L. Vandenberghe EE236C (Spring 2013-14)

13. Douglas-Rachford method and ADMM

e Douglas-Rachford splitting method

e examples

e alternating direction method of multipliers
e image deblurring example

® convergence
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Douglas-Rachford splitting algorithm

minimize f(z) = g(x) + h(x)
g and h are closed convex functions

Douglas-Rachford iteration: starting at any z(9, repeat

k) = proxth(z(k_l))
yB) = proxtg(2:13(k) — k=)
S0 = D) () ()

e ¢ is a positive constant (simply scales the objective)
e useful when g and h have inexpensive prox-operators

e under weak conditions (existence of a minimizer), (k) converges

Douglas-Rachford method and ADMM
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Equivalent form

e start iteration at y-update

y* =prox, 2z —2), 2t =z+y" r" = proxy,(z7)
e switch z- and z-updates
y© =prox;,(2r—z),  xT =prox,(z+y" —z), 2T =z4+y"

e make change of variables w =z — x

alternate form of DR iteration: start at (¥ € dom h, w®) € toh(z?)

y" = prox,(z — w)
et = prOXth(y+ + w)
wt = wtyt—gzt
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Interpretation as fixed-point iteration

Douglas-Rachford iteration (p. 13-2) can be written as

where F'(z) = z + prox,,(2prox,,(z) — z) — prox,(z)

fixed points of F' and minimizers of g + h

e if 2 is a fixed point, then z = prox,,(z) is a minimizer:

z=F(z), x=prox,(z) = prox,(2r —z) =x = prox,,(z)
— —x+ 2z €tdg(r), z—x€tdh(x)
—> 0 € tdg(x) + toh(x)

e if z is a minimizer and u € tdg(x) N —tOh(x), then z +u = F(z + u)
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Douglas-Rachford iteration with relaxation
fixed-point iteration with relaxation
2T =2+ p(F(z) - 2)

1 < p < 2 is overrelaxation, 0 < p < 1 is underrelaxation

first version of DR method

T = proxy,(z)
y" = prox,,(2z7 — z)
2T o= z+4pyt —a2")
alternate version
y" = prox,(r —w)
" = proxy,((1—p)z+py" +w)

wh o= wtpyt+(1-plr—a”

Douglas-Rachford method and ADMM
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Sparse inverse covariance selection

minimize tr(CX) —logdet X + p > | X;;|
1>]

variable is X € S"; parameters C' € S’/ and p > 0 are given

Douglas-Rachford splitting

g(X) =tr(CX) —logdet X,  h(X)=p)» |Xyl

1>]

A

e X = prox,,(X) is positive solution of C' — X~ + (1/t)(X — X)=0

easily solved via eigenvalue decomposition of X — tC' (see homework)

e X = prox,,(X) is soft-thresholding
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Spingarn’s method of partial inverses

equality constrained convex problem

minimize  h(x)
subjectto x €V

h a closed convex function; V' a subspace

Douglas-Rachford splitting: take g = Iy, (indicator of V)

T = proxy,(z)
yT = Py(22T — 2)
2t = 24 yjL — "

Douglas-Rachford method and ADMM

13-7



Application to composite optimization problem

minimize fi(x) + fo(Ax)

f1 and f5 have simple prox-operators

e equivalent to minimizing h(x1, x2) over subspace V' where

h(z1,22) = fi(z1) + fa(w2), V ={(z1,22) | 72 = Az}

® proxy, is separable: prox,,(r1,r2) = (prox, s (1), prox, s, (z2))
e projection of (x1,x3) on V reduces to linear equation:

- 7 B
Pv(ib'l,ilj2> = A ] (I—l—ATA) 1(1’1 +ATCCQ>

_ | = ] 1 [ A" ] (I + AAT) Y(zy — Axy)

i i) —1

Douglas-Rachford method and ADMM
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Decomposition of separable problems
minimize Z fj(xj) -+ Zgi(Ailxl + -4 Ajppzn)
j=1 i=1
e same problem as p.12-10, but without strong convexity assumption

e we assume the functions f; and g; have inexpensive prox-operators

equivalent formulation

minimize > fi(z;)+ > ¢i(yir + - + Yin)
j=1 i=1

subject to yij:AijZCj, 1=1,....m, j7=1,....n

e prox-operator of cost involves uncoupled prox-evaluations for f;, g;

e projection on constraint set reduces to n independent linear equations
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Decomposition of separable problems

second equivalent formulation with extra splitting variables x;;:

minimize > fi(z;)+ > 9i(yir + - + Yin)
j=1 i=1

subject to  z;; = xj, v=1,....m, j7=1,...,n
yij:Az’jmz’ja z:l,...,m, jzl,...,n

e make first set of constraints part of domain of f;:

= fj(azj) Lijj = Ly 1=1,....m
fil®@is @1y @mi) = { Yoo otherwise o

prox-operator of f; reduces to prox-operator of f;

e projection on other constraints involves mn independent linear equations
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Dual application of Douglas-Rachford method

separable convex problem

minimize  fi(x1) + fao(x2)
subject to Aix1+ Asxo = b

dual problem

maximize —blz — fi(—ALT2) — f5(—AL%)

we apply the Douglas-Rachford method (page 13-3) to minimize

fo(—A3 2)

\ 7/

bz + fi(—Al2) +
g(2) h(z)

Douglas-Rachford method and ADMM

13-11



Douglas Rachford on the dual

- - - -

Y :pI'Oth(Z—’LU), < ZPTOXth(y++w), w :w—l—y—l_—z

first line: use result on page 10-10 to compute y™ = prox, (z — w)

A : t

Tr1 = argmin (f1($1) + ZT(Alil?l - b) + §||A1$1 —b— w/t||%)
T

y"’ — z—w—l—t(Alil — b)

second line: similarly, compute 2z = prox,, (z + t(A121 — b))

. : t .
L9 = arginin (fQ(CEQ) + ZTAQ.CEQ + 5”141561 + AQZEQ — bH%
2
Z+ = Z-+ t(Alii‘l + AQ.CIATQ — b))
third line reduces to w™ = —tAs%o
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Alternating direction method of multipliers

1. minimize augmented Lagrangian over x4

: _ t _
:cgk) — argmin (fl(xl) + (z(k 1))TA1:1:1 + §]|A1x1 + Agx;k b _ b||§)

1
2. minimize augmented Lagrangian over x5

: _ t
z$" = argmin <f2(372) + (2% )T Aoy + 5”!‘11%5]{) + Aowa — b||§)

x2
3. dual update

2B = (k=1) 4 t(Ala;gk) + Agilfék) —b)

also known as split Bregman method

Douglas-Rachford method and ADMM 13-13



Comparison with other multiplier methods

alternating minimization method (page 12-13) with g(y) = I ()

e same dual update, same update for x5

e ri-update in alternating minimization method is simpler:

iligk) — argmin (fl(azl) + (z(k_l))TAl.rl)

L1

e ADMM does not require strong convexity of f;

augmented Lagrangian method (page 12-14) with g(y) = I (y)

e dual update is the same

e AL method requires joint minimization of the augmented Lagrangian

{
fi(x1) + fo(zs) + (Z(k_l))T(Aliﬁ + Asxo) + 5 | A2, + Asxo — ng
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Application to composite optimization (method 1)

minimize fi(x) + f2(Ax)

apply ADMM to
minimize  fi(z1) + fa(x2)
subject to Az = x5

e augmented Lagrangian is

Fula) + foliea) + 2| Awy — 22 + 21

e 1-update requires minimization of fi(x1) + (¢t/2)||Ax1 — x2 + 2/1||3

e ry-update is evaluation of prox,-1y,
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Application to composite optimization (method 2)

introduce extra ‘splitting’ or ‘dummy’ variable x3

minimize  fi(z3) + fa(22)

. A | e
subject to [ 7 ]:1:1— [ s ]

e alternate minimization of augmented Lagrangian over x1 and (z2, x3)

t
fi(x3) + fa(wa) + 5 (|Azy — z2 4+ 21/t||5 + |21 — 23 + 22/t]|3)

e 1;-update: linear equation with coefficient 7 + AT A

e (w2, w3)-update: decoupled evaluations of prox,—1 and prox,-i,
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Image blurring model

b= Kuxi +w

e I; Is unknown image
e b is observed (blurred and noisy) image; w is noise

e N x N-images are stored in column-major order as vectors of length N?

blurring matrix K

e represents 2D convolution with space-invariant point spread function
e with periodic boundary conditions, block-circulant with circulant blocks

e can be diagonalized by multiplication with unitary 2D DFT matrix W':
K = W diag(\)W

equations with coefficient I + K K can be solved in O(N?log N) time

Douglas-Rachford method and ADMM 13-17



Total variation deblurring with 1-norm

minimize  ||Kxz — b||1 + || Dx||sv
subjectto 0< <1

second term in objective is total variation penalty

e Dux is discretized first derivative in vertical and horizontal direction

—1 0 o .- 0 0 1

1 —1 0o --- 0 0 0

I D, 0 1 -1 --- 0 0 0
D:[D1®I]’ Dy = ; ; P : : ;
0 0 o --- -1 0 0

0 0 o --- 1 —1 0

0 0 0o - 0 I -1 ]

e || - |[tv is a sum of Euclidean norms: ||(u,v)|[t+v = Z Vu
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Solution via Douglas-Rachford method
an example of a composite optimization problem
minimize fi(x) + f2(Ax)

with f1 the indicator of [0, 1]™ and

K
A= 5| Ao = lul+ Aol

primal DR method (page 13-8) and ADMM (page 13-16) require:

e decoupled prox-evaluations of ||u||; and v||v||+v, and projections on C

e solution of linear equations with coefficient matrix
I+ K"K+ D'D

solvable in O(N?log N) time
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Example

e 1024 x 1024 image, periodic boundary conditions
e Gaussian blur

e salt-and-pepper noise (50% pixels randomly changed to 0/1)

original noisy /blurred restored
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Convergence

(f@@®) =)/ f

—ADMM |
- - -primal DR ||

1 - ! ! ! !
0 0 100 200 300 400 500

iteration number k

cost per iteration is dominated by 2D FFTs

Douglas-Rachford method and ADMM
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Douglas-Rachford iteration mappings

define iteration map F' and negative step G (in notation of p. 13-5)

F(z) = z+ prox.(2prox,,(z) — z) — prox,,(z)
G(z) = z-—F(z)

= proxy,(z) — pl"Oth(QPI'OXth(Z) — z)
e [ is firmly nonexpansive (co-coercive with parameter 1)

(F(z) = F(2)' (2= 2) 2 |F(2) = F(3)z V22

e implies that GG is firmly nonexpansive:

(G(2) = G(

= [|G(2) - G(Nz +(F(2) = F(2)" (2 = 2) = [|[F(2) — F(2)]I2
> [IG(2) = G(2
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proof (firm nonexpansiveness of F)
e define x = prox,,(z), £ = prox,,(2), and

y = prox,,(2z — z2), § = prox, (22 — 2)

e substitute expressions F'(z) =z+y—x and F(2) =2+ 4 — &
(F(2) = F(2))" (2 — 2)
> (z+y—az—2-0+2)"(z-2)—(x—-2)" (2 —2) + |z — &|5
= (-9 (=) +llz—z—2+2|3
(y—9)" 2z —2z—28+2) —[ly = gl3 + | F(2) = F(2)]I3
> ||[F(2) — F(2)II3

inequalities use firm nonexpansiveness of prox,;, and prox,, (p. 6-9):

(x—2) (2= 2) 2 |lo—2l3, (Qe-2z-28+2)"(y—9) =y —9l3
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Convergence result

2= (1= pp) 2"V 4 pp P (D)
2D G2

assumptions

e optimal value f* =inf,.(g(x) + h(x)) is finite and attained

® Ok S [pminy pmax] with 0 < Pmin < Pmax < 2

result

o () converges to a fixed point z* of F
o z(*) = prox,; (2(*=1)) converges to a minimizer z* = prox,, (z*)

(follows from continuity of prox,;,)

Douglas-Rachford method and ADMM
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proof: let z* be any fixed point of F'(z) (zero of G(z))

consider iteration k (with z = (=D p = pp, 2T = 2(F)):

2(2F = 2)" (2 —2") + 2" — 23
—2pG(2)" (2 = 2*) + p*[|G(2) I3

—p(2 = p)IG(2))II2

—M||G(2))Il3 (1)

|27 =213 = 2 = 2713

VANRRVANE|

where M = pmin(2 — pmax) (line 3 is firm nonexpansiveness of G)

e (1) implies that

MY |GEP)E < 129 =273, |G(*)|l2 — 0
k=0

e (1) implies that [|2(*) — 2*||5 is nonincreasing; hence z*) is bounded

e since ||z*) — 2*||5 is nonincreasing, the limit limj_, o [|2(*) — 2*||5 exists
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proof (continued)

e since the sequence z(¥) is bounded, it has a convergent subsequence

e let Z; be a convergent subsequence with limit z; by continuity of G,

0= lim G(zx) = G(2)

k— o0

hence, Z is a zero of G and the limit limy,_, o ||2(*) — Z||5 exists

e let z; and zy be two limit points; the limits

lim || 2% — 2|, lim [|z%) — 22
k— 00 k— o0

exist, and subsequences of 2 () converge to zi, resp. Zo; therefore

|22 — 212 = dim 125) — 2|2 = dim 12%) — Z5]] = 0
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