11. Dual decomposition

- introduction: dual methods
- gradient and subgradient of conjugate
- dual decomposition
- network utility maximization
- network flow optimization

Duality and conjugates

primal problem ($A \in \mathbb{R}^{m \times n}$, f and g convex)

minimize f(x) + g(Ax)

Lagrangian (after introducing new variable y = Ax)

$$f(x) + g(y) + z^T (Ax - y)$$

dual function

$$\inf_{x} \left(f(x) + z^{T} A x \right) + \inf_{y} \left(g(y) - z^{T} y \right) = -f^{*}(-A^{T} z) - g^{*}(z)$$

dual problem

maximize
$$-f^*(-A^Tz) - g^*(z)$$

Examples

equality constraints: g is indicator for $\{b\}$

minimize f(x) maximize $-b^T z - f^*(-A^T z)$ subject to Ax = b

linear inequality constraints: g is indicator for $\{y \mid y \leq b\}$

minimizef(x)maximize $-b^T z - f^*(-A^T z)$ subject to $Ax \preceq b$ subject to $z \succeq 0$

norm regularization: g(y) = ||y - b||

minimize f(x) + ||Ax - b||subject to $||z||_* \le 1$

Dual methods

apply first-order method to dual problem

maximize
$$-f^*(-A^Tz) - g^*(z)$$

reasons why dual problem may be easier for first-order method:

- dual problem is unconstrained or has simple constraints
- dual objective is differentiable or has a simple nondifferentiable term
- decomposition: exploit separable structure

Outline

- introduction: dual methods
- gradient and subgradient of conjugate
- dual decomposition
- network utility maximization
- network flow optimization

(Sub-)gradients of conjugate function

assume $f : \mathbf{R}^n \to \mathbf{R}$ is closed and convex with conjugate

$$f^*(y) = \sup_{x} \left(y^T x - f(x) \right)$$

subgradient

- f^* is subdifferentiable on (at least) int dom f^* (page 4-6)
- maximizers in the definition of $f^*(y)$ are subgradients at y (page 8-13)

$$y \in \partial f(x) \iff y^T x - f(x) = f^*(y) \iff x \in \partial f^*(y)$$

gradient: for strictly convex f, maximizer in definition is unique if it exists

$$abla f^*(y) = \operatorname*{argmax}_x \left(y^T x - f(x) \right) \quad \text{(if maximum is attained)}$$

Conjugate of strongly convex function

assume f is closed and strongly convex, with parameter $\mu > 0$

- f^* is defined for all y (*i.e.*, dom $f^* = \mathbf{R}^n$)
- f^* is differentiable everywhere, with gradient

$$\nabla f^*(y) = \operatorname*{argmax}_x \left(y^T x - f(x) \right)$$

• ∇f^* is Lipschitz continuous with constant $1/\mu$

$$\|\nabla f^*(y) - \nabla f^*(y')\|_2 \le \frac{1}{\mu} \|y - y'\|_2 \quad \forall y, y'$$

proof: if f is strongly convex and closed

- $y^T x f(x)$ has a unique maximizer x for every y
- x maximizes $y^T x f(x)$ if and only if $y \in \partial f(x)$; from page 8-13

$$y \in \partial f(x) \qquad \Longleftrightarrow \qquad x \in \partial f^*(y) = \{\nabla f^*(y)\}$$

hence $\nabla f^*(y) = \operatorname{argmax}_x \left(y^T x - f(x) \right)$

• from convexity of $f(x) - (\mu/2)x^T x$:

$$(y-y')^T(x-x') \ge \mu \|x-x'\|_2^2$$
 if $y \in \partial f(x)$, $y' \in \partial f(x')$

• this is co-coercivity of ∇f^* (which implies Lipschitz continuity)

$$(y - y')^T (\nabla f^*(y) - \nabla f^*(y')) \ge \mu \|\nabla f^*(y) - \nabla f^*(y')\|_2^2$$

Outline

- introduction: dual methods
- gradient and subgradient of conjugate
- dual decomposition
- network utility maximization
- network flow optimization

Equality constraints

 $\begin{array}{ll} \mbox{minimize} & f(x) & \mbox{minimize} & -f^*(-A^Tz) - b^Tz \\ \mbox{subject to} & Ax = b & \end{array}$

dual gradient ascent (assuming $\operatorname{dom} f^* = \mathbf{R}^n$):

$$\hat{x} = \underset{x}{\operatorname{argmin}} \left(f(x) + z^T A x \right), \qquad z^+ = z + t (A \hat{x} - b)$$

- \hat{x} is a subgradient of f^* at $-A^T z$ (*i.e.*, $\hat{x} \in \partial f^*(-A^T z)$)
- $b A\hat{x}$ is a subgradient of $b^T z + f^*(-A^T z)$ at z

of interest if calculation of \hat{x} is inexpensive (for example, f is separable)

Dual decomposition

convex problem with separable objective

minimize $f_1(x_1) + f_2(x_2)$ subject to $A_1x_1 + A_2x_2 \preceq b$

constraint is *complicating* or *coupling* constraint

dual problem

maximize
$$-f_1^*(-A_1^T z) - f_2^*(-A_2^T z) - b^T z$$

subject to $z \succeq 0$

can be solved by (sub-)gradient projection if $z \succeq 0$ is the only constraint

Dual subgradient projection

subproblem: to calculate $f_j^*(-A_j^T z)$ and a (sub-)gradient for it,

minimize (over x_j) $f_j(x_j) + z^T A_j x_j$

optimal value is $f_j^*(-A_j^T z)$; minimizer \hat{x}_j is in $\partial f_j^*(-A_j^T z)$

dual subgradient projection method

$$\hat{x}_j = \operatorname*{argmin}_{x_j} \left(f_j(x_j) + z^T A_j x_j \right), \quad j = 1, 2$$

 $z^+ = (z + t(A_1 \hat{x}_1 + A_2 \hat{x}_2 - b))_+$

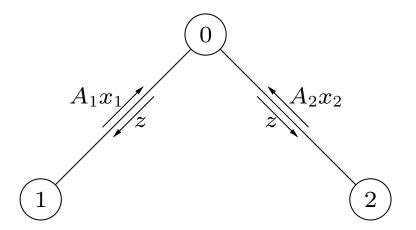
- minimization problems over x_1 , x_2 are independent
- z-update is projected subgradient step $(u_+ = \max\{u, 0\}$ elementwise)

Interpretation as price coordination

- p = 2 units in a system; unit j chooses decision variable x_j
- constraints are limits on shared resources; z_i is price of resource i
- dual update $z_i^+ = (z_i ts_i)_+$ depends on slacks $s = b A_1x_1 A_2x_2$
 - increases price z_i if resource is over-utilized ($s_i < 0$)
 - decreases price z_i if resource is under-utilized $(s_i > 0)$
 - never lets prices get negative

distributed architecture

- central node sets prices z
- peripheral node j sets x_j



Quadratic programming example

minimize
$$\sum_{j=1}^{r} (x_j^T P_j x_j + q_j^T x_j)$$

subject to $B_j x_j \preceq d_j, \quad j = 1, \dots, r$
$$\sum_{j=1}^{p} A_j x_j \preceq b$$

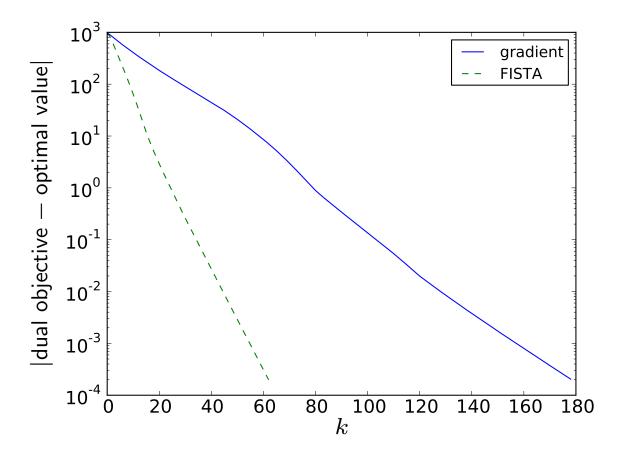
- r = 10, variables $x_j \in \mathbf{R}^{100}$, 10 coupling constraints $(A_j \in \mathbf{R}^{10 \times 100})$
- $P_j \succ 0$; implies dual function has Lipschitz continuous gradient

subproblems: each iteration requires solving 10 decoupled QPs

minimize (over
$$x_j$$
) $x_j^T P_j x_j + (q_j + A_j^T z)^T x_j$
subject to $B_j x_j \preceq d_j$

gradient projection and fast gradient projection

- fixed step size (equal in the two methods)
- plot shows dual objective gap



Outline

- introduction: dual methods
- gradient and subgradient of conjugate
- dual decomposition
- network utility maximization
- network flow optimization

Network utility maximization

network flows

- n flows, with fixed routes, in a network with m links
- variable $x_j \ge 0$ denotes the rate of flow j
- flow utility is $U_j : \mathbf{R} \to \mathbf{R}$, concave, increasing

capacity constraints

- traffic y_i on link i is sum of flows passing through it
- y = Rx, where R is the routing matrix

$$R_{ij} = \left\{ \begin{array}{ll} 1 & \mbox{flow } j \mbox{ passes over link } i \\ 0 & \mbox{otherwise} \end{array} \right.$$

• link capacity constraint: $y \preceq c$

Dual network utility maximization problem

maximize
$$\sum_{j=1}^{n} U_j(x_j)$$

subject to $Rx \leq c$

a convex problem; dual decomposition gives decentralized method

dual problem

$$\begin{array}{ll} \text{minimize} & c^T z + \sum\limits_{j=1}^n (-U_j)^* (-r_j^T z) \\ \text{subject to} & z \succeq 0 \end{array}$$

- z_i is price (per unit flow) for using link i
- $r_j^T z$ is the sum of prices along route j (r_j is jth column of R)

(Sub-)gradients of dual function

dual objective

$$f(z) = c^T z + \sum_{j=1}^n (-U_j)^* (-r_j^T z)$$

= $c^T z + \sum_{j=1}^n \sup_{x_j} (U_j(x_j) - (r_j^T z) x_j)$

subgradient

$$c - R\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \operatorname*{argmax}_{x_j} \left(U_j(x_j) - (r_j^T z) x_j \right)$

- if U_j is strictly concave, this is a gradient
- $r_j^T z$ is the sum of link prices along route j
- $c R\hat{x}$ is vector of link capacity margins for flow \hat{x}

Dual decomposition algorithm

given initial link price vector $z \succ 0$ (e.g., z = 1), repeat:

- 1. sum link prices along each route: calculate $\lambda_j = r_j^T z$ for $j = 1, \ldots, n$
- 2. optimize flows (separately) using flow prices

$$\hat{x}_j = \operatorname*{argmax}_{x_j} \left(U_j(x_j) - \lambda_j x_j \right), \quad j = 1, \dots, n$$

- 3. calculate link capacity margins $s = c R\hat{x}$
- 4. update link prices using projected (sub-)gradient step with step t

$$z := (z - ts)_+$$

decentralized:

- to find λ_j , \hat{x}_j source j only needs to know the prices on its route
- to update s_i , z_i , link *i* only needs to know the flows that pass through it

Outline

- introduction: dual methods
- gradient and subgradient of conjugate
- dual decomposition
- network utility maximization
- network flow optimization

Single commodity network flow

network

- connected, directed graph with n links/arcs, m nodes
- node-arc incidence matrix $A \in \mathbf{R}^{m \times n}$ is

$$A_{ij} = \begin{cases} 1 & \text{arc } j \text{ enters node } i \\ -1 & \text{arc } j \text{ leaves node } i \\ 0 & \text{otherwise} \end{cases}$$

flow vector and external sources

- variable x_j denotes flow (traffic) on arc j
- b_i is external demand (or supply) of flow at node i (satisfies $\mathbf{1}^T b = 0$)
- flow conservation: Ax = b

Network flow optimization problem

minimize $\phi(x) = \sum_{j=1}^{n} \phi_j(x_j)$ subject to Ax = b

- ϕ is a separable sum of convex functions
- dual decomposition yields decentralized solution method

dual problem $(a_j \text{ is } j \text{th column of } A)$

maximize
$$-b^T z - \sum_{j=1}^n \phi_j^*(-a_j^T z)$$

- dual variable z_i can be interpreted as potential at node i
- $y_j = -a_j^T z$ is the potential difference across arc j(potential at start node minus potential at end node)

(Sub-)gradients of dual function

negative dual objective

$$f(z) = b^T z + \sum_{j=1}^n \phi_j^*(-a_j^T z)$$

subgradient

$$b - A\hat{x} \in \partial f(z)$$
 where $\hat{x}_j = \operatorname{argmin}\left(\phi_j(x_j) + (a_j^T z)x_j\right)$

- this is a gradient if the functions ϕ_j are strictly convex
- if ϕ_j is differentiable, $\phi_j'(\hat{x}_j) = -a_j^T z$

Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences $y = -A^T z$

$$\hat{x}_j = \operatorname*{argmin}_{x_j} \left(\phi_j(x_j) - y_j x_j \right), \quad j = 1, \dots, n$$

- 2. compute flow residual at each node: $s := b A\hat{x}$
- 3. update node potentials using (sub-)gradient step with step size t

$$z := z - ts$$

decentralized:

- flow is calculated from potential difference across arc
- node potential is updated from its own flow surplus

Electrical network interpretation

network flow optimality conditions (with differentiable ϕ_j)

$$Ax = b,$$
 $y + A^T z = 0,$ $y_j = \phi'_j(x_j),$ $j = 1, ..., n$

network with node incidence matrix A, nonlinear resistors in branches **Kirchhoff current law (KCL)**: Ax = b

 x_j is the current flow in branch j; b_i is external current extracted at node iKirchhoff voltage law (KVL): $y + A^T z = 0$

 z_j is node potential; $y_j = -a_j^T z$ is jth branch voltage

current-voltage characterics: $y_j = \phi'_j(x_j)$

for example, $\phi_j(x_j) = R_j x_j^2/2$ for linear resistor R_j

current and potentials in circuit are optimal flows and dual variables

Example: minimum queueing delay

flow cost function and conjugate ($c_j > 0$ are link capacities):

$$\phi_j(x_j) = \frac{x_j}{c_j - x_j}, \qquad \phi_j^*(y_j) = \begin{cases} \left(\sqrt{c_j y_j} - 1\right)^2 & y_j > 1/c_j \\ 0 & y_j \le 1/c_j \end{cases}$$

(with $\operatorname{dom} \phi_j = [0, c_j)$)

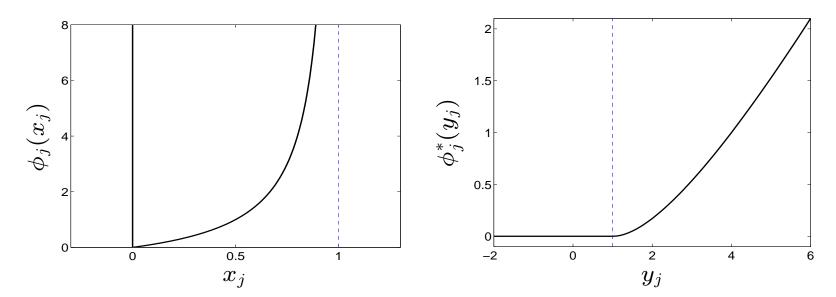
• ϕ_j is differentiable except at $x_j = 0$

$$\partial \phi_j(0) = (-\infty, 0], \qquad \phi'_j(x_j) = \frac{c_j}{(c_j - x_j)^2} \quad (0 < x_j < c_j)$$

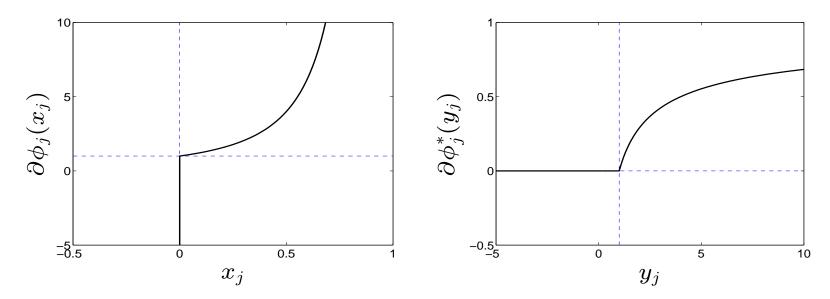
• ϕ_j^* is differentiable

$$\phi_j^{*'}(y_j) = \begin{cases} 0 & y_j \le 1/c_j \\ c_j - \sqrt{c_j/y_j} & y_j > 1/c_j \end{cases}$$

flow cost function and conjugate $(c_j = 1)$



derivatives



Dual decomposition

References

- S. Boyd, course notes for EE364b. Lectures and notes on decomposition
- M. Chiang, S.H. Low, A.R. Calderbank, J.C. Doyle, Layering as optimization decomposition: A mathematical theory of network architectures, Proceedings IEEE (2007)
- D.P. Bertsekas and J.N. Tsitsiklis, *Parallel and Distributed Computation: Numerical Methods* (1989)
- D.P. Bertsekas, Network Optimization. Continuous and Discrete Models (1998)
- L.S. Lasdon, *Optimization Theory for Large Systems* (1970)