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11. Dual decomposition

e introduction: dual methods

e gradient and subgradient of conjugate
e dual decomposition

e network utility maximization

e network flow optimization
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Duality and conjugates

Ran

primal problem (A € , f and g convex)

minimize f(x) + g(Ax)

Lagrangian (after introducing new variable y = Ax)

f(x)+g(y) + 2" (Az —y)

dual function

inf (f(z) + 2" Az) +inf (g(y) — 2"y) = —f(—A"2) — g% (2)

L Yy

dual problem
maximize —f*(—A'z) — g*(2)
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Examples

equality constraints: g is indicator for {b}

minimize  f(x) maximize —blz — f*(—Al%)
subject to Ax =1b

linear inequality constraints: ¢ is indicator for {y | y < b}

minimize  f(x) maximize —blz — f*(—Al2)
subject to Ax <b subjectto 2z > 0
norm regularization: ¢g(y) = ||y — b||
minimize f(z) + ||[Ax — b|| maximize —blz — f*(—A12)

subject to  ||z||« <1
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Dual methods

apply first-order method to dual problem

maximize —f*(—Alz2) — g*(2)

reasons why dual problem may be easier for first-order method:

e dual problem is unconstrained or has simple constraints
e dual objective is differentiable or has a simple nondifferentiable term

e decomposition: exploit separable structure
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(Sub-)gradients of conjugate function

assume f : R™ — R is closed and convex with conjugate

f*(y) =sup (y'z — f(z))

subgradient

e f* is subdifferentiable on (at least) int dom f* (page 4-6)

e maximizers in the definition of f*(y) are subgradients at y (page 8-13)

yedf(z) < yla—fla)=[r@y) <<= =zcdf(y

gradient: for strictly convex f, maximizer in definition is unique if it exists

V f*(y) = argmax (yT:U — f(z)) (if maximum is attained)

x
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Conjugate of strongly convex function

assume f is closed and strongly convex, with parameter p > 0

e f*is defined for all y (i.e., dom f* = R")

e ™ is differentiable everywhere, with gradient

V*(y) = argmax (37 — f(2))

T

e V f* is Lipschitz continuous with constant 1/u

* * 1
IV (y) =V f (y’)HzS;Hy—y'llz Vy,y’
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proof: if f is strongly convex and closed

e y''z — f(x) has a unique maximizer x for every y

e 2 maximizes y'x — f(z) if and only if y € df(x); from page 8-13

yedf(x) <=  2€df(y) ={VS )}
hence V f*(y) = argmax, (y'z — f(z))

e from convexity of f(z) — (u/2)z!z:

(y—y) (@ —a') > pllz—a'|5 fyedf(z)y €df(a)

e this is co-coercivity of V f* (which implies Lipschitz continuity)

(y—y)" (Vf*(y) = VW) = ulVIy) - Vi)l
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Equality constraints

minimize  f(x) minimize —f*(—A%lz) —blz
subject to Ax =1b

dual gradient ascent (assuming dom f* = R"):

Z = argmin (f(z) + 2" Az), 2T =2+ t(AT —b)

T

e 1 is a subgradient of f* at —A%z (i.e., & € Of*(—AL2))

e b— Az is a subgradient of b’z + f*(—AT2) at 2

of interest if calculation of & is inexpensive (for example, f is separable)
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Dual decomposition

convex problem with separable objective

minimize  fi(x1) + fa(x2)
subject to A1£I?1 -+ AQZCQ j b

constraint is complicating or coupling constraint

dual problem

maximize —f7(—ATz) - f3(—Al2) —-bvlz
subject to z > 0

can be solved by (sub-)gradient projection if z = 0 is the only constraint
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Dual subgradient projection

subproblem: to calculate ff(—A}z) and a (sub-)gradient for it,

minimize (over x;) fi(z;) + 21 A;x;

optimal value is ff(—Alz); minimizer &; is in 0f(—A] z)

dual subgradient projection method

T; = argmin (fj(:cj) — zTAjajj) , 7=1,2
Zj
Z+ — (Z + t(Alfﬁl + AQQA?Q — b)>_|_

e minimization problems over x1, x5 are independent

e z-update is projected subgradient step (uy = max{u,0} elementwise)
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Interpretation as price coordination

e p = 2 units in a system; unit j chooses decision variable z;
e constraints are limits on shared resources; z; is price of resource 7
e dual update z:r = (z; — ts;)1 depends on slacks s = b — A1z — Asxs

— increases price z; if resource is over-utilized (s; < 0)
— decreases price z; if resource is under-utilized (s; > 0)
— never lets prices get negative

distributed architecture

e central node sets prices z

"7 N

e peripheral node j sets z;
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Quadratic programming example

,
minimize Y (z] Pjx; + q; ©;)
j=1
subject to Bjx; <d;, j=1,...,r
p
>, Ajzy 2D
j=1
e 7 = 10, variables z; € R'%° 10 coupling constraints (A4, € R10>100)

e P; > 0; implies dual function has Lipschitz continuous gradient

subproblems: each iteration requires solving 10 decoupled QPs

minimize (over z;) TP iy + (g5 + AT ) @

subject to Bijr; < d;
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gradient projection and fast gradient projection

e fixed step size (equal in the two methods)

e plot shows dual objective gap

' — gradient
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Network utility maximization

network flows

e n flows, with fixed routes, in a network with m links
e variable z; > 0 denotes the rate of flow j

o flow utility is U; : R — R, concave, increasing

capacity constraints

e traffic y; on link ¢ is sum of flows passing through it

e y = Rz, where R is the routing matrix

no_ 1 flow j passes over link ¢
1 0 otherwise

e link capacity constraint: y < ¢
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Dual network utility maximization problem

n
maximize > U,(z;)
j=1
subject to Rx =X c

a convex problem; dual decomposition gives decentralized method

dual problem

minimize ¢’z 4 Y (=U;)*(—r] 2)
j=1

subject to 2z > 0

e 2, is price (per unit flow) for using link ¢

e 7!z is the sum of prices along route j (r; is jth column of R)

Dual decomposition
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(Sub-)gradients of dual function

dual objective
f(z) = 24 ) (<U)*(=r]2)
j=1

= "2+ sup (Uj(xy) — (r] 2)z;)
j=1 "I

subgradient

c— Rz € 0f(2) where ;= argmax (Uj(a:j) — (TfZ):EJ)

Lj

e if U; is strictly concave, this is a gradient
e 7z is the sum of link prices along route j

e c — Rz is vector of link capacity margins for flow x

Dual decomposition
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Dual decomposition algorithm

given initial link price vector z = 0 (e.g., z = 1), repeat:

1. sum link prices along each route: calculate \; = roz fory=1,....n
2. optimize flows (separately) using flow prices
:?Jj:argmax(Uj(a:j)—)\jxj), ]: 1,...,7?,

Ly
3. calculate link capacity margins s = c — Rx%

4. update link prices using projected (sub-)gradient step with step ¢

z:=(z2—1s),

decentralized:

e to find A\;, Z,; source j only needs to know the prices on its route

e to update s;, z;, link 7 only needs to know the flows that pass through it
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Single commodity network flow

network

e connected, directed graph with n links/arcs, m nodes

F277L><71 .

e node-arc incidence matrix A € IS

1 arc j enters node ¢
A;; = ¢ —1 arcj leaves node ¢
0 otherwise

flow vector and external sources

e variable z; denotes flow (traffic) on arc j

e b; is external demand (or supply) of flow at node i (satisfies 116 = 0)

e flow conservation: Ax = b

Dual decomposition

11-18



Network flow optimization problem

minimize  ¢(x) = ) ¢;(x;)
j=1
subject to Ax =10

® ¢ is a separable sum of convex functions

e dual decomposition yields decentralized solution method

dual problem (a; is jth column of A)

n
maximize —blz — '21 ¢%(—aj 2)
‘]:

e dual variable z; can be interpreted as potential at node ¢

o Yy, = —asz is the potential difference across arc j

(potential at start node minus potential at end node)

Dual decomposition
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(Sub-)gradients of dual function

negative dual objective

f(z)=b"24+ ) ¢i(—aj 2)
j=1

subgradient
b— Az € 0f(z) where ;= argmin (¢j(xj) + (OLJTZ)CL‘]')

e this is a gradient if the functions ¢; are strictly convex

o if ¢; is differentiable, ¢(Z;) = —a; 2
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Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences y = — A’z
z; = argmin (¢;(x;) —y;x;), Jj=1,...,n
zj

2. compute flow residual at each node: s :=b — Ax

3. update node potentials using (sub-)gradient step with step size ¢

z: =%z —1s

decentralized:

e flow is calculated from potential difference across arc

e node potential is updated from its own flow surplus
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Electrical network interpretation

network flow optimality conditions (with differentiable ¢;)

Ar = b, y—+ ATz =0, y; = ¢s(x5), j=1,...,n

network with node incidence matrix A, nonlinear resistors in branches
Kirchhoff current law (KCL): Ax = b

x; is the current flow in branch j; b; is external current extracted at node i

Kirchhoff voltage law (KVL): y + ATz =0

zj is node potential; y; = —a; z is jth branch voltage
current-voltage characterics: y; = ¢(v;)
for example, ¢;(z;) = R;x5/2 for linear resistor R;

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

flow cost function and conjugate (c; > 0 are link capacities):

b;(z;) = —I—, 05 (y;) = { (WVess —1)" wi> e

Cj — Xy 0 ngl/(}j

(with dom ¢; = [0, ¢;))

e ¢, is differentiable except at z; =0

0¢;(0) = (=00,0],  ¢j(x;) =

(¢j — z;)

o ¢ is differentiable

7 (v5) :{ ! b < 1/
NS c; —\¢i/y; y; > 1/c;
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flow cost function and conjugate (c; = 1)
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