# Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.

秦雪、黄卫杰、崔金杰

School of Mathematical Sciences Peking University

December 30, 2014

Damek Davis, Wotao Yin.

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.

## **Optimization Problems**

In this paper, we consider two prototype optimization problems:

1 the unconstrained problem (problem 1):

$$\min_{x \in \mathcal{H}} f(x) + g(x) \tag{1}$$

the linearly constrained variant (problem 2):

$$\min_{x \in \mathcal{H}_1, y \in \mathcal{H}_2} f(x) + g(y) \tag{2}$$

s.t. 
$$Ax + By = b$$
 (3)

where  $b \in \mathcal{G}$ ,  $\mathcal{H}_1$ ,  $\mathcal{H}_2$ ,  $\mathcal{G}$  are Hilbert spaces and

$$A: \mathcal{H}_1 \to \mathcal{G}$$
 (4)

$$B:\mathcal{H}_2\to\mathcal{G}$$
 (5)

are linear operators.



## Proximal Operator, Reflection Operator

## Definition 1 (Proximal Operator, Reflection Operator)

For any point  $x \in \mathcal{H}$  and any scalar  $\gamma \in \mathbb{R}_{++}$ , we define the proximal operator as

$$prox_{\gamma f}(x) := \underset{y \in \mathcal{H}}{\operatorname{arg\,min}} \quad f(y) + \frac{1}{2\gamma} \|y - x\|^2$$
 (6)

and reflection operator as

$$refl_{\gamma f} := 2prox_{\gamma f} - l_{\mathcal{H}} \tag{7}$$

where  $I_{\mathcal{H}}: \mathcal{H} \to \mathcal{H}$  denote the identity map.



## Peaceman-Rachford Splitting(PRS) operator

#### Definition 2 (PRS operator)

We define the PRS operator:

$$T_{PRS} := refl_{\gamma f} \circ refl_{\gamma g}. \tag{8}$$

Definition 3 (fixed-point residual)

We call the quantity

$$||T_{PRS}z^k - z^k||^2 \tag{9}$$

the fixed-point residual (FPR) of the relaxed PRS algorithm.



# Subgradient, Subdifferential

#### Definition 4 (subgradient, subdifferential)

Given a closed, proper, and convex function  $f: \mathcal{H} \to (-\infty, \infty]$ , the set  $\partial f(x)$  denotes its subdifferential at x and

$$\widetilde{\nabla} f(x) \in \partial f(x) \tag{10}$$

denotes a subgradient.



## Forward Backward Splitting(FBS) Algorithm

Suppose that the function g in Problem (1) is differentiable and  $\nabla g$  is  $(1/\beta)$ -Lipschitz. The FBS algorithm is: given  $z^0 \in \mathcal{H}$ , for all k > 0,

$$z^{k+1} = \mathbf{prox}_{\gamma f}(z^k - \gamma \nabla g(z^k)). \tag{11}$$

## Dauglas-Rachford splitting(DRS) algorithm

Starting from an arbitrary  $z^0 \in \mathcal{H}$ , repeat

$$x_g^k = \mathbf{prox}_{\gamma g}(z^k); \tag{12}$$

$$x_f^k = \mathbf{prox}_{\gamma f}(2x_g^k - z^k); \tag{13}$$

$$z^{k+1} = z^k + (x_f^k - x_g^k)$$
 (14)

where  $\gamma$  is a positive constant (simply scales the objective).



# Peaceman-Rachford splitting(PRS) algorithm

Starting from an arbitrary  $z^0 \in \mathcal{H}$ , repeat

$$z^{k+1} = T_{PRS}(z^k) (15)$$

#### Lemma 1.1

Let  $z \in \mathcal{H}$ . Define auxiliary points  $x_g := \mathbf{prox}_{\gamma g}(z)$  and  $x_f := \mathbf{prox}_{\gamma f}(\mathbf{refl}_{\gamma g}(z))$ . Then the identities hold:

$$x_g = z - \gamma \widetilde{\nabla} g(x_g) \tag{16}$$

$$x_f = x_g - \gamma \widetilde{\nabla} g(x_g) - \gamma \widetilde{\nabla} f(x_f)$$
 (17)

In addition, each relaxed PRS step  $z^+ = (T_{PRS})_{\lambda}(z)$  has the following representation:

$$z^{+} - z = 2\lambda(x_f - x_g) = -2\lambda\gamma(\widetilde{\nabla}g(x_g) + \widetilde{\nabla}f(x_f))$$
 (18)



## Equivalent operator of DRS

The DRS has the equivalent operator-theoretic and subgradient form

$$z^{k+1} = \frac{1}{2}(I_{\mathcal{H}} + T_{PRS})(z^k) = z^k - \gamma(\widetilde{\nabla}f(x_f^k) + \widetilde{\nabla}g(x_g^k)), \quad k = 0, 1 \cdots.$$

where 
$$\widetilde{\nabla} f(x_f^k) \in \partial f(x_f^k)$$
 and  $\widetilde{\nabla} g(x_g^k) \in \partial g(x_g^k)$ .

### Relaxed PRS

In the DRS algorithm, we can replace the (1/2)-average of  $I_{\mathcal{H}}$  and  $T_{PRS}$  with any other weight and this results the **relaxed PRS** algorithm:

$$z^{k+1} = (1 - \lambda_k)z^k + \lambda_k refl_{\gamma f} \circ refl_{\gamma g}(z^k)$$
 (19)

The special cases  $\lambda_k \equiv 1/2$  and  $\lambda_k \equiv 1$  are called the DRS and PRS algorithms, respectively.

The relaxed PRS algorithm can be applied to problem (2).

#### ADMM and Relaxed ADMM

ADMM is equivalent to DRS applied to the Lagrange dual of Problem 2.

If we let

$$\mathcal{L}(x, y, w) := f(x) + g(y) - \langle w, Ax + By - b \rangle$$
 (20)

$$d_f(w) := f^*(A^*w) \tag{21}$$

$$d_g(w) := g^*(B^*w) - \langle w, b \rangle$$
 (22)

Relax ADMM is equivalent to relaxed PRS applied to the following problem:

$$\min_{w \in G} d_f(w) + d_g(w) \tag{23}$$



### ADMM and Relaxed ADMM

Applying the relaxed PRS algorithm to (23) according to Lemma (1.1)

$$w_{d_g}^k = \mathbf{prox}_{\gamma d_g}(z^k); \tag{24}$$

$$w_{d_f}^k = prox_{\gamma d_f}(2w_{d_g}^k - z^k);$$
 (25)

$$z^{k+1} = z^k + 2\lambda_k (w_{d_l}^k - w_{d_d}^k).$$
 (26)

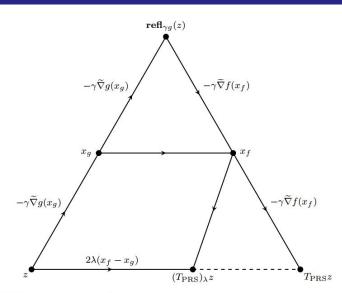


Fig. 1 A single relaxed PRS iteration starting from z.



$$S_f(x,y) = \max\left\{\frac{\mu_f}{2}\|x - y\|^2, \frac{\beta_f}{2}\|\widetilde{\nabla}f(x) - \widetilde{\nabla}f(y)\|^2\right\}$$
 (27)

## Strong convexity

**Assume:** one of the functions is strong convex and the sequence  $(\lambda_i)_{i\geq 0}\subset (0,1]$  is bounded away from zero.

## Theorem 1 (Auxiliary term bound)

Suppose that  $(z^j)_{j\geq 0}$  is generated by Algorithm 1. Then for all  $k\geq 0$ ,

$$8\gamma \lambda_{k}(S_{f}(x_{f}^{k}, x^{*}) + S_{g}(x_{g}^{k}, x^{*})) \leq ||z^{k} - z^{*}||^{2} - ||z^{k+1} - z^{*}||^{2} + \left(1 - \frac{1}{\lambda_{k}}\right) ||z^{k+1} - z^{k}||^{2}.$$
(28)

Therefor,  $8\gamma \sum_{i=0}^{\infty} \lambda_k (S_f(x_f^i, x^*) + S_g(x_g^i, x^*)) < \|z^0 - z^*\|^2$ , and



1. Best iterate convergence: If  $\underline{\lambda} := \inf_{j \geq 0} \lambda_j > 0$ , then

$$S_f(x_f^{best}, x^*) + S_g(x_g^{best}, x^*) \le \frac{\|z^0 - z^*\|^2}{8\gamma \underline{\lambda}(k+1)},$$
 (29)

and thus

$$S_f(x_f^{best}, x^*) = o\left(\frac{1}{k+1}\right)$$
 and  $S_g(x_g^{best}, x^*) = o\left(\frac{1}{k+1}\right)$  (30)

2. Ergodic convergence: Let  $\overline{x}_f^k = (1/\Lambda_k) \sum_{i=0}^k \lambda_i x_f^i$  and  $\overline{x}_g^k = (1/\Lambda_k) \sum_{i=0}^k \lambda_i x_g^i$ . Then

$$\overline{S}_f(x_f^k, x^*) + \overline{S}_g(x_g^k, x^*) \le \frac{\|z^0 - z^*\|^2}{8\gamma \Lambda_k}$$
 (31)

where

$$\overline{S}_f(x_f^k, x^*) := \max \left\{ \frac{\mu_f}{2} \|\overline{x}_f^k - x^*\|^2, \frac{\beta_f}{2} \left\| \frac{1}{\Lambda_k} \sum_{i=0}^k \widetilde{\nabla} f(x_f^k) - \widetilde{\nabla} f(x^*) \right\|^2 \right\}$$
(32)

3. Nonergodic convergence: If  $\underline{\tau} = \inf_{j \geq 0} \lambda_j (1 - \lambda_j) > 0$ , then

$$S_f(x_f^k, x^*) + S_g(x_g^k, x^*) \le \frac{\|z^0 - z^*\|^2}{4\gamma\sqrt{\underline{\tau}(k+1)}},$$
 (33)

and thus

$$S_f(x_f^k, x^*) + S_g(x_g^k, x^*) = o\left(\frac{1}{\sqrt{k+1}}\right).$$
 (34)

It is not clear whether the "best iterate" convergence results of Theorem can be improved to a convergence rate for the entire sequence because the value  $S_f(x_f^k, x)$  and  $S_g(x_g^k, x)$  are not necessarily monotonic.

## Lipschitz derivatives

**Assumption 4** The gradient of at least one of the functions f and g is Lipschitz.

- In general, we can only deduce the summability and not the monotonicity of the objective errors in Problem 1, we can only show that the smallest objective error after k iterations is of order o(1/(k+1)).
- If  $\lambda_k \equiv 1/2$ , the implicit stepsize parameter  $\gamma$  is small enough, and the gradient of g is  $(1/\beta)$ -Lipschitz, we show that a sequence that dominates the objective error is monotonic and summable, and deduce a convergence rate for the entire sequence.

# Theorem 2 (Best iterate convergence under Lipschitz assumption)

Let  $z \in \mathcal{H}$ , let  $z^+ = (T_{PRS})_{\lambda}z$ , let  $z^*$  be a fixed point of  $T_{PRS}$ , and let  $x^* = \operatorname{prox}_{\gamma g}(z^*)$ . Suppose that  $\underline{\tau} = \inf_{j \geq 0} \lambda_j (1 - \lambda_j) > 0$ , and let  $\underline{\lambda} = \inf_{j \geq 0} \lambda_j$ . If  $\nabla f$  (respectively  $\nabla g$ ) is  $(1/\beta)$ -Lipschitz, and  $x^k = x_g^k$  (respectively  $x^k = x_f^k$ ), then

$$f(x^{k_{best}}) + g(x^{k_{best}}) - f(x^*) - g(x^*) = o\left(\frac{1}{k+1}\right).$$
 (35)

The main conclusion of Theorem is that as long as  $\tau > 0$ , the "best" relaxed PRS iterate convergence with rate o(1/(k+1)) for any input parameters. This result is in stark contrast to the FBS algorithm, which may fail to converge if  $\gamma$  is too large.



**Assumption 5:** The function g is differentiable on dom  $(f) \cap$  dom (g), the gradient  $\nabla g$  is  $(1.\beta)$ -Lipschitz, and the sequence of relaxation parameters  $(\lambda_j)_{j\geq 0}$  is constant and equal to 1/2.

With this assumptions, we will show that for a special choice of  $\theta^*$  (Lemma 5) and for  $\gamma$  small enough, the following sequence is monotonic and summable (Proposition 7 and 9):

$$\left(2\gamma \left(f(x_f^j) + g(x_f^j) - f(x) - g(x)\right) + \theta^* \gamma^2 \|\nabla g(x_g^{j+1}) - \nabla g(x_g^j)\|^2 + \frac{(1 - \theta^*)\gamma}{\beta^2}\right)$$
(36)

We then use Lemma 1 to deduce

$$f(x_t^j) + g(x_t^j) - f(x) - g(x) = o(1/(k+1)).$$



### Lemma 3 (Extra contraction of derivative operaots)

Suppose that  $\nabla g$  is  $(1/\beta)$ -Lipschitz, and let  $x, y \in \mathcal{H}$ . If  $x^+ = prox_{\gamma g}(x)$  and  $y^+ = prox_{\gamma f}(y)$ , then

$$\|\nabla g(x^+) - \nabla g(y^+)\|^2 \le \frac{1}{\gamma^2 + \beta^2} \|x - y\|^2.$$
 (37)

### Corollary 4 (Joint descent theorem)

If g is differentiable and  $\nabla g$  is  $(1/\beta)$ -Lipschitz, then for all pairs  $x, y \in dom(g) \cap dom(f)$ . points  $z \in dom(g)$ , and subgradients  $\nabla f \in \partial f(x)$ , we have

$$f(x)+g(x) \le f(y)+g(y)+ < x-y, \nabla g(z)+\widetilde{\nabla} f(x) > +\frac{1}{2\beta}\|z-x\|^2.$$

4□ > 4□ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4 □ > 4

#### Lemma 5 (maximizing $\gamma$ range)

Let  $\beta > 0$ , and let

$$\kappa := \sup \left\{ \frac{\gamma}{\beta} | \gamma > 0, \theta \in [0, 1], \theta \gamma^2 \le \left( 2\gamma \beta - \frac{\gamma^3}{\beta} \right), \frac{(1 - \theta)\gamma^2}{\beta^2} \le 1 \right\}. \tag{39}$$

Then  $\kappa$  is the positive root of  $x^3 + x^2 - 2x - 1$ . Therefore,  $(\gamma^*, \beta^*) = (\kappa \beta, 1 - 1/\kappa^2)$ .



#### Lemma 6 (Gradient sum bounded)

For all  $\gamma > 0$ 

$$\sum_{i=0}^{\infty} \|\nabla g(x_g^i) - \nabla g(x_g^{i+1})\|^2 \le \frac{1}{\gamma^2 + \beta^2} \|z^0 - z^8\|^2.$$
 (40)

#### Lemma 7 (Summability)

If  $\gamma < \kappa \beta$ , choose  $\theta = \theta^*$  as in Lemma 5; otherwise, set  $\theta = 1$ . Then

$$\sum_{i=0}^{\infty} \left( 2\gamma (f(x_f^k) + g(x_f^k) - f(x^*) - g(x^*)) + \theta \gamma^2 \|\nabla g(x_g^{k+1}) - \nabla g(x_g^k)\|^2 + \frac{(1-\theta)\gamma^2}{\beta^2} \|x_g^{k+1} - x_g^k\|^2 \right)$$

#### Theorem 8 (Differentiable function convergence rate)

Let  $\rho \approx 2.2056$  be the positive real root of  $x^3 - 2x^2 - 1$ . Then

$$\begin{split} &f(x_f^{k_{best}}) + g(x_f^{k_{best}}) - f(x^*) - g(x^*) \\ \leq & \frac{1}{2\gamma(k+1)} \left\{ \begin{array}{ll} \|x_g^0 - x^*\|^2, & \text{if } \gamma < \rho\beta; \\ |x_g^0 - x^*\|^2 + \frac{1}{\beta^2 + \gamma^2} \left(\frac{\gamma^3}{\beta} - 2\gamma\beta - \beta^2\right) \|z^0 - z^*\|^2, & \text{otherwise}. \end{array} \right. \\ & (42) \end{split}$$

and

$$f(x_f^{k_{best}}) + g(x_f^{k_{best}}) - f(x^*) - g(x^*) = o(\frac{1}{k+1}).$$
 (43)

Furthermore, if  $\gamma < \kappa \beta$ , then

$$f(x_f^k) + g(x_f^k) - f(x^*) - g(x^*) \le \frac{\|x_g^0 - x^*\|^2}{2\gamma(k+1)}$$
(44)

and

$$f(x^k) + \alpha(x^k) + f(x^*) + \alpha(x^*) = (-1)^{k} + (-1)^{$$

#### Theorem 9 (Differentiable function FPR rate)

Suppose that  $\gamma < \kappa \beta$ . Then for all  $k \ge 1$ , we have

$$\|z^{k} - z^{k+1}\|^{2} \le \frac{\beta^{2} \|x_{g}^{0} - x^{*}\|^{2}}{k^{2}(1 + \gamma/\beta^{2})(\beta^{2} - \gamma^{2}/\kappa^{2})}$$
(46)

and

$$||z^k - z^{k+1}||^2 = o\left(\frac{1}{k^2}\right).$$
 (47)



## Linear convergence

**Assumption** The gradient of at least one of the functions f and g is Lipschitz, and at least one of the functions f and g. In symbols:  $(\mu_f + \mu_g)(\beta_f + \beta_g) > 0$ . Linear convergence of relaxed PRS is expected whenever Assumption is true. In addition, by the strong convexity of f+g, the minimizer of Problem 1 is unique.

#### Theorem 10 (Consequences of linear converge)

Let  $(C_j)_{j\geq 0}\subset [0,1]$  be a positive scalar sequence, and suppose that for all  $k\geq 0$ ,

$$||z^{k+1} - z^*|| \le C_k ||z^k - z^*||.$$
 (48)

Fix  $k \geq 1$ . Then

$$||x_g^k - x^*||^2 + \gamma^2 ||\widetilde{\nabla} g(x_g^k) - \widetilde{\nabla} g(x^*)||^2 \le ||z^0 - z^*||^2 \prod_{i=0}^{n-1} C_i^2;$$
 (49)

$$||x_f^k - x^*||^2 + \gamma^2 ||\widetilde{\nabla} f(x_f^k) - \widetilde{\nabla} f(x^*)||^2 \le ||z^0 - z^*||^2 \prod_{i=0}^{\kappa-1} C_i^2.$$
 (50)



If  $\lambda$  < 1, then the FPR rate holds:

$$\|(T_{PRS})_{\lambda}z^{k}-z^{k}\| \leq \sqrt{\frac{\lambda}{1-\lambda}}\|z^{0}-^{*}\|^{2}\prod_{i=0}^{k-1}C_{i}^{2}.$$
 (51)

Consequently, if the gradient  $\nabla f$  (respectively  $\nabla g$ ), is  $(1/\beta)$ -Lipschitz and  $x^k = x_g^k$  (respectively  $x^k = x_f^k$ ), then

$$f(x^{k}) + g(x^{k}) - f(x^{*}) - g(x^{*})$$

$$\leq \frac{\|z^{0} - z^{*}\|^{2}}{\gamma} \prod_{i=0}^{k-1} C_{i}^{2} \times \begin{cases} 1, & \text{if } \gamma \leq \beta; \\ 1 + \frac{\gamma - \beta}{2\beta}, & \text{otherwise.} \end{cases}$$
(52)

At least one of the functions f and g will carry both regularity properties. In symbols:  $\mu_f \beta_f + \mu_g \beta_g > 0$ .

Theorem 11 (Linear convergence with regularity of g)

Let  $z^*$  ne a fixed point of  $T_{PRS}$ , let  $x^* = prox_{\gamma g}(z^*)$ , and suppose that  $\mu_g \beta_g > 0$ . For all  $\lambda \in [0,1]$ , let

$$C(\lambda) := \left(1 - 4\gamma \lambda \mu_g/(1 + \gamma/\beta_g)^2\right)^{1/2}$$
. Then for all  $k \ge 0$ ,

$$||z^{k+1} - z^*|| \le C(\lambda_k)||z^k - z^*||.$$
 (53)

#### Remark

- For all  $\lambda \in [0, 1]$ , the constant  $C(\lambda)$  is minimal when  $\gamma = \beta_g$ , i.e.  $C(\lambda) = (1 \lambda_k \mu_g \beta_g)^{1/2}$ .
- Furthermore, for any choice of  $\gamma$ , we have the bound  $C(1) \leq C(\lambda)$ .

The following theorem deduces linear convergence of relaxed PRS whenever f carries both regularity properties. Note that linear convergence of the PRS algorithm ( $\lambda_k \equiv 1$ ) does not follow.

## Theorem 12 (Linear convergence with regularity of *f*)

Let  $z^*$  be a fixed point of  $T_{PRS}$ , let  $x^* = prox_{\gamma g}(z^*)$ , and suppose that  $\nu_f \beta_f > 0$ . For all  $\lambda \in [0, 1]$ , let

$$C(\lambda) := \left(1 - (\lambda/2) \min\left\{4\gamma \mu_f/(1 + \gamma/\beta_f)^2, (1 - \lambda)\right\}\right)^{1/2}.$$
 (54)

Then for all  $k \geq 0$ ,

$$||z^{k+1} - z^*|| \le C(\lambda_k)||z^k - z^*||.$$
 (55)



#### Theorem 13 (Linear convergence: mixed case)

Let  $z^*$  be a fixed point of  $T_{PRS}$ , let  $x^* = prox_{\gamma g}(z^*)$ , and suppose that  $\nabla g$ , (respectively  $\nabla f$ ), is  $(1/\beta)$ -Lipschitz and f, (respectively g), is  $\mu$ -strongly convex. For all  $\lambda \in [0,1]$ , let  $C(\lambda) := (1 - (4\lambda/3) \min\{\gamma, \mu, \beta/\gamma, (1-\lambda)\})^{1/2}$ . Then for all  $k \geq 0$ ,

$$||z^{k+1} - z^*||.$$
 (56)