L. Vandenberghe EE236C (Spring 2013-14)

12. Dual proximal gradient method

e proximal gradient method applied to the dual
e examples

e alternating minimization method
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Dual methods

subgradient method: slow, step size selection difficult

gradient method: requires differentiable dual cost function
e often dual cost is not differentiable, or has nontrivial domain

e dual can be smoothed by adding small strongly convex term to primal

augmented Lagrangian method:
e equivalent to gradient ascent on a smoothed dual problem

e however smoothing destroys separable structure

proximal gradient method (this lecture): dual cost split in two terms
e one term is differentiable with Lipschitz continuous gradient

e other term has an inexpensive prox-operator
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Composite structure in the dual

minimize f(z) + g(Ax) maximize —f*(—Alz) — g*(2)

dual has the right structure for the proximal gradient method if

e prox-operator of g (or ¢g*) is cheap (closed form or simple algorithm)

e f is strongly convex (f(z) — (u/2)z!z is convex)

implies f*(—A?2) has Lipschitz continuous gradient (L = || A||3/u):

LAI3
L4

AV f*(=ATu) — AV f*(—ATv)]|, <

lu = vl

because V f* is Lipschitz continuous with constant 1/ (see page 11-6)
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Dual proximal gradient update

2" = prox, . (z + tAV f*(—A"2))

equivalent expression in terms of f:

2" = prox, «(z + tA&) where & = argmin (f(z) + 2 Ax)

x

e if f is separable, calculation of £ decomposes into independent problems
e step size ¢t constant or from backtracking line search

e can use accelerated proximal gradient methods of lecture 7
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Alternating minimization interpretation
Moreau decomposition gives alternate expression for z-update
2t =2+ t(A% —9)

where

>
|

argmin (f(z) + 27 Az)

x

prox,—1,(z/t + AZ)

NadN
I

. A t >
= argmin (g(y) + 2* (A% — y) + §HA33 —yl13)
Y

in each iteration, an alternating minimization of:

e Lagrangian f(z) + g(y) + 21 (Ax — y) over x

e augmented Lagrangian f(x) + g(y) + z* (Az — y) + £|| Az — y||5 over y
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Outline

e proximal gradient method applied to the dual
e examples

e alternating minimization method



Regularized norm approximation

minimize f(z) + ||[Ax — b|| (with f strongly convex)

a special case of page 12-3 with g(y) = ||y — b

N _
g°(2) = { +00  otherwise proxyg.(2) = FPo(z = 1b)
C' is unit norm ball for dual norm || - ||,

dual gradient projection update

& = argmin (f(z) + 2’ Az)

X

2t = Po(z+t(Ad — b))
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Example

p

minimize f(z)+ > || B;x||2 (with f strongly convex)

1=1

p
a special case of page 12-3 with g(y1,...,9p) = D_ ||vi]|2 and
i=1

A=[BF BT ... BT

;1

dual gradient projection update

p
T = argmin (f(z)+ (Z Blz)*t
v i=1

C; is unit Euclidean norm ball in R™, if B, € R™*"

Dual proximal gradient method

)

» P

12-7



numerical example

1
f@) = Iz — di

with randomly generated C' € R?000x1000 " B = RI0X1000 0y — 500

— gradient
- - FISTA

f* — dual objective
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Minimization over intersection of convex sets

minimize  f(x)
subjectto zx e CinN---NC,

o f strongly convex; e.g., f(x) = ||z — a||3 for projecting a on intersection
e sets (; are closed, convex, and easy to project onto

e this is a special case of page 12-3 with g a sum of indicators
91y ym) = Ic,(y1) + - + I, (Ym), A:[[ T

dual proximal gradient update

& = argmin (f(z)+ (2 +- -+ zm)' 2)

x

27 = i+ ti—tPo(z/t+1), i=1,...,m

1

Dual proximal gradient method 12-9



Decomposition of separable problems

minimize Y fi(z;) + Y gi(Aax1 + - + Ainay)
j=1 i=1

each f; is strongly convex; g; has inexpensive prox-operator

dual proximal gradient update

m
T; = argmin (fj(xj)—FszAija:j), j=1,....n
i i=1
n
zj = proxtg;(zi+tZAij£j), 1=1,...,m
j=1
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Outline

e proximal gradient method applied to the dual
e examples

e alternating minimization method



Primal problem with separable structure

composite problem with separable f
minimize  fi(z1) + fa(x2) + g(A1z1 + A2x2)

we assume f; strongly convex, but not necessarily f5

dual problem

maximize —f}(—Ajz) — f3(—A32) — g"(2)

e first term is differentiable with Lipschitz continuous gradient

e prox-operator h(z) = f5(—ALz) + ¢g*(2) was discussed on page 10-10
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Dual proximal gradient method
2T = prox,, (z + tAVfi(—A] 2))

e equivalent form using fi:

2T = prox,, (2 + tA1%,) where &; = argmin (fi(z1) + 2% A121)

a1
e from page 10-10, prox-operator of h(z) = fi3(—ALz) + g*(2) is given by
prox,, (w) = w + t(AxZ2 — )

where I, ¥ minimize an augmented Lagrangian

. . '
(&2, ) = argmin (fa(x2) + g(y) + 5 |Aszy — y + w/t]|3)

2,y
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Alternating minimization method

starting at some initial z, repeat the following iteration

1. minimize the Lagrangian over xy:

1 = argmin (f1(z1) + ZTA1£E1)
x1

2. minimize the augmented Lagrangian over o, §:

A : t .
(22, 9) = argmin (fa(x2) + g(y) + §HA15L‘1 + Aoy — y + 2/t]|3)

L2,y

3. update dual variable:

2T =2+ t(A131 + Asde — )
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Comparison with augmented Lagrangian method

augmented Lagrangian method (for problem on page 12-11)

1. compute minimizer 21, T2, y of the augmented Lagrangian
fi(z1) + fa(z2) + 9(y) + % | Ay + Agza — y + 2/t
2. update dual variable:
2t =2+ t(A12 + Agdg — 1))

differences with alternating minimization

e more general: AL method does not require strong convexity of f;

e quadratic penalty in step 1 destroys separability
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