L. Vandenberghe EE236C (Spring 2013-14)

13. Douglas-Rachford method and ADMM

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- convergence

Douglas-Rachford splitting algorithm

minimize
$$f(x) = g(x) + h(x)$$

g and h are closed convex functions

Douglas-Rachford iteration: starting at any $z^{(0)}$, repeat

$$x^{(k)} = \operatorname{prox}_{th}(z^{(k-1)})$$

$$y^{(k)} = \operatorname{prox}_{tg}(2x^{(k)} - z^{(k-1)})$$

$$z^{(k)} = z^{(k-1)} + y^{(k)} - x^{(k)}$$

- t is a positive constant (simply scales the objective)
- ullet useful when g and h have inexpensive prox-operators
- ullet under weak conditions (existence of a minimizer), $x^{(k)}$ converges

Equivalent form

• start iteration at y-update

$$y^{+} = \text{prox}_{tg}(2x - z), \qquad z^{+} = z + y^{+} - x, \qquad x^{+} = \text{prox}_{th}(z^{+})$$

• switch z- and x-updates

$$y^{+} = \text{prox}_{tg}(2x-z), \qquad x^{+} = \text{prox}_{th}(z+y^{+}-x), \qquad z^{+} = z+y^{+}-x$$

• make change of variables w = z - x

alternate form of DR iteration: start at $x^{(0)} \in \operatorname{dom} h$, $w^{(0)} \in t\partial h(x^{(0)})$

$$y^{+} = \operatorname{prox}_{tg}(x - w)$$

$$x^{+} = \operatorname{prox}_{th}(y^{+} + w)$$

$$w^{+} = w + y^{+} - x^{+}$$

Interpretation as fixed-point iteration

Douglas-Rachford iteration (p. 13-2) can be written as

$$z^{(k)} = F(z^{(k-1)})$$

where $F(z) = z + \text{prox}_{tg}(2\text{prox}_{th}(z) - z) - \text{prox}_{th}(z)$

fixed points of F and minimizers of g+h

• if z is a fixed point, then $x = prox_{th}(z)$ is a minimizer:

$$z = F(z), \quad x = \operatorname{prox}_{th}(z) \implies \operatorname{prox}_{tg}(2x - z) = x = \operatorname{prox}_{th}(z)$$

$$\implies -x + z \in t\partial g(x), \quad z - x \in t\partial h(x)$$

$$\implies 0 \in t\partial g(x) + t\partial h(x)$$

ullet if x is a minimizer and $u\in t\partial g(x)\cap -t\partial h(x)$, then x+u=F(x+u)

Douglas-Rachford iteration with relaxation

fixed-point iteration with relaxation

$$z^{+} = z + \rho(F(z) - z)$$

 $1 < \rho < 2$ is overrelaxation, $0 < \rho < 1$ is underrelaxation

first version of DR method

$$x^{+} = \operatorname{prox}_{th}(z)$$

$$y^{+} = \operatorname{prox}_{tg}(2x^{+} - z)$$

$$z^{+} = z + \rho(y^{+} - x^{+})$$

alternate version

$$y^{+} = \text{prox}_{tg}(x - w)$$

 $x^{+} = \text{prox}_{th}((1 - \rho)x + \rho y^{+} + w)$
 $w^{+} = w + \rho y^{+} + (1 - \rho)x - x^{+}$

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- convergence

Sparse inverse covariance selection

minimize
$$\mathbf{tr}(CX) - \log \det X + \rho \sum_{i>j} |X_{ij}|$$

variable is $X \in \mathbf{S}^n$; parameters $C \in \mathbf{S}^n_{++}$ and $\rho > 0$ are given

Douglas-Rachford splitting

$$g(X) = \mathbf{tr}(CX) - \log \det X, \qquad h(X) = \rho \sum_{i>j} |X_{ij}|$$

- $X = \text{prox}_{tg}(\hat{X})$ is positive solution of $C X^{-1} + (1/t)(X \hat{X}) = 0$ easily solved via eigenvalue decomposition of $\hat{X} tC$ (see homework)
- $X = prox_{th}(\hat{X})$ is soft-thresholding

Spingarn's method of partial inverses

equality constrained convex problem

$$\begin{array}{ll} \text{minimize} & h(x) \\ \text{subject to} & x \in V \end{array}$$

h a closed convex function; V a subspace

Douglas-Rachford splitting: take $g = I_V$ (indicator of V)

$$x^{+} = \operatorname{prox}_{th}(z)$$

$$y^{+} = P_{V}(2x^{+} - z)$$

$$z^{+} = z + y^{+} - x^{+}$$

Application to composite optimization problem

minimize
$$f_1(x) + f_2(Ax)$$

 f_1 and f_2 have simple prox-operators

ullet equivalent to minimizing $h(x_1,x_2)$ over subspace V where

$$h(x_1, x_2) = f_1(x_1) + f_2(x_2), \qquad V = \{(x_1, x_2) \mid x_2 = Ax_1\}$$

- prox_{th} is separable: $\operatorname{prox}_{th}(x_1, x_2) = (\operatorname{prox}_{tf_1}(x_1), \operatorname{prox}_{tf_2}(x_2))$
- projection of (x_1, x_2) on V reduces to linear equation:

$$P_{V}(x_{1}, x_{2}) = \begin{bmatrix} I \\ A \end{bmatrix} (I + A^{T}A)^{-1}(x_{1} + A^{T}x_{2})$$

$$= \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} + \begin{bmatrix} A^{T} \\ -I \end{bmatrix} (I + AA^{T})^{-1}(x_{2} - Ax_{1})$$

Decomposition of separable problems

minimize
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \dots + A_{in}x_n)$$

- same problem as p.12-10, but without strong convexity assumption
- ullet we assume the functions f_j and g_i have inexpensive prox-operators

equivalent formulation

minimize
$$\sum_{j=1}^n f_j(x_j) + \sum_{i=1}^m g_i(y_{i1} + \dots + y_{in})$$
 subject to
$$y_{ij} = A_{ij}x_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

- ullet prox-operator of cost involves uncoupled prox-evaluations for f_j , g_i
- ullet projection on constraint set reduces to n independent linear equations

Decomposition of separable problems

second equivalent formulation with extra splitting variables x_{ij} :

minimize
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(y_{i1} + \dots + y_{in})$$

subject to $x_{ij} = x_j, \quad i = 1, \dots, m, \quad j = 1, \dots, n$
 $y_{ij} = A_{ij}x_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$

• make first set of constraints part of domain of f_i :

$$\tilde{f}_j(x_j, x_{1j}, \dots, x_{mj}) = \begin{cases} f_j(x_j) & x_{ij} = x_j, \quad i = 1, \dots, m \\ +\infty & \text{otherwise} \end{cases}$$

prox-operator of $ilde{f_j}$ reduces to prox-operator of f_j

ullet projection on other constraints involves mn independent linear equations

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- convergence

Dual application of Douglas-Rachford method

separable convex problem

minimize
$$f_1(x_1) + f_2(x_2)$$

subject to $A_1x_1 + A_2x_2 = b$

dual problem

maximize
$$-b^T z - f_1^*(-A_1^T z) - f_2^*(-A_2^T z)$$

we apply the Douglas-Rachford method (page 13-3) to minimize

$$\underbrace{b^{T}z + f_{1}^{*}(-A_{1}^{T}z)}_{g(z)} + \underbrace{f_{2}^{*}(-A_{2}^{T}z)}_{h(z)}$$

Douglas Rachford on the dual

$$y^{+} = \text{prox}_{tg}(z - w), \qquad z^{+} = \text{prox}_{th}(y^{+} + w), \qquad w^{+} = w + y^{+} - z^{+}$$

first line: use result on page 10-10 to compute $y^+ = \text{prox}_{tg}(z-w)$

$$\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T (A_1 x_1 - b) + \frac{t}{2} ||A_1 x_1 - b - w/t||_2^2)$$

$$y^+ = z - w + t(A_1 \hat{x}_1 - b)$$

second line: similarly, compute $z^+ = \text{prox}_{th}(z + t(A_1\hat{x}_1 - b))$

$$\hat{x}_2 = \underset{x_2}{\operatorname{argmin}} (f_2(x_2) + z^T A_2 x_2 + \frac{t}{2} ||A_1 \hat{x}_1 + A_2 x_2 - b||_2^2$$

$$z^+ = z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - b))$$

third line reduces to $w^+ = -tA_2\hat{x}_2$

Alternating direction method of multipliers

1. minimize augmented Lagrangian over x_1

$$x_1^{(k)} = \underset{x_1}{\operatorname{argmin}} \left(f_1(x_1) + (z^{(k-1)})^T A_1 x_1 + \frac{t}{2} ||A_1 x_1 + A_2 x_2^{(k-1)} - b||_2^2 \right)$$

2. minimize augmented Lagrangian over x_2

$$x_2^{(k)} = \underset{x_2}{\operatorname{argmin}} \left(f_2(x_2) + (z^{(k-1)})^T A_2 x_2 + \frac{t}{2} ||A_1 x_1^{(k)} + A_2 x_2 - b||_2^2 \right)$$

3. dual update

$$z^{(k)} = z^{(k-1)} + t(A_1 x_1^{(k)} + A_2 x_2^{(k)} - b)$$

also known as split Bregman method

Comparison with other multiplier methods

alternating minimization method (page 12-13) with $g(y) = I_{\{b\}}(y)$

- ullet same dual update, same update for x_2
- x_1 -update in alternating minimization method is simpler:

$$x_1^{(k)} = \underset{x_1}{\operatorname{argmin}} \left(f_1(x_1) + (z^{(k-1)})^T A_1 x_1 \right)$$

ullet ADMM does not require strong convexity of f_1

augmented Lagrangian method (page 12-14) with $g(y) = I_{\{b\}}(y)$

- dual update is the same
- AL method requires joint minimization of the augmented Lagrangian

$$f_1(x_1) + f_2(x_2) + (z^{(k-1)})^T (A_1x_1 + A_2x_2) + \frac{t}{2} ||A_1x_1 + A_2x_2 - b||_2^2$$

Application to composite optimization (method 1)

minimize
$$f_1(x) + f_2(Ax)$$

apply ADMM to

minimize
$$f_1(x_1) + f_2(x_2)$$

subject to $Ax_1 = x_2$

augmented Lagrangian is

$$f_1(x_1) + f_2(x_2) + \frac{t}{2} ||Ax_1 - x_2 + z/t||_2^2$$

- x_1 -update requires minimization of $f_1(x_1) + (t/2) ||Ax_1 x_2 + z/t||_2^2$
- x_2 -update is evaluation of $\operatorname{prox}_{t^{-1}f_2}$

Application to composite optimization (method 2)

introduce extra 'splitting' or 'dummy' variable x_3

minimize
$$f_1(x_3) + f_2(x_2)$$
 subject to $\begin{bmatrix} A \\ I \end{bmatrix} x_1 = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$

ullet alternate minimization of augmented Lagrangian over x_1 and (x_2,x_3)

$$f_1(x_3) + f_2(x_2) + \frac{t}{2} (\|Ax_1 - x_2 + z_1/t\|_2^2 + \|x_1 - x_3 + z_2/t\|_2^2)$$

- x_1 -update: linear equation with coefficient $I + A^T A$
- \bullet (x_2,x_3) -update: decoupled evaluations of $\mathrm{prox}_{t^{-1}f_1}$ and $\mathrm{prox}_{t^{-1}f_2}$

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- convergence

Image blurring model

$$b = Kx_{\rm t} + w$$

- ullet $x_{
 m t}$ is unknown image
- ullet b is observed (blurred and noisy) image; w is noise
- ullet N imes N-images are stored in column-major order as vectors of length N^2

blurring matrix K

- represents 2D convolution with space-invariant point spread function
- with periodic boundary conditions, block-circulant with circulant blocks
- ullet can be diagonalized by multiplication with unitary 2D DFT matrix W:

$$K = W^H \operatorname{\mathbf{diag}}(\lambda)W$$

equations with coefficient $I + K^T K$ can be solved in $O(N^2 \log N)$ time

Total variation deblurring with 1-norm

minimize
$$||Kx - b||_1 + \gamma ||Dx||_{\text{tv}}$$

subject to $0 \le x \le 1$

second term in objective is total variation penalty

• Dx is discretized first derivative in vertical and horizontal direction

$$D = \begin{bmatrix} I \otimes D_1 \\ D_1 \otimes I \end{bmatrix}, \qquad D_1 = \begin{bmatrix} -1 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 1 & -1 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 1 & -1 \end{bmatrix}$$

• $\|\cdot\|_{\mathrm{tv}}$ is a sum of Euclidean norms: $\|(u,v)\|_{\mathrm{tv}} = \sum_{i=1}^n \sqrt{u_i^2 + v_i^2}$

Solution via Douglas-Rachford method

an example of a composite optimization problem

minimize
$$f_1(x) + f_2(Ax)$$

with f_1 the indicator of $[0,1]^n$ and

$$A = \begin{bmatrix} K \\ D \end{bmatrix}, \qquad f_2(u, v) = ||u||_1 + \gamma ||v||_{\text{tv}}$$

primal DR method (page 13-8) and ADMM (page 13-16) require:

- ullet decoupled prox-evaluations of $\|u\|_1$ and $\gamma \|v\|_{\mathrm{tv}}$, and projections on C
- solution of linear equations with coefficient matrix

$$I + K^T K + D^T D$$

solvable in $O(N^2 \log N)$ time

Example

- 1024×1024 image, periodic boundary conditions
- Gaussian blur
- ullet salt-and-pepper noise (50% pixels randomly changed to 0/1)

original

noisy/blurred

restored

Convergence

cost per iteration is dominated by 2D FFTs

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- convergence

Douglas-Rachford iteration mappings

define iteration map F and negative step G (in notation of p. 13-5)

$$F(z) = z + \operatorname{prox}_{tg}(2\operatorname{prox}_{th}(z) - z) - \operatorname{prox}_{th}(z)$$

$$G(z) = z - F(z)$$

$$= \operatorname{prox}_{th}(z) - \operatorname{prox}_{tg}(2\operatorname{prox}_{th}(z) - z)$$

• F is firmly nonexpansive (co-coercive with parameter 1)

$$(F(z) - F(\hat{z}))^T (z - \hat{z}) \ge ||F(z) - F(\hat{z})||_2^2 \quad \forall z, \hat{z}$$

• implies that G is firmly nonexpansive:

$$(G(z) - G(\hat{z}))^{T}(z - \hat{z})$$

$$= ||G(z) - G(\hat{z})||_{2}^{2} + (F(z) - F(\hat{z}))^{T}(z - \hat{z}) - ||F(z) - F(\hat{z})||_{2}^{2}$$

$$\geq ||G(z) - G(\hat{z})||_{2}^{2}$$

proof (firm nonexpansiveness of F)

• define $x = \text{prox}_{th}(z)$, $\hat{x} = \text{prox}_{th}(\hat{z})$, and

$$y = \text{prox}_{tg}(2x - z), \qquad \hat{y} = \text{prox}_g(2\hat{x} - \hat{z})$$

• substitute expressions F(z) = z + y - x and $F(\hat{z}) = \hat{z} + \hat{y} - \hat{x}$:

$$(F(z) - F(\hat{z}))^{T}(z - \hat{z})$$

$$\geq (z + y - x - \hat{z} - \hat{y} + \hat{x})^{T}(z - \hat{z}) - (x - \hat{x})^{T}(z - \hat{z}) + ||x - \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(z - \hat{z}) + ||z - x - \hat{z} + \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(2x - z - 2\hat{x} + \hat{z}) - ||y - \hat{y}||_{2}^{2} + ||F(z) - F(\hat{z})||_{2}^{2}$$

$$\geq ||F(z) - F(\hat{z})||_{2}^{2}$$

inequalities use firm nonexpansiveness of $prox_{th}$ and $prox_{tg}$ (p. 6-9):

$$(x-\hat{x})^T(z-\hat{z}) \ge \|x-\hat{x}\|_2^2, \qquad (2x-z-2\hat{x}+\hat{z})^T(y-\hat{y}) \ge \|y-\hat{y}\|_2^2$$

Convergence result

$$z^{(k)} = (1 - \rho_k)z^{(k-1)} + \rho_k F(z^{(k-1)})$$
$$= z^{(k-1)} - \rho_k G(z^{(k-1)})$$

assumptions

- ullet optimal value $f^\star = \inf_x (g(x) + h(x))$ is finite and attained
- $\rho_k \in [\rho_{\min}, \rho_{\max}]$ with $0 < \rho_{\min} < \rho_{\max} < 2$

result

- ullet $z^{(k)}$ converges to a fixed point z^{\star} of F
- $x^{(k)} = \operatorname{prox}_{th}(z^{(k-1)})$ converges to a minimizer $x^* = \operatorname{prox}_{th}(z^*)$ (follows from continuity of prox_{th})

proof: let z^* be any fixed point of F(z) (zero of G(z)) consider iteration k (with $z=z^{(k-1)}$, $\rho=\rho_k$, $z^+=z^{(k)}$):

$$||z^{+} - z^{*}||_{2}^{2} - ||z - z^{*}||_{2}^{2} = 2(z^{+} - z)^{T}(z - z^{*}) + ||z^{+} - z||_{2}^{2}$$

$$= -2\rho G(z)^{T}(z - z^{*}) + \rho^{2}||G(z)||_{2}^{2}$$

$$\leq -\rho(2 - \rho)||G(z)||_{2}^{2}$$

$$\leq -M||G(z)||_{2}^{2}$$

$$(1)$$

where $M = \rho_{\min}(2 - \rho_{\max})$ (line 3 is firm nonexpansiveness of G)

• (1) implies that

$$M \sum_{k=0}^{\infty} \|G(z^{(k)})\|_{2}^{2} \le \|z^{(0)} - z^{\star}\|_{2}^{2}, \qquad \|G(z^{(k)})\|_{2} \to 0$$

- (1) implies that $||z^{(k)} z^{\star}||_2$ is nonincreasing; hence $z^{(k)}$ is bounded
- since $||z^{(k)} z^{\star}||_2$ is nonincreasing, the limit $\lim_{k\to\infty} ||z^{(k)} z^{\star}||_2$ exists

proof (continued)

- ullet since the sequence $z^{(k)}$ is bounded, it has a convergent subsequence
- let \bar{z}_k be a convergent subsequence with limit \bar{z} ; by continuity of G,

$$0 = \lim_{k \to \infty} G(\bar{z}_k) = G(\bar{z})$$

hence, \bar{z} is a zero of G and the limit $\lim_{k\to\infty} \|z^{(k)} - \bar{z}\|_2$ exists

ullet let \bar{z}_1 and \bar{z}_2 be two limit points; the limits

$$\lim_{k \to \infty} \|z^{(k)} - \bar{z}_1\|_2, \qquad \lim_{k \to \infty} \|z^{(k)} - \bar{z}_2\|_2$$

exist, and subsequences of $z^{(k)}$ converge to \bar{z}_1 , resp. \bar{z}_2 ; therefore

$$\|\bar{z}_2 - \bar{z}_1\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z}_1\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z}_2\|_2 = 0$$

References

Douglas-Rachford method, ADMM, Spingarn's method

- J. E. Spingarn, Applications of the method of partial inverses to convex programming: decomposition, Mathematical Programming (1985)
- J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal algorithm for maximal monotone operators, Mathematical Programming (1992)
- P.L. Combettes and J.-C. Pesquet, *A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery*, IEEE Journal of Selected Topics in Signal Processing (2007)
- S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, *Distributed optimization and statistical learning via the alternating direction method of multipliers* (2010)
- N. Parikh, S. Boyd, Block splitting for distributed optimization (2013)

image deblurring: the example is taken from

D. O'Connor and L. Vandenberghe, *Primal-dual decomposition by operator splitting and applications to image deblurring* (2014)