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11. Dual decomposition

• introduction: dual methods

• gradient and subgradient of conjugate

• dual decomposition

• network utility maximization

• network flow optimization
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Duality and conjugates

primal problem (A ∈ Rm×n, f and g convex)

minimize f(x) + g(Ax)

Lagrangian (after introducing new variable y = Ax)

f(x) + g(y) + zT (Ax− y)

dual function

inf
x

(

f(x) + zTAx
)

+ inf
y

(

g(y)− zTy
)

= −f∗(−ATz)− g∗(z)

dual problem
maximize −f∗(−ATz)− g∗(z)
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Examples

equality constraints: g is indicator for {b}

minimize f(x)
subject to Ax = b

maximize −bTz − f∗(−ATz)

linear inequality constraints: g is indicator for {y | y � b}

minimize f(x)
subject to Ax � b

maximize −bTz − f∗(−ATz)
subject to z � 0

norm regularization: g(y) = ‖y − b‖

minimize f(x) + ‖Ax− b‖ maximize −bTz − f∗(−ATz)
subject to ‖z‖∗ ≤ 1
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Dual methods

apply first-order method to dual problem

maximize −f∗(−ATz)− g∗(z)

reasons why dual problem may be easier for first-order method:

• dual problem is unconstrained or has simple constraints

• dual objective is differentiable or has a simple nondifferentiable term

• decomposition: exploit separable structure
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(Sub-)gradients of conjugate function

assume f : Rn → R is closed and convex with conjugate

f∗(y) = sup
x

(

yTx− f(x)
)

subgradient

• f∗ is subdifferentiable on (at least) int dom f∗ (page 4-6)

• maximizers in the definition of f∗(y) are subgradients at y (page 8-13)

y ∈ ∂f(x) ⇐⇒ yTx− f(x) = f∗(y) ⇐⇒ x ∈ ∂f∗(y)

gradient: for strictly convex f , maximizer in definition is unique if it exists

∇f∗(y) = argmax
x

(

yTx− f(x)
)

(if maximum is attained)
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Conjugate of strongly convex function

assume f is closed and strongly convex, with parameter µ > 0

• f∗ is defined for all y (i.e., dom f∗ = Rn)

• f∗ is differentiable everywhere, with gradient

∇f∗(y) = argmax
x

(

yTx− f(x)
)

• ∇f∗ is Lipschitz continuous with constant 1/µ

‖∇f∗(y)−∇f∗(y′)‖2 ≤
1

µ
‖y − y′‖2 ∀y, y′
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proof: if f is strongly convex and closed

• yTx− f(x) has a unique maximizer x for every y

• x maximizes yTx− f(x) if and only if y ∈ ∂f(x); from page 8-13

y ∈ ∂f(x) ⇐⇒ x ∈ ∂f∗(y) = {∇f∗(y)}

hence ∇f∗(y) = argmaxx
(

yTx− f(x)
)

• from convexity of f(x)− (µ/2)xTx:

(y − y′)T (x− x′) ≥ µ‖x− x′‖22 if y ∈ ∂f(x), y′ ∈ ∂f(x′)

• this is co-coercivity of ∇f∗ (which implies Lipschitz continuity)

(y − y′)T (∇f∗(y)−∇f∗(y′)) ≥ µ‖∇f∗(y)−∇f∗(y′)‖22
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Equality constraints

minimize f(x)
subject to Ax = b

minimize −f∗(−ATz)− bTz

dual gradient ascent (assuming dom f∗ = Rn):

x̂ = argmin
x

(

f(x) + zTAx
)

, z+ = z + t(Ax̂− b)

• x̂ is a subgradient of f∗ at −ATz (i.e., x̂ ∈ ∂f∗(−ATz))

• b−Ax̂ is a subgradient of bTz + f∗(−ATz) at z

of interest if calculation of x̂ is inexpensive (for example, f is separable)
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Dual decomposition

convex problem with separable objective

minimize f1(x1) + f2(x2)

subject to A1x1 +A2x2 � b

constraint is complicating or coupling constraint

dual problem

maximize −f∗
1 (−AT

1 z)− f∗
2 (−AT

2 z)− bTz
subject to z � 0

can be solved by (sub-)gradient projection if z � 0 is the only constraint
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Dual subgradient projection

subproblem: to calculate f∗
j (−AT

j z) and a (sub-)gradient for it,

minimize (over xj) fj(xj) + zTAjxj

optimal value is f∗
j (−AT

j z); minimizer x̂j is in ∂f∗
j (−AT

j z)

dual subgradient projection method

x̂j = argmin
xj

(

fj(xj) + zTAjxj

)

, j = 1, 2

z+ = (z + t(A1x̂1 +A2x̂2 − b))+

• minimization problems over x1, x2 are independent

• z-update is projected subgradient step (u+ = max{u, 0} elementwise)

Dual decomposition 11-10



Interpretation as price coordination

• p = 2 units in a system; unit j chooses decision variable xj

• constraints are limits on shared resources; zi is price of resource i

• dual update z+i = (zi − tsi)+ depends on slacks s = b−A1x1 −A2x2

– increases price zi if resource is over-utilized (si < 0)
– decreases price zi if resource is under-utilized (si > 0)
– never lets prices get negative

distributed architecture

• central node sets prices z

• peripheral node j sets xj

21
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A1x1

z
A2x2

z
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Quadratic programming example

minimize
r
∑

j=1

(xT
j Pjxj + qTj xj)

subject to Bjxj � dj, j = 1, . . . , r
p
∑

j=1

Ajxj � b

• r = 10, variables xj ∈ R100, 10 coupling constraints (Aj ∈ R10×100)

• Pj ≻ 0; implies dual function has Lipschitz continuous gradient

subproblems: each iteration requires solving 10 decoupled QPs

minimize (over xj) xT
j Pjxj + (qj +AT

j z)
Txj

subject to Bjxj � dj
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gradient projection and fast gradient projection

• fixed step size (equal in the two methods)

• plot shows dual objective gap
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Network utility maximization

network flows

• n flows, with fixed routes, in a network with m links

• variable xj ≥ 0 denotes the rate of flow j

• flow utility is Uj : R → R, concave, increasing

capacity constraints

• traffic yi on link i is sum of flows passing through it

• y = Rx, where R is the routing matrix

Rij =

{

1 flow j passes over link i
0 otherwise

• link capacity constraint: y � c
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Dual network utility maximization problem

maximize
n
∑

j=1

Uj(xj)

subject to Rx � c

a convex problem; dual decomposition gives decentralized method

dual problem

minimize cTz +
n
∑

j=1

(−Uj)
∗(−rTj z)

subject to z � 0

• zi is price (per unit flow) for using link i

• rTj z is the sum of prices along route j (rj is jth column of R)
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(Sub-)gradients of dual function

dual objective

f(z) = cTz +

n
∑

j=1

(−Uj)
∗(−rTj z)

= cTz +

n
∑

j=1

sup
xj

(

Uj(xj)− (rTj z)xj

)

subgradient

c−Rx̂ ∈ ∂f(z) where x̂j = argmax
xj

(

Uj(xj)− (rTj z)xj

)

• if Uj is strictly concave, this is a gradient

• rTj z is the sum of link prices along route j

• c−Rx̂ is vector of link capacity margins for flow x̂
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Dual decomposition algorithm

given initial link price vector z ≻ 0 (e.g., z = 1), repeat:

1. sum link prices along each route: calculate λj = rTj z for j = 1, . . . , n

2. optimize flows (separately) using flow prices

x̂j = argmax
xj

(Uj(xj)− λjxj) , j = 1, . . . , n

3. calculate link capacity margins s = c−Rx̂

4. update link prices using projected (sub-)gradient step with step t

z := (z − ts)+

decentralized:

• to find λj, x̂j source j only needs to know the prices on its route

• to update si, zi, link i only needs to know the flows that pass through it
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Single commodity network flow

network

• connected, directed graph with n links/arcs, m nodes

• node-arc incidence matrix A ∈ Rm×n is

Aij =







1 arc j enters node i
−1 arc j leaves node i
0 otherwise

flow vector and external sources

• variable xj denotes flow (traffic) on arc j

• bi is external demand (or supply) of flow at node i (satisfies 1T b = 0)

• flow conservation: Ax = b
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Network flow optimization problem

minimize φ(x) =
n
∑

j=1

φj(xj)

subject to Ax = b

• φ is a separable sum of convex functions

• dual decomposition yields decentralized solution method

dual problem (aj is jth column of A)

maximize −bTz −
n
∑

j=1

φ∗
j(−aTj z)

• dual variable zi can be interpreted as potential at node i

• yj = −aTj z is the potential difference across arc j

(potential at start node minus potential at end node)
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(Sub-)gradients of dual function

negative dual objective

f(z) = bTz +

n
∑

j=1

φ∗
j(−aTj z)

subgradient

b−Ax̂ ∈ ∂f(z) where x̂j = argmin
(

φj(xj) + (aTj z)xj

)

• this is a gradient if the functions φj are strictly convex

• if φj is differentiable, φ′
j(x̂j) = −aTj z

Dual decomposition 11-20



Dual decomposition network flow algorithm

given initial potential vector z, repeat

1. determine link flows from potential differences y = −ATz

x̂j = argmin
xj

(φj(xj)− yjxj) , j = 1, . . . , n

2. compute flow residual at each node: s := b−Ax̂

3. update node potentials using (sub-)gradient step with step size t

z := z − ts

decentralized:

• flow is calculated from potential difference across arc

• node potential is updated from its own flow surplus
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Electrical network interpretation

network flow optimality conditions (with differentiable φj)

Ax = b, y +ATz = 0, yj = φ′
j(xj), j = 1, . . . , n

network with node incidence matrix A, nonlinear resistors in branches

Kirchhoff current law (KCL): Ax = b

xj is the current flow in branch j; bi is external current extracted at node i

Kirchhoff voltage law (KVL): y +ATz = 0

zj is node potential; yj = −aTj z is jth branch voltage

current-voltage characterics: yj = φ′
j(xj)

for example, φj(xj) = Rjx
2
j/2 for linear resistor Rj

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

flow cost function and conjugate (cj > 0 are link capacities):

φj(xj) =
xj

cj − xj

, φ∗
j(yj) =

{

(√
cjyj − 1

)2
yj > 1/cj

0 yj ≤ 1/cj

(with domφj = [0, cj))

• φj is differentiable except at xj = 0

∂φj(0) = (−∞, 0], φ′
j(xj) =

cj
(cj − xj)2

(0 < xj < cj)

• φ∗
j is differentiable

φ∗
j
′(yj) =

{

0 yj ≤ 1/cj
cj −

√

cj/yj yj > 1/cj
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flow cost function and conjugate (cj = 1)
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