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Introduction

Optimization Problems
In this paper, we consider two prototype optimization problems:

1 the unconstrained problem (problem 1):

min
x∈ℋ

f (x) + g(x) (1)

2 the linearly constrained variant (problem 2):

min
x∈ℋ1,y∈ℋ2

f (x) + g(y) (2)

s.t. Ax + By = b (3)

where b ∈ 𝒢, ℋ1,ℋ2,𝒢 are Hilbert spaces and

A : ℋ1 → 𝒢 (4)
B : ℋ2 → 𝒢 (5)

are linear operators.
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Proximal Operator, Reflection Operator

Definition 1 (Proximal Operator, Reflection Operator)
For any point x ∈ ℋ and any scalar 𝛾 ∈ R++, we define the
proximal operator as

prox𝛾f (x) := arg min
y∈ℋ

f (y) +
1

2𝛾
‖y − x‖2 (6)

and reflection operator as

ref l𝛾f := 2prox𝛾f − Iℋ (7)

where Iℋ : ℋ → ℋ denote the identity map.
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Peaceman-Rachford Splitting(PRS) operator

Definition 2 (PRS operator)
We define the PRS operator:

TPRS := ref l𝛾f ∘ ref l𝛾g . (8)

Definition 3 (fixed-point residual)
We call the quantity

‖TPRSzk − zk‖2 (9)

the fixed-point residual (FPR) of the relaxed PRS algorithm.
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Subgradient,Subdifferential

Definition 4 (subgradient,subdifferential)
Given a closed, proper, and convex function f : ℋ → (−∞,∞],
the set 𝜕f (x) denotes its subdifferential at x and

̃︀∇f (x) ∈ 𝜕f (x) (10)

denotes a subgradient.
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Forward Backward Splitting(FBS) Algorithm

Suppose that the function g in Problem (1) is differentiable and
∇g is (1/𝛽)-Lipschitz. The FBS algorithm is: given z0 ∈ ℋ, for
all k ≥ 0,

zk+1 = prox𝛾f (zk − 𝛾∇g(zk )). (11)
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Dauglas-Rachford splitting(DRS) algorithm

Starting from an arbitrary z0 ∈ ℋ, repeat

xk
g = prox𝛾g(zk ); (12)

xk
f = prox𝛾f (2xk

g − zk ); (13)

zk+1 = zk + (xk
f − xk

g ) (14)

where 𝛾 is a positive constant (simply scales the objective).
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Peaceman-Rachford splitting(PRS) algorithm

Starting from an arbitrary z0 ∈ ℋ, repeat

zk+1 = TPRS(zk ) (15)
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Lemma 1.1
Let z ∈ ℋ. Define auxiliary points xg := prox𝛾g(z) and
xf := prox𝛾f (ref l𝛾g(z)). Then the identities hold:

xg = z − 𝛾 ̃︀∇g(xg) (16)

xf = xg − 𝛾 ̃︀∇g(xg)− 𝛾 ̃︀∇f (xf ) (17)

In addition, each relaxed PRS step z+ = (TPRS)𝜆(z) has the
following representation:

z+ − z = 2𝜆(xf − xg) = −2𝜆𝛾(̃︀∇g(xg) + ̃︀∇f (xf )) (18)
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Equivalent operator of DRS

The DRS has the equivalent operator-theoretic and subgradient
form

zk+1 =
1
2
(Iℋ+TPRS)(zk ) = zk−𝛾(̃︀∇f (xk

f )+
̃︀∇g(xk

g )), k = 0,1 · · · .

where ̃︀∇f (xk
f ) ∈ 𝜕f (xk

f ) and ̃︀∇g(xk
g ) ∈ 𝜕g(xk

g ).
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Relaxed PRS

In the DRS algorithm, we can replace the (1/2)-average of Iℋ
and TPRS with any other weight and this results the relaxed
PRS algorithm:

zk+1 = (1 − 𝜆k )zk + 𝜆k ref l𝛾f ∘ ref l𝛾g(zk ) (19)

The special cases 𝜆k ≡ 1/2 and 𝜆k ≡ 1 are called the DRS and
PRS algorithms, respectively.
The relaxed PRS algorithm can be applied to problem (2).
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ADMM and Relaxed ADMM

ADMM is equivalent to DRS applied to the Lagrange dual of
Problem 2.
If we let

ℒ(x , y ,w) := f (x) + g(y)− < w ,Ax + By − b > (20)
df (w) := f *(A*w) (21)
dg(w) := g*(B*w)− < w ,b > (22)

Relax ADMM is equivalent to relaxed PRS applied to the
following problem:

min
w∈𝒢

df (w) + dg(w) (23)
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ADMM and Relaxed ADMM

Applying the relaxed PRS algorithm to (23) according to
Lemma (1.1)

wk
dg

= prox𝛾dg (z
k ); (24)

wk
df

= prox𝛾df (2wk
dg

− zk ); (25)

zk+1 = zk + 2𝜆k (wk
df
− wk

dg
). (26)
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Sf (x , y) = max
{︂
𝜇f

2
‖x − y‖2,

𝛽f

2
‖̃︀∇f (x)− ̃︀∇f (y)‖2

}︂
(27)
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Strong convexity

Assume: one of the functions is strong convex and the
sequence (𝜆j)j≥0 ⊂ (0,1] is bounded away from zero.

Theorem 1 (Auxiliary term bound)
Suppose that (z j)j≥0 is generated by Algorithm 1. Then for all
k ≥ 0,

8𝛾𝜆k (Sf (xk
f , x

*) + Sg(xk
g , x

*)) ≤‖zk − z*‖2 − ‖zk+1 − z*‖2+(︂
1 − 1

𝜆k

)︂
‖zk+1 − zk‖2.

(28)

Therefor, 8𝛾
∑︀∞

i=0 𝜆k (Sf (x i
f , x

*) + Sg(x i
g , x*)) < ‖z0 − z*‖2, and
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1. Best iterate convergence: If 𝜆 := infj≥0 𝜆j > 0, then

Sf (xbest
f , x*) + Sg(xbest

g , x*) ≤ ‖z0 − z*‖2

8𝛾𝜆(k + 1)
, (29)

and thus

Sf (xbest
f , x*) = o

(︂
1

k + 1

)︂
and Sg(xbest

g , x*) = o
(︂

1
k + 1

)︂
(30)

2. Ergodic convergence: Let xk
f = (1/Λk )

∑︀k
i=0 𝜆ix i

f and
xk

g = (1/Λk )
∑︀k

i=0 𝜆ix i
g . Then

Sf (xk
f , x

*) + Sg(xk
g , x

*) ≤ ‖z0 − z*‖2

8𝛾Λk
(31)

where

Sf (xk
f , x

*) := max
{︂
𝜇f

2
‖xk

f − x*‖2,
𝛽f

2

⃦⃦⃦ 1
Λk

k∑︁
i=0

̃︀∇f (xk
f )− ̃︀∇f (x*)

⃦⃦⃦2
}︂
(32)

秦雪、黄卫杰、崔金杰 School of Mathematical Sciences Peking University

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.



Introduction

3. Nonergodic convergence: If 𝜏 = infj≥0 𝜆j(1 − 𝜆j) > 0, then

Sf (xk
f , x

*) + Sg(xk
g , x

*) ≤ ‖z0 − z*‖2

4𝛾
√︀
𝜏(k + 1)

, (33)

and thus

Sf (xk
f , x

*) + Sg(xk
g , x

*) = o
(︂

1√
k + 1

)︂
. (34)

It is not clear whether the "best iterate" convergence results of
Theorem can be improved to a convergence rate for the entire
sequence because the value Sf (xk

f , x) and Sg(xk
g , x) are not

necessarily monotonic.
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Lipschitz derivatives

Assumption 4 The gradient of at least one of the functions f
and g is Lipschitz.

In general, we can only deduce the summability and not
the monotonicity of the objective errors in Problem 1, we
can only show that the smallest objective error after k
iterations is of order o(1/(k + 1)).
If 𝜆k ≡ 1/2, the implicit stepsize parameter 𝛾 is small
enough, and the gradient of g is (1/𝛽)-Lipschitz, we show
that a sequence that dominates the objective error is
monotonic and summable, and deduce a convergence rate
for the entire sequence.
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Theorem 2 (Best iterate convergence under Lipschitz
assumption)
Let z ∈ ℋ, let z+ = (TPRS)𝜆z, let z* be a fixed point of TPRS,
and let x* = prox𝛾g(z

*). Suppose that 𝜏 = infj≥0 𝜆j(1 − 𝜆j) > 0,
and let 𝜆 = infj≥0 𝜆j . If ∇f (respectively ∇g) is (1/𝛽)-Lipschitz,
and xk = xk

g (respectively xk = xk
f ), then

f (xkbest) + g(xkbest)− f (x*)− g(x*) = o
(︂

1
k + 1

)︂
. (35)

The main conclusion of Theorem is that as long as 𝜏 > 0, the
"best" relaxed PRS iterate convergence with rate o(1/(k + 1))
for any input parameters. This result is in stark contrast to the
FBS algorithm, which may fail to converge if 𝛾 is too large.
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Assumption 5: The function g is differentiable on
dom (f ) ∩ dom (g), the gradient ∇g is (1.𝛽)-Lipschitz, and the
sequence of relaxation parameters (𝜆j)j≥0 is constant and
equal to 1/2.
With this assumptions, we will show that for a special choice of
𝜃*(Lemma 5) and for 𝛾 small enough, the following sequence is
monotonic and summable(Proposition 7 and 9):(︂

2𝛾
(︁

f (x j
f )+g(x j

f )−f (x)−g(x)
)︁
+𝜃*𝛾2‖∇g(x j+1

g )−∇g(x j
g)‖2+

(1 − 𝜃*)𝛾2

𝛽2 ‖x j+1
g −x j

g‖2
)︂

j≥0
.

(36)
We then use Lemma 1 to deduce
f (x j

f ) + g(x j
f )− f (x)− g(x) = o(1/(k + 1)).

秦雪、黄卫杰、崔金杰 School of Mathematical Sciences Peking University

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.



Introduction

Lemma 3 (Extra contraction of derivative operaots)
Suppose that ∇g is (1/𝛽)-Lipschitz, and let x , y ∈ ℋ. If
x+ = prox𝛾g(x) and y+ = prox𝛾f (y), then

‖∇g(x+)−∇g(y+)‖2 ≤ 1
𝛾2 + 𝛽2 ‖x − y‖2. (37)

Corollary 4 (Joint descent theorem)
If g is differentiable and ∇g is (1/𝛽)-Lipschitz, then for all pairs
x , y ∈ dom (g) ∩ dom (f ). points z ∈ dom (g), and
subgradients ̃︀∇f ∈ 𝜕f (x), we have

f (x)+g(x) ≤ f (y)+g(y)+ < x−y ,∇g(z)+̃︀∇f (x) > +
1

2𝛽
‖z−x‖2.

(38)
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Lemma 5 (maximizing 𝛾 range)
Let 𝛽 > 0, and let

𝜅 := sup
{︂
𝛾

𝛽
|𝛾 > 0, 𝜃 ∈ [0,1], 𝜃𝛾2 ≤

(︁
2𝛾𝛽−𝛾3

𝛽

)︁
,
(1 − 𝜃)𝛾2

𝛽2 ≤ 1
}︂
.

(39)
Then 𝜅 is the positive root of x3 + x2 − 2x − 1. Therefore,
(𝛾*, 𝛽*) = (𝜅𝛽,1 − 1/𝜅2).

秦雪、黄卫杰、崔金杰 School of Mathematical Sciences Peking University

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.



Introduction

Lemma 6 (Gradient sum bounded)
For all 𝛾 > 0

∞∑︁
i=0

‖∇g(x i
g)−∇g(x i+1

g )‖2 ≤ 1
𝛾2 + 𝛽2 ‖z0 − z8‖2. (40)
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Lemma 7 (Summability)
If 𝛾 < 𝜅𝛽, choose 𝜃 = 𝜃* as in Lemma 5; otherwise, set 𝜃 = 1.
Then

∞∑︁
i=0

(︂
2𝛾(f (xk

f ) + g(xk
f )− f (x*)− g(x*))

+ 𝜃𝛾2‖∇g(xk+1
g )−∇g(xk

g )‖2 +
(1 − 𝜃)𝛾2

𝛽2 ‖xk+1
g − xk

g ‖2
)︂

≤
(41)
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Theorem 8 (Differentiable function convergence rate)
Let 𝜌 ≈ 2.2056 be the positive real root of x3 − 2x2 − 1. Then

f (xkbest
f ) + g(xkbest

f )− f (x*)− g(x*)

≤ 1
2𝛾(k + 1)

{︃
‖x0

g − x*‖2, if𝛾 < 𝜌𝛽;

|x0
g − x*‖2 + 1

𝛽2+𝛾2

(︀
𝛾3

𝛽 − 2𝛾𝛽 − 𝛽2
)︀
‖z0 − z*‖2, otherwise.

(42)

and
f (xkbest

f ) + g(xkbest
f )− f (x*)− g(x*) = o

(︁ 1
k + 1

)︁
. (43)

Furthermore, if 𝛾 < 𝜅𝛽, then

f (xk
f ) + g(xk

f )− f (x*)− g(x*) ≤
‖x0

g − x*‖2

2𝛾(k + 1)
(44)

and
f (xk

f ) + g(xk
f )− f (x*)− g(x*) = o

(︁ 1
k + 1

)︁
. (45)
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Theorem 9 (Differentiable function FPR rate)
Suppose that 𝛾 < 𝜅𝛽. Then for all k ≥ 1, we have

‖zk − zk+1‖2 ≤
𝛽2‖x0

g − x*‖2

k2(1 + 𝛾/𝛽2)(𝛽2 − 𝛾2/𝜅2)
(46)

and
‖zk − zk+1‖2 = o

(︁ 1
k2

)︁
. (47)
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Linear convergence

Assumption The gradient of at least one of the functions f and
g is Lipschitz, and at least one of the functions f and g . In
symbols: (𝜇f + 𝜇g)(𝛽f + 𝛽g) > 0. Linear convergence of relaxed
PRS is expected whenever Assumption is true. In addition, by
the strong convexity of f + g, the minimizer of Problem 1 is
unique.
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Theorem 10 (Consequences of linear converge)
Let (Cj)j≥0 ⊂ [0,1] be a positive scalar sequence, and suppose that
for all k ≥ 0,

‖zk+1 − z*‖ ≤ Ck‖zk − z*‖. (48)

Fix k ≥ 1. Then

‖xk
g − x*‖2 + 𝛾2‖̃︀∇g(xk

g )− ̃︀∇g(x*)‖2 ≤ ‖z0 − z*‖2
k−1∏︁
i=0

C2
i ; (49)

‖xk
f − x*‖2 + 𝛾2‖̃︀∇f (xk

f )− ̃︀∇f (x*)‖2 ≤ ‖z0 − z*‖2
k−1∏︁
i=0

C2
i . (50)
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If 𝜆 < 1, then the FPR rate holds:

‖(TPRS)𝜆zk − zk‖ ≤
√︂

𝜆

1 − 𝜆
‖z0−*‖2

k−1∏︁
i=0

C2
i . (51)

Consequently, if the gradient ∇f (respectively ∇g), is (1/𝛽)-Lipschitz
and xk = xk

g (respectively xk = xk
f ), then

f (xk ) + g(xk )− f (x*)− g(x*)

≤‖z0 − z*‖2

𝛾

k−1∏︁
i=0

C2
i ×

{︂
1, if𝛾 ≤ 𝛽;

1 + 𝛾−𝛽
2𝛽 , otherwise.

(52)
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At least one of the functions f and g will carry both regularity
properties. In symbols: 𝜇f𝛽f + 𝜇g𝛽g > 0.

Theorem 11 (Linear convergence with regularity of g)
Let z* ne a fixed point of TPRS, let x* = prox𝛾g(z

*), and
suppose that 𝜇g𝛽g > 0. For all 𝜆 ∈ [0,1], let
C(𝜆) :=

(︀
1 − 4𝛾𝜆𝜇g/(1 + 𝛾/𝛽g)

2)︀1/2
. Then for all k ≥ 0,

‖zk+1 − z*‖ ≤ C(𝜆k )‖zk − z*‖. (53)
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Remark
For all 𝜆 ∈ [0,1], the constant C(𝜆) is minimal when
𝛾 = 𝛽g , i.e. C(𝜆) = (1 − 𝜆k𝜇g𝛽g)

1/2.
Furthermore, for any choice of 𝛾, we have the bound
C(1) ≤ C(𝜆).

秦雪、黄卫杰、崔金杰 School of Mathematical Sciences Peking University

Faster convergence rates of relaxed Peaceman-Rachford and ADMM under regularity assumptions.



Introduction

The following theorem deduces linear convergence of relaxed
PRS whenever f carries both regularity properties. Note that
linear convergence of the PRS algorithm (𝜆k ≡ 1) does not
follow.

Theorem 12 (Linear convergence with regularity of f )
Let z* be a fixed point of TPRS, let x* = prox𝛾g(z

*), and
suppose that 𝜈f𝛽f > 0. For all 𝜆 ∈ [0,1], let

C(𝜆) :=
(︁

1 − (𝜆/2)min
{︁

4𝛾𝜇f/(1 + 𝛾/𝛽f )
2, (1 − 𝜆)

}︁)︁1/2
. (54)

Then for all k ≥ 0,

‖zk+1 − z*‖ ≤ C(𝜆k )‖zk − z*‖. (55)
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Theorem 13 (Linear convergence: mixed case)
Let z* be a fixed point of TPRS, let x* = prox𝛾g(z

*), and
suppose that ∇g, (respectively ∇f ), is (1/𝛽)-Lipschitz and f ,
(respectively g), is 𝜇-strongly convex. For all 𝜆 ∈ [0,1], let
C(𝜆) := (1 − (4𝜆/3)min{𝛾, 𝜇, 𝛽/𝛾, (1 − 𝜆)})1/2. Then for all
k ≥ 0,

‖zk+1 − z*‖. (56)
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