicit semidefinite constraint, and the dual problem becomes

min eT y, Diag(y) − C � 0.

15



This is an SDP problem in dual form, and its dual is precisely the SDP problem above.
Again, these dual problems satisfy the conditions of the next section guaranteeing
strong duality, so either provides a relaxation of the original max-cut problem. These
bounds on the value of a maximum weight cut were obtained by Delorme and Poljak
[14].

Since we have a relaxation, the optimal value of the SDP problem provides an upper
bound on the value of the max cut. But in this case, we can also use the solution of
the primal problem to generate a provably good cut, as was shown in a beautiful
contribution of Goemans and Williamson [22] (see also the survey article of Goemans
[21]). This uses the second derivation of the SDP problem above. So let us suppose the
optimal solution is X � 0, and then factor X = PP T . Then the rows of P , pi for each i,
give unit vectors for each node. If these vectors were all collinear, then we could obtain
a maximum weight cut by choosing the nodes whose vectors were equal to p1 as K, and
those with vectors equal to −p1 as N \K. In general, we proceed as follows. Choose a
random vector v uniformly on the unit sphere, and set K := {i ∈ N : vT pi ≥ 0}. Then
we get a random cut, and it is not hard to show that its expected weight, Ew(δ(K)),
is at least .878 of the optimal value of the SDP problem, which is at least the value
of a maximum weight cut. Hence we achieve at least this fraction of the best cut (on
average) in this way. In fact, it is possible to derandomize this procedure, to achieve a
deterministic cut that is provably close to maximum weight. For the pentagon (again!)
with all weights equal to one, the ratio of the optimal values of the max-cut problem
and its SDP relaxation is about .884, so the bound above is about the best one could
hope for.

4 Duality

Now it is time to discuss the relation between (P) and (D). We have already shown
weak duality, and here we will give conditions for strong duality to hold. But first,
since we have discussed Lagrangian duality in Example 9, we show that each of these
problems is the Lagrangian dual of the other, dualizing the equality constraints in
each case. It is easy to see that (D) is the Lagrangian dual of (P) (of course, we have
to switch max and min in our derivation of the dual). Let us show that (P) is the
Lagrangian dual of (D), when we dualise the constraints A∗y + S = C. Since this is
an equation between symmetric matrices, our dual variable will also be a symmetric
matrix, and we shall denote it by X. Hence our dual problem is

min
X∈SIRn×n

h(X), h(X) := max
y∈IR

m,S�0
[bT y − (A∗y + S − C) • X].

The maximum can be written as

C • X − min
y∈IR

m
[(AX − b)T y] − min

S�0
[S • X].

Since y ranges over all of IR
m, this is +∞ unless AX − b = 0. Also, by Fact 13 (self-

duality of the cone of positive semidefinite matrices), it is +∞ unless X � 0. If X
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satisfies both these conditions, the maximum reduces to just C • X, and we retrieve
(P).

Next we present a number of examples, from Vandenberghe and Boyd [63] and Luo,
Sturm, and Zhang [38], showing how strong duality can fail. Further examples can be
found in the latter reference.

Consider first

max −y1,

(

−1 0
0 0

)

y1 +

(

0 0
0 −1

)

y2 �
(

0 1
1 0

)

.

Equivalently, we require that

(

y1 1
1 y2

)

� 0. It is easy to see that the feasible region

is {(y1; y2) : y1 > 0, y2 > 0, y1y2 ≥ 1}. So the optimal value is 0, but it is not attained.
(We can get arbitrarily close with solutions of the form (ǫ; 1/ǫ) for arbitrarily small
positive ǫ.) The dual of this problem is

min

(

0 1
1 0

)

• X,

(

−1 0
0 0

)

• X = −1,

(

0 0
0 −1

)

• X = 0, X � 0,

for which the only feasible (and hence optimal) solution is X =

(

1 0
0 0

)

with optimal

value 0. Here there is no duality gap, but one of the values is not attained.
Our next example is

min







0 0 0
0 0 0
0 0 1






• X







1 0 0
0 0 0
0 0 0






• X = 0,







0 1 0
1 0 0
0 0 2






• X = 2,

X � 0.

Any feasible X is of the form







0 ξ1 ξ2

ξ1 ξ3 ξ4

ξ2 ξ4 1 − ξ1






, and, since it must be positive

semidefinite, in fact







0 0 0
0 ξ3 ξ4

0 ξ4 1






for suitable ξi’s. It follows that an optimal X is
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0 0 0
0 0 0
0 0 1






, with optimal value 1. The dual problem is

max 2y2,







1 0 0
0 0 0
0 0 0






y1 +







0 1 0
1 0 0
0 0 2






y2 �







0 0 0
0 0 0
0 0 1






.

Equivalently, we require

S =







−y1 −y2 0
−y2 0 0
0 0 1 − 2y2






� 0,

so y2 must equal 0 and y1 be nonpositive. Thus y = (0; 0) is optimal, with optimal
value 0. Here both problems attain their optimal values, but there is a gap between
them.

Note that in both primal and dual, a matrix that is required to be positive semidef-
inite has a zero on the diagonal, and this forces the off-diagonal entries in that row
and column to be zero also. It is instructive to see what happens when this implicit
constraint is removed by perturbing the diagonal entry. The reader may wish to check
that if b1 (using the usual notation) is changed to ǫ > 0, then both optimal values
become 0, while if c22 is changed to ǫ > 0, then both optimal values become 1. (If both
changes are made, the optimal values again become equal, but now both are 3/4.)

Our last example is

min

(

0 0
0 0

)

• X
(

1 0
0 0

)

• X = 0,
(

0 1
1 0

)

• X = 2,

X � 0.

Any feasible X must have (1,1) entry 0 and (1,2) entry 1, and such a matrix cannot
be positive semidefinite, so the optimal value (using the usual convention) is +∞. The
dual problem is

max 2y2,

(

1 0
0 0

)

y1 +

(

0 1
1 0

)

y2 �
(

0 0
0 0

)

.

Equivalently, we require

S =

(

−y1 −y2

−y2 0

)

� 0,

so y2 must equal 0 and y1 be nonpositive. Thus y = (0; 0) is optimal, with optimal
value 0. Here there is an infinite gap between the optimal values.
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Having given examples of strong duality failing, we now turn to conditions ensuring
that it holds. It turns out that a Slater (strict feasibility) condition suffices. Let us
define

F (P ) := {X ∈ SIR
n×n : AX = b,X � 0},

F 0(P ) := {X ∈ F (P ) : X ≻ 0},
F (D) := {(y, S) ∈ IR

m × SIR
n×n : A∗y + S = C,S � 0},

F 0(D) := {(y, S) ∈ F (D) : S ≻ 0}.

Also, we say the linear independence condition holds if A1, . . . , Am are linearly inde-
pendent in SIR

n×n.

Theorem 4.1 (Strong Duality) Suppose that F (P ) and F 0(D) are nonempty. Then
(P) has a nonempty compact set of optimal solutions, and the optimal values of (P)
and (D) are equal.

Proof:
Let X̂ ∈ F (P ) and (ŷ, Ŝ) ∈ F 0(D). Then we can add the constraint C •X ≤ C • X̂ to
(P) without changing its optimal value or the set of its optimal solutions. But, using
(2), this inequality is equivalent to Ŝ • X = C • X − bT ŷ ≤ C • X̂ − bT ŷ = Ŝ • X̂. So
(P) has the same optimal value and set of optimal solutions as

(P ′) : minC • X, AX = b, Ŝ • X ≤ Ŝ • X̂, X � 0.

But by Fact 14, this problem has a compact feasible region since Ŝ ≻ 0. The objective
function being continuous, this implies the first assertion of the theorem.

Now let ζ∗ denote the optimal value of (P) and ǫ be positive. We want to show
that there is a feasible solution of (D) with objective value at least ζ∗ − ǫ. Consider
the two sets G1 := SIR

n×n
+ and G2 := {X ∈ SIR

n×n : AX = b, C • X ≤ ζ∗ − ǫ}. These
two sets are closed convex, and disjoint, and have no common direction of recession
(any such would be a nonzero X � 0 satisfying C • X = 0, AX = 0, showing that the
set of optimal solutions of (P) is unbounded, a contradiction). Hence, by a separating
hyperplane theorem (Rockafellar [56], Corollary 11.4.1), there exist S ∈ SIR

n×n and
σ ∈ IR with

S • X > σ for any X ∈ G1, S • X < σ for any X ∈ G2.

Since 0 ∈ G1, σ is negative. Since λuuT ∈ G1 for any positive λ and any u ∈ IR
n, it

follows that S � 0.
Next we have that AX = b, C • X ≤ ζ∗ − ǫ imply S • X ≤ σ. By a theorem of the

alternative (for linear inequalities — there are no semidefinite constraints here), there
exist y ∈ IR

m and η ≥ 0 with

Cη −A∗y = S, (ζ∗ − ǫ)η − bT y ≤ σ.

Suppose η = 0. Then −bT y ≤ σ < 0 and also −bTy = −(AX̂)T y = X̂ • (−A∗y) =
X̂ • S ≥ 0, a contradiction. Hence η is positive, and by scaling y, S, and σ we can
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assume that η = 1. But then C − A∗y = S � 0 and bT y ≥ ζ∗ − ǫ − σ ≥ ζ∗ − ǫ, and
we have a feasible solution to (D) with value at least ζ∗ − ǫ. Since ǫ was arbitrary, we
have shown that there is no duality gap.

The result above is asymmetric between (P) and (D). We now make a few remarks
concerning these two problems and their presentation. The gist is that each can be
rewritten in the format of the other. For this, we assume the linear independence
condition. (Our assumption is basically without loss of generality. If the Ai’s are
linearly dependent, and A∗y = 0 implies bT y = 0, then we can choose a basis, say
Ai, i = 1, . . . , k, for them and remove the last m − k primal constraints and dual
variables to get equivalent problems where the assumption holds. If we have A∗ŷ = 0
and bT ŷ > 0, then (P) is infeasible and (D) unbounded if it is feasible.)

Given the assumption, we choose D ∈ SIR
n×n satisfying AD = b and let G1, . . . , Gk

be a basis for the orthogonal complement of the span of the Ai’s in SIR
n×n. Finally,

let hj := C • Gj , j = 1, . . . , k. Then it is not hard to see that (P) is equivalent to

C • D − max
w∈IR

k,X∈SIR
n×n

{hT w :
∑

j

wjGj + X = D, X � 0},

an SDP problem in dual form. Similarly, (D) is equivalent to

C • D − min
S∈SIR

n×n
{D • S : Gj • S = hj , j = 1, . . . , k, S � 0},

an SDP problem in primal form. We can use this construction for moving between the
two forms. Let us note that, given the linear independence condition, for any S there
is at most one y with (y, S) feasible for (D), which allows us to extend boundedness
results from just S to the pair (y, S).

Applying this procedure to the previous result, we obtain

Corollary 4.1 Suppose the linear independence condition holds and that F 0(P ) and
F (D) are nonempty. Then (D) has a nonempty compact set of optimal solutions, and
there is no duality gap.

We also find

Corollary 4.2 Suppose the linear independence condition holds and that both (P) and
(D) have strictly feasible solutions. Then each has a nonempty compact set of optimal
solutions, and there is no duality gap.

We will give an alternative proof of this corollary in the next section. We note the
historical fact that Corollary 4.2 was proved in 1963 by Bellman and Fan [6] for the
following pair of SDP problems:

min
∑

j Cj • Xj
∑

j(AijXj + XjA
T
ij) = Bi, for all i

Xj � 0, for all j,

max
∑

i Bi • Yi
∑

i(YiAij + AT
ijYi) � Cj , for all j.
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Here all Bi’s and Cj’s, as well as the variables Xj and Yi, are symmetric matrices of
order n, while the Aijs are not necessarily symmetric matrices of the same order; also
j runs from 1 to k and i from 1 to m throughout. Clearly this form of the problems
was inspired by systems arising in control theory, but no connections were made. It is
possible to show that (P) and (D) can be formulated as above, and that these problems
can be formulated as (P) and (D).

Since the “standard” dual (D) of (P) may lead to a positive duality gap, we can ask
whether there is a perhaps more complicated dual problem for which strong duality
always holds, without any additional regularity assumptions. The answer is in the
affirmative: see Ramana [54] and Ramana, Tunçel, and Wolkowicz [55].

Finally, if we assume that strong duality holds, then we have as necessary and
sufficient optimality conditions the following:

A∗y + S = C, S � 0,
AX = b, X � 0,

XS = 0.

(Here the natural last condition stating that the duality gap is zero, X • S = 0, has
been replaced by the seemingly stronger condition that the matrix product is zero using
Fact 15, since both matrices are positive semidefinite.)

5 The Logarithmic Barrier Function and the

Central Path

We define f on SIR
n×n by

f(X) := − ln detX if X ≻ 0, f(X) := +∞ otherwise.

and call it the logarithmic barrier function for the cone SIR
n×n
+ of positive semidefinite

matrices. For n = 1, we get the smooth function − ln x, which is defined on the positive
axis and tends to +∞ as x approaches 0 from above. In the same way, f is defined on
the positive definite matrices and tends to +∞ as X approaches a matrix X̄ ∈ ∂SIR

n×n
+

through positive definite values. We say that f has the barrier property for SIR
n×n
+ .

The idea, which we shall investigate in detail below, is to replace the problem (P)
with the somewhat awkward constraint that X be positive semidefinite by the sequence
of problems (barrier problems parametrised by ν > 0):

BP (ν) : min C • X + νf(X), AX = b (X ≻ 0),

where there is only a linear constraint, the implicit positive definite constraint being
enforced by the barrier property of f .

Clearly f is smooth on the interior SIR
n×n
++ of SIR

n×n
+ : we evaluate its first few

derivatives. Let X ≻ 0, H ∈ SIR
n×n. Then

f(X + αH) = − ln det[X(I + αX−1H)]

= − ln detX − ln(1 + αtrace X−1H + O(α2))

= f(X) − αX−1 • H + O(α2),
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so that f ′(X) = −X−1 and Df(X)[H] = −X−1 • H.
Similarly we find

f ′(X + αH) = −[X(I + αX−1H)]−1

= −[I − αX−1H) + O(α2)]X−1

= f ′(X) + αX−1HX−1 + O(α2).

Hence f ′′(X)[H] = X−1HX−1 and D2f(X)[H,J ] = X−1HX−1 • J . In the notation
introduced in (1), f ′′(X) = X−1 ⊙ X−1. It is easy to see that the adjoint of P ⊙ Q is
P T ⊙QT , so this operator is self-adjoint (i.e., [(P ⊙Q)U ]•V = [(P ⊙Q)V ]•U) if P and
Q are symmetric; further, it is positive definite (i.e., [(P ⊙Q)U ] •U > 0 if U ∈ SIR

n×n

is nonzero) if P ≻ 0, Q ≻ 0. Hence f ′′(X) is self-adjoint and positive definite. In the
same way we find f ′′′(X)[H,J ] = −X−1HX−1JX−1 − X−1JX−1HX−1.

We now introduce the important notion of self-concordance, defined and developed
in great detail by Nesterov and Nemirovski [45]. We know that f is convex if, for every
X ≻ 0 and every H ∈ SIR

n×n, φ(α) := f(X + αH) is convex in α. We say that f is
self-concordant if it is convex and 3-times differentiable and if, for every such X and
H, φ defined as above satisfies

|φ′′′(0)| ≤ 2[φ′(0)]3/2.

Finally, f is a θ-normal barrier for SIR
n×n
++ (or for SIR

n×n
+ ) if it is convex, self-concordant,

has the barrier property, and is logarithmically homogeneous of degree θ:

f(αX) = f(X) − θ ln α, for all X ≻ 0, α > 0.

We now have

Theorem 5.1 f(X) := − ln detX is an n-normal barrier for SIR
n×n
+ .

Proof:
Define φ as above. Then it is finite on the convex set of α such that X + αH ≻ 0, and
on this set

φ′′(α) = D2f(X̄)[H,H] = (X̄−1HX̄−1) • H,

where X̄ := X + αH. Since this matrix is positive definite, so is V := X̄− 1

2 , and then
φ′′(α) = V 2HV 2 • H = trace (V 2HV 2H) = trace ([V HV ][V HV ]) = ‖V HV ‖2

F ≥ 0. So
φ is convex. Indeed, the quantity above is positive if H is nonzero, so in fact then φ
and hence f is strictly convex. We have also shown that f ′′(X) is a positive definite
and hence nonsingular operator.

Let φ be as above and now let V := X− 1

2 ≻ 0. Then φ′′(0) = trace ([V HV ][V HV ]).
If λ := λ(V HV ), then φ′′(0) = trace (Diag(λ)Diag(λ)) = ‖λ‖2

2. Next,

φ′′′(0) = −2(X−1HX−1HX−1) • H

= −2 trace (V 2HV 2HV 2H) = −2 trace ([V HV ][V HV ][V HV ])

= −2
∑

λ3
i .
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So we conclude that

|φ′′′(0)| = 2|
∑

λ3
i | ≤ 2

∑

|λ3
i | = 2‖λ‖3

3 ≤ 2‖λ‖3
2 = 2[φ′′(0)]3/2.

Finally, we already checked the barrier property, and

f(αX) = − ln det(αX) = − ln(αn detX) = f(X) − n lnα,

so the proof is complete.

Having the positive definite operator f ′′(X), we can define the X-norm of a sym-
metric matrix by

‖H‖X := (f ′′(X)H • H)frac12 = ‖λ(X− 1

2 HX− 1

2 ‖2 = ‖X− 1

2 HX− 1

2 ‖F

and the dual X-norm of a symmetric matrix by

‖J‖∗X := ([f ′′(X)]−1J • J)frac12 = ‖XqJXq‖F .

Note that |J • H| ≤ ‖J‖∗X‖H‖X as in the Cauchy-Schwarz inequality.
The following properties follow from our formulae, but can also be obtained directly

by differentiating the equation for logarithmic homogeneity:

Proposition 5.1 For α > 0, X ≻ 0 of order n,

f ′(αX) = α−1f ′(X), f ′′(αX) = α−2f ′′(X);
f ′(X) • X = −n, f ′′(X)X = −f ′(X);
‖X‖X =

√
n, ‖f ′(X)‖∗X =

√
n.

The last line also states that the X-norm of the Newton step for minimizing f from X,
−[f ′′(X)]−1f ′(X), is exactly

√
n. This shows that f satisfies also the original definition

of Nesterov and Nemirovski (which applies also to functions that are not logarithmically
homogeneous) to be an n-self-concordant barrier function.

We now return to the barrier problem mentioned at the beginning of this section,
defining the primal and dual barrier problems (parametrised by ν > 0) to be

BP (ν) : min C • X + νf(X), AX = b (X ≻ 0),

and
BD(ν) : max bT y − νf(S), A∗y + S = C (S ≻ 0).

It is not hard to check that each is in fact the Lagrangian dual of the other up to an
additive constant.

Suppose BP(ν) has an optimal solution X. Then X ∈ F 0(P ) and, by Lagrange’s
theorem, for some y ∈ IR

m we have

C − νX−1 −A∗y = C + νf ′(X) −A∗y = 0.
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Let us set S := νX−1 ≻ 0. Then we see that (y, S) ∈ F 0(D), and we have a solution
to the set of equations

A∗y + S = C, S ≻ 0,
CPE(ν) : AX = b, X ≻ 0,

XS = νI.
(7)

We call these the central path equations for reasons that will become clearer shortly.
Note that, except for the final right-hand side, these equations coincide with the opti-
mality conditions stated at the end of the previous section.

If BD(ν) has an optimal solution (y, S), a similar derivation shows that, for some
X, the above equations again hold.

Theorem 5.2 Suppose F 0(P ) and F 0(D) are nonempty and the linear independence
assumption holds. Then for every positive ν, there is a unique solution (X(ν), y(ν), S(ν))
to CPE(ν). Further, X(ν) is the unique solution to BP(ν) and (y(ν), S(ν)) to BD(ν).
Finally, if the assumption of strict feasibility fails, then CPE(ν), BP(ν), and BD(ν)
have no solution.

Proof:
First we establish existence. Choose X̂ ∈ F 0(P ) and (ŷ, Ŝ) ∈ F 0(D), and consider
BP(ν). Suppose σ := λmin(Ŝ) > 0. Now X̂ is feasible for BP(ν), and for feasible X,
C • X differs by a constant from Ŝ • X (2). Hence BP(ν) has the same set of optimal
solutions as

BP ′(ν) : min Ŝ •X + νf(X), AX = b, Ŝ •X + νf(X) ≤ Ŝ • X̂ + νf(X̂) (X ≻ 0).

Our aim is to show that this amounts to the minimization of a continuous function on
a compact set, yielding existence.

Suppose X is feasible in BP′(ν), and let λ := λ(X) and e ∈ IR
n be again a vector of

ones. Then we have λ > 0 and σeT λ− ν
∑

ln λj = σI •X + νf(X) ≤ Ŝ •X + νf(X) ≤
Ŝ • X̂ + νf(X̂) =: α, so

∑

j

(σλj − ν ln λj) ≤ α.

Now the function στ − ν ln τ has a unique minimizer at τ∗ = ν/σ and goes to +∞ as τ
goes to either 0 or +∞. Let the minimum value be β and suppose that στ − ν ln τ >
α − (n − 1)β for τ ∈ (0, τ ] or τ ∈ [τ̄ ,+∞). Then the inequality above implies that
λj ∈ [τ , τ̄ ] for all j, so ‖X‖F = ‖λ‖2 ≤ √

nτ̄ . Hence we have a bounded feasible set.
Moreover, λj ≥ τ > 0 for all j implies that Ŝ •X + νf(X) is continuous on this set, so
it is also closed and hence compact. We have just seen that the objective function of
BP′(ν) is continuous on the feasible set, and hence existence of a minimizer for BP(ν)
follows. Now such a minimizer must satisfy the necessary conditions, and hence we see
as above that we have a solution to CPE(ν).

Since the barrier problem is convex, these conditions are also sufficient for optimal-
ity. So any solution to CPE(ν) yields a minimizer for BP(ν). Moreover, the objective
here is strictly convex, so the minimizer is unique. The equations XS = νI show that
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S is also unique, and then the equations A∗y + S = C and the linear independence
assumption imply that y is also unique. The equations CPE(ν) also provide necessary
and sufficient conditions for the dual barrier problem. Finally, if strict feasibility fails
for (P), there is no solution yielding a finite value for the objective function of BP(ν);
there is no solution satisfying the necessary conditions for optimality in BD(ν); and
there is no solution to CPE(ν), since the X-part would give a strictly feasible solution.
A similar argument applies to the dual, and the proof is complete.

So far we have established the existence of a unique solution to CPE(ν) for each
positive ν, but not that these solutions form a smooth path. This will follow from the
implicit function theorem if we show that the equations defining it are differentiable,
with a derivative (with respect to (X, y, S)) that is square and nonsingular at points
on the path. Unfortunately, while the equations of (7) are certainly differentiable, the
derivative is not even square since the left-hand side maps (X, y, S) ∈ SIR

n×n × IR
m ×

SIR
n×n to a point in SIR

n×n× IR
m× IR

n×n; XS is usually not symmetric even if X and
S are. We therefore need to change the equations defining the central path. There are
many possible approaches, which as we shall see lead to different search directions for
our algorithms, but for now we choose a simple one: we replace XS = νI by −νX−1 +
S = 0. As in our discussion of the barrier function f , the function X → −νX−1 is
differentiable at nonsingular symmetric matrices, with derivative ν(X−1 ⊙ X−1). So
the central path is defined by the equations

ΦP (X, y, S; ν) :=







A∗y + S
AX

−νX−1 + S






=







C
b
0






, (8)

whose derivative (with respect to (X, y, S)) is

Φ′
P (X, y, S; ν) :=







0 A∗ I
A 0 0

ν(X−1 ⊙ X−1) 0 I






, (9)

where I denotes the identity operator on SIR
n×n. We have been rather loose in writing

this in matrix form, since the blocks are operators rather than matrices, but the mean-
ing is clear. We want to show that this derivative is nonsingular, and for this it suffices
to prove that its null-space is trivial. Since similar equations will occur frequently, let
us derive this from a more general result.

Theorem 5.3 Suppose the operators E and F map SIR
n×n to itself, and that E is

nonsingular and E−1F is positive definite (but not necessarily self-adjoint). Assume
that the linear independence condition holds. Then, for any P , R ∈ SIR

n×n and q ∈
IR

m, the solution to
A∗v + W = P,

AU = q,
E U + F W = R

(10)
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is uniquely given by

v = (AE−1FA∗)−1(q −AE−1(R −FP )),
W = P −A∗v,
U = E−1(R −FW ).

(11)

Proof:
The formulae for W and U follow directly from the first and third equations. Now
substituting for W in the formula for U , and inserting this in the second equation, we
obtain after some manipulation

(AE−1FA∗)v = q −AE−1(R −FP ).

Since E−1F is positive definite and the Ai’s are linearly independent, the m×m matrix
on the left is positive definite (but not necessarily symmetric) and hence nonsingular.
This verifies that v is uniquely determined as given, and then so are W and U . More-
over, these values solve the equations.

In our case, F is the identity, while E is ν(X−1⊙X−1) with inverse ν−1(X⊙X). This
is easily seen to be positive definite, just as f ′′(X) is. Hence the theorem applies, and
so the derivative of the function ΦP is nonsingular on the central path (and throughout
SIR

n×n
++ × IR

m × SIR
n×n
++ ); thus the central path is indeed a differentiable path.

By taking the trace of the last equation of (7), we obtain the last part of the
following theorem, which summarises what we have observed:

Theorem 5.4 Assume that both (P ) and (D) have strictly feasible solutions and the
linear independence condition holds. Then the set of solutions to (7) for all positive
ν forms a nonempty differentiable path, called the central path. If (X(ν), y(ν), S(ν))
solve these equations for a particular positive ν, then X(ν) is a strictly feasible solution
to (P ) and (y(ν), S(ν)) a strictly feasible solution to (D), with duality gap

C • X(ν) − bT y(ν) = X(ν) • S(ν) = nν. (12)

We claimed above that we could use the central path to prove strong duality. Indeed,
we have:

Theorem 5.5 The existence of strictly feasible solutions to (P ) and (D) and the linear
independence condition imply that both have bounded nonempty optimal solution sets,
with zero duality gap.

Proof:
The last part follows from the existence of the central path, since by (12) the duality
gap associated to X(ν) and (y(ν), S(ν)) is nν, and this approaches zero as ν tends to
zero. (In fact, the central path approaches optimal solutions to the primal and dual
problems as ν decreases to zero [37, 23], but we shall not prove this here.)

To show that (P ) has a bounded nonempty set of optimal solutions, we proceed as
in the proof of Theorem 5.2, again choosing (ŷ, Ŝ) ∈ F 0(D). Clearly, the set of optimal
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solutions is unchanged if we change the objective function of (P ) to Ŝ • X and add
the constraint Ŝ • X ≤ Ŝ • X̂. But this latter constraint (for X ∈ P) implies that
all the eigenvalues of X are bounded by (Ŝ • X̂)/σ, where again σ > 0 denotes the
smallest eigenvalue of Ŝ. This shows that all optimal solutions of (P ) (if any) lie in a
compact set of feasible solutions; but the minimum of the continuous function Ŝ • X
over this compact set (containing X̂) is attained, and so the set of optimal solutions is
nonempty and bounded. The proof that the set of optimal dual solutions is bounded
and nonempty is similar: we start by noting that the objective of maximizing bT y can
be replaced by that of minimizing X̂ • S using (2).

6 Algorithms

In this section we will discuss three classes of algorithms for solving SDP problems:
path-following methods, potential-reduction methods and algorithms based on smooth
or nonsmooth nonlinear programming formulations. The first two classes consist of
interior-point methods, while the last contains both interior-point and non-interior-
point approaches. Interior-point methods for SDP were first introduced by Nesterov
and Nemirovski (see [45]) and independently by Alizadeh [1]. In all cases we shall
concentrate on feasible methods, in which all iterates are (strictly in the first two
cases) feasible; if we are using Newton steps, this implies that P and q in the system
(10) will be zero, while R will depend on the method. One easy way to allow infeasible
iterates (satisfying positive definiteness, but not the equality constraints) is to just let
P and q be the negatives of the residuals in the dual and primal equality constraints,
but some theoretical results then do not hold. Alternatively, the problems (P) and (D)
can be embedded in a larger self-dual system that always has strictly feasible solutions
at hand and whose solution gives the required information about the original problems:
see [31, 38, 53], based on the work of Ye, Todd, and Mizuno [69] for linear programming.

6.1 Path-following methods

These methods are motivated by Theorem 5.4, and attempt to track points on the
central path as the parameter ν is decreased to zero. We mention first primal and dual
versions, and then discuss primal-dual methods.

Primal and dual path-following methods conform to the general scheme of Nesterov
and Nemirovski [44, 45], where they were first introduced and analysed. The basic
strategy of the primal method is to take some Newton steps towards the minimizer of
BP(ν) for some parameter ν > 0, and then decrease ν and repeat. It is easy to see
that Newton steps for minimizers of BP(ν) are just the X-part of Newton steps for
the zeroes of ΦP (·; ν) in (8), and Theorem 5.3 shows how these may be computed. It
is not necessary to maintain the S iterates, but the y iterates are useful to give a test
for when the Newton steps can be terminated and ν reduced. We want the gradient
of BP(ν), modified by a Lagrangian term, to be sufficiently small, and since gradients
“live in dual space”, we measure this using the dual X-norm. Hence our proximity
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criterion is
‖C − νX−1 −A∗y‖∗X ≤ τν,

where τ ∈ (0, 1). This has two nice consequences. Suppose we set S := C −A∗y. Then
we have ‖S − νX−1‖∗X ≤ τν, so that ‖ν−1S − X−1‖X−1 ≤ τ , and using the eigenvalue

characterization of this norm we see that ν−1X
1

2 SX
1

2 and hence S is positive definite,
and so (y, S) strictly feasible for (D). Secondly, the duality gap is

X • S = X • (νX−1 + [S − νX−1]) ≤ νn + ‖X‖X‖S − νX−1‖∗X ≤ ν(n + τ
√

n).

so that we are provably close to optimality when ν is small. The algorithm then
becomes:

Choose a strictly feasible X for (P), y ∈ IR
m, and ν > 0. Perform damped Newton

steps, maintaining X positive definite, until the proximity criterion is satisfied. Stop
if ν is sufficiently small. Otherwise, replace ν by θν for some θ ∈ (0, 1) and continue.

Here by damped Newton steps we mean that (X, y) is replaced by (X+, y+) :=
(X + α∆X, y + α∆y) for some α ∈ (0, 1], where (∆X,∆y) is the usual (full) Newton
step obtained by setting the linearization of ΦP (·, ν) to zero, which will now be called
the Newton direction. Using Theorem 5.3, it is not hard to see that this direction can
be found by first computing the m×m matrix M with entries mij := ν−1Ai •(XAjX),
then solving

M∆y = −A(X − ν−1X[C −A∗y]X),

and finally setting ∆X = X − ν−1X[C − A∗(y + ∆y)]X. Note that the proximity
criterion is satisfied (for X and y+∆y) iff the Newton step for X is small: ‖∆X‖X ≤ τ .

The beautiful theory of self-concordant functions developed by Nesterov and Ne-
mirovski enables them to establish a polynomial convergence result for this method.
Suppose the initial (X, y, ν) are such that the proximity criterion is satisfied for τ = .1
(so that the first action of the algorithm will be to reduce ν). Suppose also that ν is
reduced each time by the factor θ = 1 − .1/

√
n. Then at each iteration we can choose

α = 1 (we do not need to damp the Newton steps), the proximity criterion will be
satisfied after a single Newton step, and in O(

√
n ln(1/ǫ)) steps, the duality gap will

be reduced to ǫ times its original value. (The occurrence of
√

n in these results arises
since f is an n-normal barrier for the positive semidefinite cone, and more particularly
from the size of f ′(X) established in Proposition 5.1. This shows that ν can be reduced
by the factor θ above while not losing too much proximity, so that one Newton step
restores it.)

Next we discuss the dual method. This can be viewed as taking Newton steps for
the minimizer of BD(ν), or equivalently for the zero of ΦD(·; ν), defined as ΦP (·; ν)
but with X − νS−1 replacing −νX−1 + S as its last part. Here it is not necessary to
maintain the X iterates. It is not hard to see that the Newton direction is computed
as follows. First find the m×m matrix M with entries mij := νAi • (S−1AjS

−1), then
solve

M∆y = b − νAS−1, (13)
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and finally set ∆S = −A∗∆y. Continue taking damped Newton steps until the follow-
ing proximity criterion is satisfied:

‖∆S‖S ≤ τ.

Then reduce ν and continue. Here, X := ν[S−1 + S−1(A∗∆y)S−1] is strictly feasible
in (P) when this criterion holds. The same theoretical results hold as in the primal
case. One advantage of the dual method arises when C and the Ai’s share a sparsity
pattern. Then S will have the same sparsity, while X may well be dense. Of course,
S−1 is likely to be dense, but we may be able to perform operations cheaply with this
matrix using a sparse Cholesky factorization of S. Recently, Fukuda et al. [20] have
investigated ways in which the primal-dual methods discussed next can exploit this
form of sparsity.

Now we turn to primal-dual path-following methods. Here we maintain (X, y, S),
and our steps are determined by both the current primal and the current dual iterates.
Apart from the sparsity issue above, this seems to be worthwhile computationally,
and leads to fewer difficulties if an iterate gets close to the boundary of the positive
semidefinite cone. In addition, the Newton step is based on a system more like XS −
νI = 0, which is certainly smoother than one involving inverses, especially for near-
singular iterates. The Newton step is then regarded as a search direction, and damped
steps are taken (possibly with different damping in the primal and dual spaces) to get
the next iterates. As discussed in the previous section, we cannot take Newton steps
for the function whose last part is defined by XS − νI, so we have to symmetrize this
somehow, but now we do this without using the inverse function. The first idea is to
replace this condition with (XS + SX)/2 − νI, and this was proposed by Alizadeh,
Haeberly, and Overton [4]. Linearizing this system gives the equation (in addition to
the feasibility equations)

1

2
(∆XS + S∆X + X∆S + ∆SX) = νI − 1

2
(XS + SX).

Thus the resulting Newton direction (called the AHO search direction) is defined by a
system as in (10) with

E = S ⊙ I, F = X ⊙ I.

One difficulty with this system is that we do not have an explicit form for the inverse
of E ; instead, to find E−1U we need to solve a Lyapunov system. Also, the sufficient
conditions of Theorem 5.3 do not hold for this choice, and Todd, Toh, and Tütüncü
[60] give an example where the Newton direction is not well-defined at a pair of strictly
feasible solutions. (This does not seem to cause difficulties in practice.)

A more general approach is to apply a similarity to XS before symmetrizing it. This
was discussed for a specific pair of similarities by Monteiro [39], and then in general by
Zhang [70]. So let P be nonsingular, and let us replace the last part of ΦP by

1

2
(PXSP−1 + P−T SXP T ) − νI. (14)

(Zhang showed that this is zero exactly when XS = νI as long as X and S are
symmetric.) An alternative way to view this is to scale (P) so that the variable X is

29



replaced by X̂ := PXP T and (D) so that S is replaced by Ŝ := P−T SP−1; then apply
the Alizadeh-Haeberly-Overton approach in this scaled space. The resulting search
directions form the Monteiro-Zhang family. Of course, with P = I, we retrieve the
AHO direction.

Since the need for symmetrization occurs because X and S do not commute, it
seems reasonable to choose P so that the scaled matrices do commute. Three ways to
do this are: choose P = S

1

2 so that Ŝ = I; choose P = X− 1

2 so that X̂ = I; and choose
P = W− 1

2 , where

W = X
1

2 (X
1

2 SX
1

2 )−
1

2 X
1

2 (15)

is the unique positive definite matrix with WSW = X, so that X̂ = Ŝ. The resulting
search directions are known as the HRVW/KSH/M, dual HRVW/KSH/M, and NT
directions. The first was introduced by Helmberg, Rendl, Vanderbei, and Wolkowicz
[28], and independently Kojima, Shindoh, and Hara [33], using different motivations,
and then rediscovered from the perspective above by Monteiro [39]. The second was
also introduced by Kojima, Shindoh, and Hara [33] and rediscovered by Monteiro; since
it arises by switching the roles of X and S, it is called the dual of the first direction.
The last was introduced by Nesterov and Todd [46, 47], from yet another motivation,
and shown to be derivable in this form by Todd, Toh, and Tütüncü [60]. These and
several other search directions are discussed in Kojima et al. [32] and Todd [59].

In the first case, the Newton direction can be obtained from the solution of a linear
system as in (10) with

E = I, F = X ⊙ S−1;

in the second case with
E = S ⊙ X−1, F = I;

and in the third case with
E = I, F = W ⊙ W

(it is not immediate that this last corresponds to the Newton system for (14) with

P = W
1

2 ; see [60] for the analysis). In all cases, it is easy to see that E−1F is positive
definite (and in fact also self-adjoint), so that the Newton direction is well-defined.
However, in the second, a Lyapunov system must again be solved to apply E−1 to a
matrix. For the first case, we define M by setting mij = Ai • (XAjS

−1), while for the
last, mij = Ai • (WAjW ). We then solve (13) for ∆y, set ∆S = −A∗∆y, and then set

∆X = −X + νS−1 +
1

2
[X(A∗∆y)S−1 + S−1(A∗∆y)X]

for the first case, and

∆X = −X + νS−1 + W (A∗∆y)W

for the last. Once again, damped steps are taken to preserve positive definiteness.
We still need a proximity criterion, and here two possibilities have been considered. In
both, we let µ := µ(X,S) := (X•S)/n. Then the narrow neighbourhood (parametrised
by τ ∈ (0, 1)) is

NF (τ) := {(X, y, S) ∈ F 0(P ) × F 0(D) : ‖X 1

2 SX
1

2 − µI‖F = ‖λ(XS − µI)‖2 ≤ τµ},
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while the wide neighbourhood is

N−∞(τ) := {(X, y, S) ∈ F 0(P ) × F 0(D) : λmin(XS) ≥ (1 − τ)µ}.
Algorithms that maintain all iterates in a narrow neighbourhood are called short-step
methods, while those that keep the iterates in a wide neighbourhood are termed long-
step methods. In practice, algorithms frequently ignore such criteria and just take
steps a proportion α (say .99) of the way to the boundary; different steps can be taken
for the primal and dual iterates.

Here is a typical short-step primal-dual path-following algorithm. Assume given
an initial strictly feasible point (X, y, S) ∈ NF (τ). Choose ν = σµ for some σ ∈
(0, 1), compute the search direction chosen from the AHO, HRVW/KSH/M, dual
HRVW/KSH/M, and NT search directions, and take a full Newton step. Repeat.

Monteiro [40] showed that such an algorithm, with τ = .1 and σ = 1 − .1/
√

n,
generates a sequence of iterates all in the narrow neighbourhood, and produces a
strictly feasible point with duality gap at most ǫ times that of the original point in
O(

√
n ln(1/ǫ)) steps. (Included in this is the result of Monteiro and Zanjacomo [42]

that the AHO search direction is well-defined within such a narrow neighbourhood.)
Predictor-corrector methods, which alternate taking σ = 1 (with a line search) and
σ = 0, and use two sizes of narrow neighbourhood, also have the same complexity.
Also see Monteiro and Todd [41].

A typical long-step primal-dual path-following algorithm assumes given an initial
strictly feasible point (X, y, S) ∈ N−∞(τ). Choose ν = σµ for some σ ∈ (0, 1), compute
the search direction chosen from the AHO, HRVW/KSH/M, dual HRVW/KSH/M, and
NT search directions, and take the longest step that keeps the iterate in N−∞(τ). Here
it is not certain that the AHO search direction will be well-defined, so our theoretical
results are for the other cases.

Monteiro and Zhang [43] showed that such an algorithm, with any τ and σ in
(0, 1) and independent of n, and using the NT search direction, generates a strictly
feasible point with duality gap at most ǫ times that of the original point in O(n ln(1/ǫ))
steps; using the HRVW/KSH/M or dual HRVW/KSH/M search direction increases the
bound to O(n3/2 ln(1/ǫ)) steps. Again, another reference for these results is [41].

6.2 Potential-reduction methods

The methods of the previous subsection were based on approximately solving the bar-
rier problems BP(ν) and BD(ν), and the parameter ν had to be explicitly adjusted
towards zero. Here we combine the objective function and the barrier function in a
different way, and avoid the need to adjust a parameter. Such potential functions were
first introduced by Karmarkar in his seminal work on interior-point methods for linear
programming [30].

Consider the Tanabe-Todd-Ye [58, 61] primal-dual potential function

Ψρ(X, y, S) := (n + ρ) ln X • S − ln detX − ln detS − n ln n,

defined for strictly feasible points (X, y, S). If λ := λ(X
1

2 SX
1

2 ), then it is easy to see
that Ψ0(X, y, S) = n ln(eT λ/n)−ln(Πjλj), so the arithmetic-geometric mean inequality
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shows that this is always nonnegative. In fact, it is zero iff all eigenvalues of X
1

2 SX
1

2

are equal, or equivalently iff the point is on the central path. Ψρ(X, y, S) increases the
weight on the logarithm of the duality gap, and therefore pushes points towards the
optimum. Our aim is to decrease this function by a constant at each iteration:

Theorem 6.1 Suppose (X0, y0, S0) ∈ F 0(P ) × F 0(D) satisfies

Ψ0(X0, y0, S0) ≤ ρ ln
1

ǫ

for some ǫ > 0. Then, if we generate a sequence of strictly feasible points (Xk, yk, Sk)
with

Ψρ(Xk, yk, Sk) ≤ Ψρ(Xk−1, yk−1, Sk−1) − δ

for some constant δ > 0 and all k ≥ 1, then in O(ρ ln(1/ǫ)) steps, we will have a strictly
feasible point (XK , yK , SK) with duality gap at most ǫ times that of (X0, y0, S0).

Proof:
Let K := 2ρ ln(1/ǫ)/δ. Then, using the fact above, we have

ρ ln XK • SK ≤ ρ ln XK • SK + Ψ0(XK , yK , SK)

= Ψρ(XK , yK , SK)

≤ Ψρ(X0, y0, S0) − Kδ

= ρ ln X0 • S0 + Ψ0(X0, y0, S0) − Kδ

≤ ρ ln X0 • S0 − ρ ln
1

ǫ
.

Notice that there is no need to control the proximity of the iterates to the central
path, as long as the requisite decrease in the potential function can be obtained. It
turns out that this is possible as long as ρ ≥ √

n. A reasonable way to try to effect
such a decrease is to move in the direction of steepest descent with respect to some
norm.

Let us consider first a dual method. Suppose our current dual strictly feasible
iterate is (y, S), and that we have available a primal strictly feasible solution X (in
fact, initially it is only necessary to have an upper bound on the dual optimal value).
Let ∇SΨ denote the derivative of Ψρ with respect to S,

∇SΨ =
n + ρ

X • S
X − S−1,

let U be positive definite, and consider

min∇SΨ • ∆S +
1

2
‖∆S‖2

U , A∗∆y + ∆S = 0. (16)

Of course, it is natural to take U = S, but we shall soon see the value of the generality
we have allowed. For now, let us choose U = S and see what the resulting direction is.
If we let P denote the Lagrange multiplier for the constraint, we need to solve

AP = 0, A∗∆y + ∆S = 0, P + S−1∆SS−1 = −∇SΨ. (17)
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Let us set ν := (X • S)/(n + ρ). Then the last equation above, multiplied by ν,
becomes (νP ) + νS−1∆SS−1 = −X + νS−1. It follows that (∆y,∆S) is exactly the
same as the search direction in the dual path-following algorithm — see the paragraph
including (13) — for this value for ν. If the resulting ‖∆S‖S is sufficiently large, then
a suitable step is taken in the direction (∆y,∆S) and one can show that the potential
function is thus decreased by a constant (X is unchanged). If not, then the solution
of the problem above suffices to generate an improved X, exactly as we found below
(13), and then updating X while holding (y, S) unchanged also can be shown to give a
constant decrease in the potential function. It follows that we can attain the iteration
complexity bound given in Theorem 6.1. Details can be found in, for example, Benson
et al. [8], which describes why this method is attractive for SDP problems arising in
combinatorial optimization problems and gives some excellent computational results.

Now let us consider a symmetric primal-dual method. Suppose we have a strictly
feasible point (X, y, S). In addition to the dual direction-finding problem (16) above,
we need a primal problem to determine ∆X. Let ∇XΨ denote the derivative of Ψρ

with respect to X,

∇XΨ =
n + ρ

X • S
S − X−1,

let V be positive definite, and consider

min∇XΨ • ∆X +
1

2
‖∆X‖2

V , A∆X = 0. (18)

Here it is natural to choose V = X, and this would lead to a primal potential-reduction
method with the same iteration complexity. But we would like to get search directions
for both primal and dual problems without solving two optimization subproblems.
This can be achieved by using V = W in (18) and U = W−1 in (16), where W is the
scaling matrix of (15). The dual direction then comes from equations like (17), with
W replacing S−1 on the left-hand side of the last equation. The primal direction, if we
use a Lagrange multiplier q for the constraint, comes from the solution to

A∆X = 0, W−1∆XW−1 −A∗q = −∇XΨ. (19)

If we write R for −A∗q and pre- and postmultiply the last equation by W (noting that
WSW = X and WX−1W = S−1), we get

A∆X = 0, A∗q + R = 0, ∆X + WRW = −∇SΨ.

Comparing these two systems, we see that they are identical if we identify ∆X with
P and (∆y,∆S) with (q,R). It thus turns out that both search directions can be
obtained simultaneously by solving one system of the form (10). In fact, the search
directions are exactly (up to a scalar factor) those of the NT path-following method of
the previous subsection, and we have already discussed how those can be computed.
(Again, we need to take ν = X •S/(n+ρ).) It turns out that, by taking a suitable step
in these directions, we can again achieve a constant decrease in the potential function.
The analysis is somewhat complicated, and the reader is referred to the original article
of Nesterov and Todd [46], the subsequent paper [47] which gives a simplified proof for
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the key Theorem 5.2 in the first paper, and the paper of Tunçel [62] which provides an
easier analysis for the SDP case.

The important point again is that a constant decrease leads easily (via Theorem
6.1) to the best known complexity bound for the number of iterations, and that this is
achieved without any concern for the iterates staying close to the central path, yielding
great flexibility for the algorithms.

6.3 Nonlinear programming approaches

Finally we turn to methods that are based on nonsmooth or smooth optimization
techniques for nonlinear programming formulations of (P) or (D). Some of these place
restrictions on the SDP problems that can be handled.

First we discuss nonsmooth methods for minimizing the maximum eigenvalue of
a matrix which depends affinely on some parameters. This was our first example in
Section 3, but it is remarkably general. Suppose X is bounded for feasible solutions to
(P). Then we can add an inequality on the trace of X, and by adding a slack variable
and making a block diagonal matrix, we can assume that the trace of X is fixed at
some positive value; by scaling, we suppose this is 1. So we assume that trace X = 1 for
all feasible X. Note that this holds for Examples 8 and (after scaling) 9. If we add this
constraint explicitly, the dual problem then becomes to minimize λmax(A∗y−C)− bTy
over y ∈ IR

m (we switched to a minimization problem by changing the sign of the
objective). We can also assume that the linear objective bT y does not appear by
incorporating it into the first term (each Ai is replaced by Ai − biI). Hence any such
constant trace problem has a dual that is a maximum eigenvalue minimization problem.

We now have a convex but nonsmooth optimization problem, to which standard
methods of nonlinear programming can be applied. One such is the bundle method,
which builds up a cutting-plane model of the objective function by computing sub-
gradients of the maximum eigenvalue function. Let us set g(y) := λmax(A∗y − C). A
subgradient of g at y is a vector z with g(y′) ≥ g(y) + zT (y′ − y) for all y′; and in our
case, one can be found as A(vvT ), where v is an eigenvector of A∗y − C associated
with its maximum eigenvalue. It is useful also to consider so-called ǫ-subgradients for
ǫ > 0: z is one such if

g(y′) ≥ g(y) + zT (y′ − y) − ǫ

for all y′, and the set of them all is called the ǫ-subdifferential ∂gǫ(y). In our case this
turns out to be

∂gǫ(y) = {AW : (A∗y − C) • W ≥ λmax(A∗y − C) − ǫ, trace W = 1,W � 0}.
Helmberg and Rendl [27] develop a very efficient algorithm, the spectral bundle method,
by modifying the classical bundle method to exploit this structure. From the result
above, it is easy to see that

g(y′) ≥ (A∗y − C) • W + (AW )T (y′ − y) = (A∗y′ − C) • W

for any W � 0 with trace 1 and any y′. Hence if we choose any subset W of such
matrices,

g(y′) ≥ ĝW(y′) := max{(A∗y′ − C) • W : W ∈ W}.
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At every iteration, Helmberg and Rendl generate a search direction d for the current
iterate y by minimizing ĝW(y + d) + (u/2)dT d for some regularizing parameter u and
some W. Let P ∈ IR

n×k have orthonormal columns (think of them as approximate
eigenvectors corresponding to almost maximal eigenvalues of A∗y−C), and let W̄ � 0
have trace 1 (think of this as a matrix containing useful past information). Then the
spectral bundle method chooses

W := {αW̄ + PV P T : α + trace V = 1, α ≥ 0, V � 0}.
The dual of the direction-finding subproblem turns out to be an SDP problem with
a quadratic objective function in a lower dimensional space (V is of order k). This
problem is solved to yield the search direction d and a new y trial vector is computed.
If there is a suitable improvement in the objective function, this new point replaces
the old; otherwise we stay at the old point. In either case, an approximate eigenvector
corresponding to the maximum eigenvalue of the trial A∗y − C is computed, and this
is added as a column to the P matrix. If there are too many columns, old information
is incorporated into the aggregate matrix W̄ , and the process continues. Many details
have been omitted, but the rough idea of the method is as above; it can be thought
of as providing an approximation by considering only a subset of feasible X matrices,
using this to improve the dual solution y, and using this in turn to improve the subset
of feasible solutions in the primal.

As a version of the bundle method, the algorithm above has good global convergence
properties, but no iteration bounds as for the interior-point methods of the previous
subsections are known. Nevertheless, excellent computational results have been ob-
tained for problems that are inaccessible to the latter methods due to their size; see
[27].

It is known that for smooth optimization problems, second-order methods are much
more attractive than first-order techniques such as the spectral bundle method, but it
is not clear how second-order information can be incorporated in nonsmooth optimiza-
tion. However, for the maximum eigenvalue problem, this is possible: Oustry [48, 49]
devises the so-called U-Lagrangian of the maximum eigenvalue function, uses this to
get a quadratic approximation to the latter along a manifold where the maximum
eigenvalue has a fixed multiplicity, and then develops a second-order bundle method
using these ideas. This method retains the global convergence of the first-order method,
but also attains asymptotic quadratic convergence under suitable regularity conditions.
These bundle methods are further discussed, and improved computational results given,
in Helmberg and Oustry [26].

Fukuda and Kojima [19] have recently proposed an interior-point method for the
same class of problems, working just in the space of y to avoid difficulties for large-scale
problems. This paper also has an excellent discussion of recent attempts to solve such
problems efficiently. Note that Vavasis [65] has developed an efficient way to compute
the barrier and its gradient for this dual formulation.

Now we turn to methods that generate nonconvex nonlinear programming problems
in a lower dimension, and apply interior-point or other techniques for their solution.
Suppose first that (P) includes constraints specifying the diagonal entries of X:

(P ) : minC • X, diag(X) = d, AX = b, X � 0,
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with dual problem

(D) : max dT z + bT y, Diag(z) + A∗y + S = C, S � 0.

Burer, Monteiro, and Zhang [10] suggest solving (D) by an equivalent nonlinear pro-
gramming problem obtained by eliminating variables. In fact, they only consider
strictly feasible solutions of (D). Their procedure is based on a theorem stating that, for
each (w, y) ∈ IR

n
++×IR

m, there is a unique strictly lower triangular matrix L̄ = L̄(w, y)
and a unique z = z(w, y) ∈ IR

n satisfying

C − Diag(z) −A∗y = (Diag(w) + L̄)(Diag(w) + L̄)T ,

and that L̄(w, y) and z(w, y) are infinitely differentiable. This takes care of the con-
straint that S be positive definite implicitly by requiring it to have a nonsingular
Cholesky factorization. (D) is then replaced by the smooth but nonconvex problem

(D′) : max
w,y

dT z(w, y) + bT y, w > 0.

The authors then suggest algorithms to solve this problem: a log-barrier method and
a potential-reduction method. A subsequent paper relaxes the requirement that the
diagonal of X be fixed. Instead, they require in [11] that the diagonal be bounded
below, so the first constraint becomes diag(X) ≥ d. This constraint can be without loss
of generality, since it holds for any positive semidefinite matrix if we choose the vector
d to be zero. The corresponding change to (D) is that now z must be nonnegative, and
so the constraint z(w, y) > 0 is added to (D′) (as we noted, Burer et al. only consider
strictly feasible solutions to (D)). Once again, they consider log-barrier and potential-
reduction methods to solve (D′). Although the problem (D′) is nonconvex, Burer,
Monteiro, and Zhang prove global convergence of their methods, and have obtained
some excellent computational results on large-scale problems.

Finally, we mention the approach of Vanderbei and Yurttan Benson [64]: the primal
variable X is factored as L(X)Diag(d(X))L(X)T , where L(X) is unit lower triangular
and d(X) ∈ IR

n, and the constraint that X be positive semidefinite is replaced with the
requirement that d(X) be a nonnegative vector. The authors show that d is a concave
function, and give some computational results for this reformulation.

We should mention that research is very active in new methods to solve large sparse
SDP problems. The reader is urged to consult the web pages of Helmberg [25] and
Wright [68] to see the latest developments.

7 Concluding remarks

We have investigated semidefinite programming from several viewpoints, examining its
applications, duality theory, and several algorithms for solving SDP problems. The
area has a rich history, drawing from several fields, and recently powerful methods for
solving small- and medium-scale problems have been developed. The interior-point
methods we have discussed can solve most problems with up to about a thousand
linear constraints and matrices of order up to a thousand or so. However, as problems
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get larger, it is not clear that this class of methods can successfully compete with
special-purpose algorithms that better exploit sparsity, and we have also considered a
number of these. The limitations of such methods are being reduced, and they have
successfully solved problems with matrices of order 10,000 and more. One limitation
is that these more efficient methods usually solve the dual problem, and if a primal
near-optimal solution is required (as in the max-cut problem using the technique of
Goemans and Williamson to generate a cut), they may not be as appropriate. The
topic remains exciting and vibrant, and significant developments can be expected over
the next several years.

Acknowledgements. I would like to thank Michael Overton, Jos Sturm, and
Henry Wolkowicz for helpful comments on this paper.
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[55] M. Ramana, L. Tunçel, and H. Wolkowicz. Strong duality for semidefinite pro-
gramming. SIAM J. Optim., 7:641–662, 1997.

[56] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ,
1970.

[57] N. Z. Shor. Dual quadratic estimates in polynomial and Boolean programming.
Annals of Operations Research, 25:163–168, 1990.

[58] K. Tanabe. Centered Newton method for mathematical programming. In: System
Modeling and Optimization, Springer-Verlag, NY, 1988, pp. 197–206.

[59] M. J. Todd. A study of search directions in interior-point methods for semidefinite
programming. Optim. Methods Softw., 11&12:1–46, 1999.

40



[60] M. J. Todd, K.-C. Toh, and R. H. Tütüncü. On the Nesterov-Todd direction in
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