L. Vandenberghe EE236C (Spring 2013-14)

12. Dual proximal gradient method

- proximal gradient method applied to the dual
- examples
- alternating minimization method

Dual methods

subgradient method: slow, step size selection difficult

gradient method: requires differentiable dual cost function

- often dual cost is not differentiable, or has nontrivial domain
- dual can be smoothed by adding small strongly convex term to primal

augmented Lagrangian method:

- equivalent to gradient ascent on a smoothed dual problem
- however smoothing destroys separable structure

proximal gradient method (this lecture): dual cost split in two terms

- one term is differentiable with Lipschitz continuous gradient
- other term has an inexpensive prox-operator

Composite structure in the dual

$$\label{eq:minimize} \mbox{minimize} \quad f(x) + g(Ax) \qquad \qquad \mbox{maximize} \quad -f^*(-A^Tz) - g^*(z)$$

dual has the right structure for the proximal gradient method if

- prox-operator of g (or g^*) is cheap (closed form or simple algorithm)
- f is strongly convex $(f(x)-(\mu/2)x^Tx$ is convex) implies $f^*(-A^Tz)$ has Lipschitz continuous gradient $(L=\|A\|_2^2/\mu)$:

$$||A\nabla f^*(-A^T u) - A\nabla f^*(-A^T v)||_2 \le \frac{||A||_2^2}{\mu} ||u - v||_2$$

because ∇f^* is Lipschitz continuous with constant $1/\mu$ (see page 11-6)

Dual proximal gradient update

$$z^{+} = \operatorname{prox}_{tq^{*}} \left(z + tA\nabla f^{*}(-A^{T}z) \right)$$

equivalent expression in terms of f:

$$z^+ = \operatorname{prox}_{tg^*}(z + tA\hat{x})$$
 where $\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^T A x)$

- ullet if f is separable, calculation of \hat{x} decomposes into independent problems
- ullet step size t constant or from backtracking line search
- can use accelerated proximal gradient methods of lecture 7

Alternating minimization interpretation

Moreau decomposition gives alternate expression for z-update

$$z^+ = z + t(A\hat{x} - \hat{y})$$

where

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

 $\hat{y} = \underset{y}{\operatorname{prox}_{t^{-1}g}} (z/t + A \hat{x})$

 $= \underset{y}{\operatorname{argmin}} (g(y) + z^{T} (A \hat{x} - y) + \frac{t}{2} ||A \hat{x} - y||_{2}^{2})$

in each iteration, an alternating minimization of:

- Lagrangian $f(x) + g(y) + z^T(Ax y)$ over x
- \bullet augmented Lagrangian $f(x) + g(y) + z^T (Ax y) + \frac{t}{2} \|Ax y\|_2^2$ over y

Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method

Regularized norm approximation

minimize f(x) + ||Ax - b|| (with f strongly convex)

a special case of page 12-3 with $g(y) = \|y - b\|$

$$g^*(z) = \begin{cases} b^T z & ||z||_* \le 1 \\ +\infty & \text{otherwise} \end{cases} \quad \text{prox}_{tg*}(z) = P_C(z - tb)$$

C is unit norm ball for dual norm $\|\cdot\|_*$

dual gradient projection update

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + z^{T} A x)$$

$$z^{+} = P_{C}(z + t(A\hat{x} - b))$$

Example

minimize
$$f(x) + \sum_{i=1}^{p} ||B_i x||_2$$
 (with f strongly convex)

a special case of page 12-3 with $g(y_1,\ldots,y_p)=\sum\limits_{i=1}^p\|y_i\|_2$ and

$$A = \begin{bmatrix} B_1^T & B_2^T & \cdots & B_p^T \end{bmatrix}^T$$

dual gradient projection update

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + (\sum_{i=1}^{p} B_i^T z_i)^T x)$$

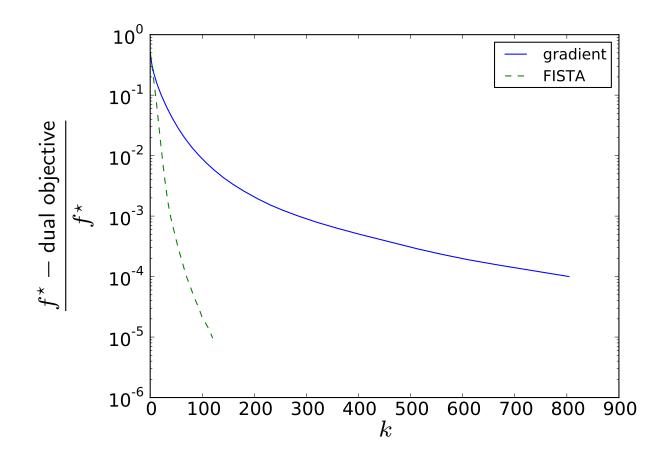
$$z_i^+ = P_{C_i} (z_i + t B_i \hat{x}), \quad i = 1, \dots, p$$

 C_i is unit Euclidean norm ball in \mathbf{R}^{m_i} , if $B_i \in \mathbf{R}^{m_i \times n}$

numerical example

$$f(x) = \frac{1}{2} ||Cx - d||_2^2$$

with randomly generated $C \in \mathbf{R}^{2000 \times 1000}$, $B_i \in \mathbf{R}^{10 \times 1000}$, p = 500



Minimization over intersection of convex sets

minimize
$$f(x)$$
 subject to $x \in C_1 \cap \cdots \cap C_m$

- f strongly convex; e.g., $f(x) = ||x a||_2^2$ for projecting a on intersection
- ullet sets C_i are closed, convex, and easy to project onto
- ullet this is a special case of page 12-3 with g a sum of indicators

$$g(y_1, \dots, y_m) = I_{C_1}(y_1) + \dots + I_{C_m}(y_m), \qquad A = \begin{bmatrix} I & \dots & I \end{bmatrix}^T$$

dual proximal gradient update

$$\hat{x} = \underset{x}{\operatorname{argmin}} (f(x) + (z_i + \dots + z_m)^T x)$$

$$z_i^+ = z_i + t\hat{x} - tP_{C_i}(z_i/t + \hat{x}), \quad i = 1, \dots, m$$

Decomposition of separable problems

minimize
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \dots + A_{in}x_n)$$

each f_i is strongly convex; g_i has inexpensive prox-operator

dual proximal gradient update

$$\hat{x}_j = \underset{x_j}{\operatorname{argmin}} (f_j(x_j) + \sum_{i=1}^m z_i^T A_{ij} x_j), \quad j = 1, \dots, n$$

$$z_i^+ = \operatorname{prox}_{tg_i^*}(z_i + t \sum_{j=1}^n A_{ij}\hat{x}_j), \quad i = 1, \dots, m$$

Outline

- proximal gradient method applied to the dual
- examples
- alternating minimization method

Primal problem with separable structure

composite problem with separable f

minimize
$$f_1(x_1) + f_2(x_2) + g(A_1x_1 + A_2x_2)$$

we assume f_1 strongly convex, but not necessarily f_2

dual problem

maximize
$$-f_1^*(-A_1^Tz) - f_2^*(-A_2^Tz) - g^*(z)$$

- first term is differentiable with Lipschitz continuous gradient
- ullet prox-operator $h(z)=f_2^*(-A_2^Tz)+g^*(z)$ was discussed on page 10-10

Dual proximal gradient method

$$z^{+} = \operatorname{prox}_{th}(z + tA_1 \nabla f_1^*(-A_1^T z))$$

• equivalent form using f_1 :

$$z^{+} = \operatorname{prox}_{th}(z + tA_1\hat{x}_1)$$
 where $\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T A_1 x_1)$

ullet from page 10-10, prox-operator of $h(z)=f_2^*(-A_2^Tz)+g^*(z)$ is given by

$$\operatorname{prox}_{th}(w) = w + t(A_2\hat{x}_2 - \hat{y})$$

where \hat{x}_2 , \hat{y} minimize an augmented Lagrangian

$$(\hat{x}_2, \hat{y}) = \underset{x_2, y}{\operatorname{argmin}} (f_2(x_2) + g(y) + \frac{t}{2} ||A_2x_2 - y + w/t||_2^2)$$

Alternating minimization method

starting at some initial z, repeat the following iteration

1. minimize the Lagrangian over x_1 :

$$\hat{x}_1 = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T A_1 x_1)$$

2. minimize the augmented Lagrangian over \hat{x}_2 , \hat{y} :

$$(\hat{x}_2, \hat{y}) = \underset{x_2, y}{\operatorname{argmin}} (f_2(x_2) + g(y) + \frac{t}{2} ||A_1 \hat{x}_1 + A_2 x_2 - y + z/t||_2^2)$$

3. update dual variable:

$$z^{+} = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - \hat{y})$$

Comparison with augmented Lagrangian method

augmented Lagrangian method (for problem on page 12-11)

1. compute minimizer \hat{x}_1 , \hat{x}_2 , \hat{y} of the augmented Lagrangian

$$f_1(x_1) + f_2(x_2) + g(y) + \frac{t}{2} \|A_1x_1 + A_2x_2 - y + z/t\|_2^2$$

2. update dual variable:

$$z^{+} = z + t(A_1\hat{x}_1 + A_2\hat{x}_2 - \hat{y})$$

differences with alternating minimization

- ullet more general: AL method does not require strong convexity of f_1
- quadratic penalty in step 1 destroys separability

References

alternating minimization method

- P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control and Optimization (1991)
- P. Tseng, Further applications of a splitting algorithm to decomposition in variational inequalities and convex programming, Mathematical Programming (1990)