7. Fast proximal gradient methods

- fast proximal gradient method (FISTA)
- FISTA with line search
- FISTA as descent method
- Nesterov's second method

Fast (proximal) gradient methods

- Nesterov (1983, 1988, 2005): three gradient projection methods with $1 / k^{2}$ convergence rate
- Beck \& Teboulle (2008): FISTA, a proximal gradient version of Nesterov's 1983 method
- Nesterov (2004 book), Tseng (2008): overview and unified analysis of fast gradient methods
- several recent variations and extensions
this lecture:
FISTA and Nesterov's 2nd method (1988) as presented by Tseng

Outline

- fast proximal gradient method (FISTA)
- FISTA with line search
- FISTA as descent method
- Nesterov's second method

FISTA (basic version)

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex, differentiable, with $\operatorname{dom} g=\mathbf{R}^{n}$
- h closed, convex, with inexpensive prox $_{t h}$ operator
algorithm: choose any $x^{(0)}=x^{(-1)}$; for $k \geq 1$, repeat the steps

$$
\begin{aligned}
y & =x^{(k-1)}+\frac{k-2}{k+1}\left(x^{(k-1)}-x^{(k-2)}\right) \\
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y-t_{k} \nabla g(y)\right)
\end{aligned}
$$

- step size t_{k} fixed or determined by line search
- acronym stands for 'Fast Iterative Shrinkage-Thresholding Algorithm'

Interpretation

- first iteration $(k=1)$ is a proximal gradient step at $y=x^{(0)}$
- next iterations are proximal gradient steps at extrapolated points y

note: $x^{(k)}$ is feasible (in dom h); y may be outside dom h

Example

$$
\operatorname{minimize} \quad \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x+b_{i}\right)
$$

randomly generated data with $m=2000, n=1000$, same fixed step size

another instance

FISTA is not a descent method

Convergence of FISTA

assumptions

- g convex with $\operatorname{dom} g=\mathbf{R}^{n} ; \nabla g$ Lipschitz continuous with constant L :

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- h is closed and convex (so that $\operatorname{prox}_{t h}(u)$ is well defined)
- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)
convergence result: $f\left(x^{(k)}\right)-f^{\star}$ decreases at least as fast as $1 / k^{2}$
- with fixed step size $t_{k}=1 / L$
- with suitable line search

Reformulation of FISTA

define $\theta_{k}=2 /(k+1)$ and introduce an intermediate variable $v^{(k)}$
algorithm: choose $x^{(0)}=v^{(0)}$; for $k \geq 1$, repeat the steps

$$
\begin{aligned}
y & =\left(1-\theta_{k}\right) x^{(k-1)}+\theta_{k} v^{(k-1)} \\
x^{(k)} & =\operatorname{prox}_{t_{k} h}\left(y-t_{k} \nabla g(y)\right) \\
v^{(k)} & =x^{(k-1)}+\frac{1}{\theta_{k}}\left(x^{(k)}-x^{(k-1)}\right)
\end{aligned}
$$

substituting expression for $v^{(k)}$ in formula for y gives FISTA of page 7-3

Important inequalities

choice of θ_{k} : the sequence $\theta_{k}=2 /(k+1)$ satisfies $\theta_{1}=1$ and

$$
\frac{1-\theta_{k}}{\theta_{k}^{2}} \leq \frac{1}{\theta_{k-1}^{2}}, \quad k \geq 2
$$

upper bound on g from Lipschitz property (page 1-12)

$$
g(u) \leq g(z)+\nabla g(z)^{T}(u-z)+\frac{L}{2}\|u-z\|_{2}^{2} \quad \forall u, z
$$

upper bound on h from definition of prox-operator (page 6-7)

$$
h(u) \leq h(z)+\frac{1}{t}(w-u)^{T}(u-z) \quad \forall w, u=\operatorname{prox}_{t h}(w), z
$$

Progress in one iteration

define $x=x^{(i-1)}, x^{+}=x^{(i)}, v=v^{(i-1)}, v^{+}=v^{(i)}, t=t_{i}, \theta=\theta_{i}$

- upper bound from Lipschitz property: if $0<t \leq 1 / L$,

$$
\begin{equation*}
g\left(x^{+}\right) \leq g(y)+\nabla g(y)^{T}\left(x^{+}-y\right)+\frac{1}{2 t}\left\|x^{+}-y\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

- upper bound from definition of prox-operator:

$$
h\left(x^{+}\right) \leq h(z)+\nabla g(y)^{T}\left(z-x^{+}\right)+\frac{1}{t}\left(x^{+}-y\right)^{T}\left(z-x^{+}\right) \quad \forall z
$$

- add the upper bounds and use convexity of g

$$
f\left(x^{+}\right) \leq f(z)+\frac{1}{t}\left(x^{+}-y\right)^{T}\left(z-x^{+}\right)+\frac{1}{2 t}\left\|x^{+}-y\right\|_{2}^{2} \quad \forall z
$$

- make convex combination of upper bounds for $z=x$ and $z=x^{\star}$

$$
\begin{aligned}
& f\left(x^{+}\right)-f^{\star}-(1-\theta)\left(f(x)-f^{\star}\right) \\
& \quad=f\left(x^{+}\right)-\theta f^{\star}-(1-\theta) f(x) \\
& \quad \leq \frac{1}{t}\left(x^{+}-y\right)^{T}\left(\theta x^{\star}+(1-\theta) x-x^{+}\right)+\frac{1}{2 t}\left\|x^{+}-y\right\|_{2}^{2} \\
& \quad=\frac{1}{2 t}\left(\left\|y-(1-\theta) x-\theta x^{\star}\right\|_{2}^{2}-\left\|x^{+}-(1-\theta) x-\theta x^{\star}\right\|_{2}^{2}\right) \\
& \quad=\frac{\theta^{2}}{2 t}\left(\left\|v-x^{\star}\right\|_{2}^{2}-\left\|v^{+}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

conclusion: if the inequality (1) holds at iteration i, then

$$
\begin{align*}
& \frac{t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i)}-x^{\star}\right\|_{2}^{2} \\
& \quad \leq \frac{\left(1-\theta_{i}\right) t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i-1}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i-1)}-x^{\star}\right\|_{2}^{2} \tag{2}
\end{align*}
$$

Analysis for fixed step size

take $t_{i}=t=1 / L$ and apply (2) recursively, using $\left(1-\theta_{i}\right) / \theta_{i}^{2} \leq 1 / \theta_{i-1}^{2}$:

$$
\begin{aligned}
\frac{t}{\theta_{k}^{2}} & \left(f\left(x^{(k)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(k)}-x^{\star}\right\|_{2}^{2} \\
& \leq \frac{\left(1-\theta_{1}\right) t}{\theta_{1}^{2}}\left(f\left(x^{(0)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(0)}-x^{\star}\right\|_{2}^{2} \\
& =\frac{1}{2}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

therefore,

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{\theta_{k}^{2}}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}=\frac{2 L}{(k+1)^{2}}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: reaches $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ after $O(1 / \sqrt{\epsilon})$ iterations

Example: quadratic program with box constraints

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} A x+b^{T} x \\
\text { subject to } & 0 \preceq x \preceq \mathbf{1}
\end{array}
$$

$n=3000 ;$ fixed step size $t=1 / \lambda_{\max }(A)$

1-norm regularized least-squares

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; step $t_{k}=1 / L$ with $L=\lambda_{\max }\left(A^{T} A\right)$

Outline

- fast proximal gradient method (FISTA)
- FISTA with line search
- FISTA as descent method
- Nesterov's second method

Key steps in the analysis of FISTA

- the starting point (page 7-10) is the inequality

$$
\begin{equation*}
g\left(x^{+}\right) \leq g(y)+\nabla g(y)^{T}\left(x^{+}-y\right)+\frac{1}{2 t}\left\|x^{+}-y\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

this inequality is known to hold for $0<t \leq 1 / L$

- if (1) holds, then the progress made in iteration i is bounded by

$$
\begin{align*}
& \frac{t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i)}-x^{\star}\right\|_{2}^{2} \\
& \quad \leq \frac{\left(1-\theta_{i}\right) t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i-1}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i-1)}-x^{\star}\right\|_{2}^{2} \tag{2}
\end{align*}
$$

- to combine these inequalities recursively, we need

$$
\begin{equation*}
\frac{\left(1-\theta_{i}\right) t_{i}}{\theta_{i}^{2}} \leq \frac{t_{i-1}}{\theta_{i-1}^{2}} \quad(i \geq 2) \tag{3}
\end{equation*}
$$

- if $\theta_{1}=1$, combining the inequalities (2) from $i=1$ to k gives the bound

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{\theta_{k}^{2}}{2 t_{k}}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: rate $1 / k^{2}$ convergence if (1) and (3) hold with

$$
\frac{\theta_{k}^{2}}{t_{k}}=O\left(\frac{1}{k^{2}}\right)
$$

FISTA with fixed step size

$$
t_{k}=\frac{1}{L}, \quad \theta_{k}=\frac{2}{k+1}
$$

these values satisfy (1) and (3) with

$$
\frac{\theta_{k}^{2}}{t_{k}}=\frac{4 L}{(k+1)^{2}}
$$

FISTA with line search (method 1)

replace update of x in iteration k (page 7-8) with

$$
\begin{aligned}
& \left.t:=t_{k-1} \quad \text { (define } t_{0}=\hat{t}>0\right) \\
& x:=\operatorname{prox}_{t h}(y-t \nabla g(y)) \\
& \text { while } g(x)>g(y)+\nabla g(y)^{T}(x-y)+\frac{1}{2 t}\|x-y\|_{2}^{2} \\
& \quad t:=\beta t \\
& \quad x:=\operatorname{prox}_{t h}(y-t \nabla g(y)) \\
& \text { end }
\end{aligned}
$$

- inequality (1) holds trivially, by the backtracking exit condition
- inequality (3) holds with $\theta_{k}=2 /(k+1)$ because $t_{k} \leq t_{k-1}$
- Lipschitz continuity of ∇g guarantees $t_{k} \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$
- preserves $1 / k^{2}$ convergence rate because $\theta_{k}^{2} / t_{k}=O\left(1 / k^{2}\right)$:

$$
\frac{\theta_{k}^{2}}{t_{k}} \leq \frac{4}{(k+1)^{2} t_{\min }}
$$

FISTA with line search (method 2)

replace update of y and x in iteration k (page 7-8) with

$$
\begin{aligned}
& t:=\hat{t}>0 \\
& \theta:={\text { positive root of } t_{k-1} \theta^{2}=t \theta_{k-1}^{2}(1-\theta)}_{y}^{y}:=(1-\theta) x^{(k-1)}+\theta v^{(k-1)} \\
& x:=\operatorname{prox}_{t h}(y-t \nabla g(y)) \\
& \text { while } g(x)>g(y)+\nabla g(y)^{T}(x-y)+\frac{1}{2 t}\|x-y\|_{2}^{2} \\
& \qquad t:=\beta t \\
& \quad \theta:=\text { positive root of } t_{k-1} \theta^{2}=t \theta_{k-1}^{2}(1-\theta) \\
& \quad y:=(1-\theta) x^{(k-1)}+\theta v^{(k-1)} \\
& \quad x:=\operatorname{prox}_{t h}(y-t \nabla g(y)) \\
& \text { end }
\end{aligned}
$$

assume $t_{0}=0$ in the first iteration $(k=1)$, i.e., take $\theta_{1}=1, y=x^{(0)}$

discussion

- inequality (1) holds trivially, by the backtracking exit condition
- inequality (3) holds trivially, by construction of θ_{k}
- Lipschitz continuity of ∇g guarantees $t_{k} \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$
- θ_{i} is defined as the positive root of $\theta_{i}^{2} / t_{i}=\left(1-\theta_{i}\right) \theta_{i-1}^{2} / t_{i-1}$; hence

$$
\frac{\sqrt{t_{i-1}}}{\theta_{i-1}}=\frac{\sqrt{\left(1-\theta_{i}\right) t_{i}}}{\theta_{i}} \leq \frac{\sqrt{t_{i}}}{\theta_{i}}-\frac{\sqrt{t_{i}}}{2}
$$

combine inequalities from $i=2$ to k to get $\sqrt{t_{1}} \leq \frac{\sqrt{t_{k}}}{\theta_{k}}-\frac{1}{2} \sum_{i=2}^{k} \sqrt{t_{i}}$

- rearranging shows that $\theta_{k}^{2} / t_{k}=O\left(1 / k^{2}\right)$:

$$
\frac{\theta_{k}^{2}}{t_{k}} \leq \frac{1}{\left(\sqrt{t_{1}}+\frac{1}{2} \sum_{i=2}^{k} \sqrt{t_{i}}\right)^{2}} \leq \frac{4}{(k+1)^{2} t_{\min }}
$$

Comparison of line search methods

method 1

- uses nonincreasing step sizes (enforces $t_{k} \leq t_{k-1}$)
- one evaluation of $g(x)$, one prox $_{t h}$ evaluation per line search iteration

method 2

- allows non-monotonic step sizes
- one evaluation of $g(x)$, one evaluation of $g(y), \nabla g(y)$, one evaluation of prox $_{t h}$ per line search iteration
the two strategies can be combined and extended in various ways

Outline

- fast proximal gradient method (FISTA)
- FISTA with line search
- FISTA as descent method
- Nesterov's second method

Descent version of FISTA

choose $x^{(0)}=v^{(0)}$; for $k \geq 1$, repeat the steps

$$
\begin{aligned}
y & =\left(1-\theta_{k}\right) x^{(k-1)}+\theta_{k} v^{(k-1)} \\
u & =\operatorname{prox}_{t_{k} h}\left(y-t_{k} \nabla g(y)\right) \\
x^{(k)} & = \begin{cases}u & f(u) \leq f\left(x^{(k-1)}\right) \\
x^{(k-1)} & \text { otherwise }\end{cases} \\
v^{(k)} & =x^{(k-1)}+\frac{1}{\theta_{k}}\left(u-x^{(k-1)}\right)
\end{aligned}
$$

- step 3 implies $f\left(x^{(k)}\right) \leq f\left(x^{(k-1)}\right)$
- use $\theta_{k}=2 /(k+1)$ and $t_{k}=1 / L$, or one of the line search methods
- same iteration complexity as original FISTA
- changes on page 7-10: replace x^{+}with u and use $f\left(x^{+}\right) \leq f(u)$

Example

(from page 7-6)

Outline

- fast proximal gradient method (FISTA)
- line search strategies
- enforcing descent
- Nesterov's second method

Nesterov's second method

algorithm: choose $x^{(0)}=v^{(0)}$; for $k \geq 1$, repeat the steps

$$
\begin{aligned}
y & =\left(1-\theta_{k}\right) x^{(k-1)}+\theta_{k} v^{(k-1)} \\
v^{(k)} & =\operatorname{prox}_{\left(t_{k} / \theta_{k}\right) h}\left(v^{(k-1)}-\frac{t_{k}}{\theta_{k}} \nabla g(y)\right) \\
x^{(k)} & =\left(1-\theta_{k}\right) x^{(k-1)}+\theta_{k} v^{(k)}
\end{aligned}
$$

- use $\theta_{k}=2 /(k+1)$ and $t_{k}=1 / L$, or one of the line search methods
- identical to FISTA if $h(x)=0$
- unlike in FISTA, y is feasible (in $\operatorname{dom} h$) if we take $x^{(0)} \in \operatorname{dom} h$

Convergence of Nesterov's second method

assumptions

- g convex; ∇g is Lipschitz continuous on $\operatorname{dom} h \subseteq \operatorname{dom} g$

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y \in \operatorname{dom} h
$$

- h is closed and convex (so that $\operatorname{prox}_{t h}(u)$ is well defined)
- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique)
convergence result: $f\left(x^{(k)}\right)-f^{\star}$ decreases at least as fast as $1 / k^{2}$
- with fixed step size $t_{k}=1 / L$
- with suitable line search

Analysis of one iteration

define $x=x^{(i-1)}, x^{+}=x^{(i)}, v=v^{(i-1)}, v^{+}=v^{(i)}, t=t_{i}, \theta=\theta_{i}$

- from Lipschitz property if $0<t \leq 1 / L$

$$
g\left(x^{+}\right) \leq g(y)+\nabla g(y)^{T}\left(x^{+}-y\right)+\frac{1}{2 t}\left\|x^{+}-y\right\|_{2}^{2}
$$

- plug in $x^{+}=(1-\theta) x+\theta v^{+}$and $x^{+}-y=\theta\left(v^{+}-v\right)$

$$
g\left(x^{+}\right) \leq g(y)+\nabla g(y)^{T}\left((1-\theta) x+\theta v^{+}-y\right)+\frac{\theta^{2}}{2 t}\left\|v^{+}-v\right\|_{2}^{2}
$$

- from convexity of g, h

$$
\begin{aligned}
g\left(x^{+}\right) & \leq(1-\theta) g(x)+\theta\left(g(y)+\nabla g(y)^{T}\left(v^{+}-y\right)\right)+\frac{\theta^{2}}{2 t}\left\|v^{+}-v\right\|_{2}^{2} \\
h\left(x^{+}\right) & \leq(1-\theta) h(x)+\theta h\left(v^{+}\right)
\end{aligned}
$$

- upper bound on h from p. 7-9 (with $u=v^{+}, w=v-(t / \theta) \nabla g(y)$)

$$
h\left(v^{+}\right) \leq h(z)+\nabla g(y)^{T}\left(z-v^{+}\right)-\frac{\theta}{t}\left(v^{+}-v\right)^{T}\left(v^{+}-z\right) \quad \forall z
$$

- combine the upper bounds on $g\left(x^{+}\right), h\left(x^{+}\right), h\left(v^{+}\right)$with $z=x^{\star}$

$$
\begin{aligned}
f\left(x^{+}\right) & \leq(1-\theta) f(x)+\theta f^{\star}-\frac{\theta^{2}}{t}\left(v^{+}-v\right)^{T}\left(v^{+}-x^{\star}\right)+\frac{\theta^{2}}{2 t}\left\|v^{+}-v\right\|_{2}^{2} \\
& =(1-\theta) f(x)+\theta f^{\star}+\frac{\theta^{2}}{2 t}\left(\left\|v-x^{\star}\right\|_{2}^{2}-\left\|v^{+}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

this is identical to the final inequality (2) in the analysis of FISTA on p.7-11

$$
\begin{aligned}
& \frac{t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i)}\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i)}-x^{\star}\right\|_{2}^{2} \\
& \left.\quad \leq \frac{\left(1-\theta_{i}\right) t_{i}}{\theta_{i}^{2}}\left(f\left(x^{(i-1}\right)\right)-f^{\star}\right)+\frac{1}{2}\left\|v^{(i-1)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

References

surveys of fast gradient methods

- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004)
- P. Tseng, On accelerated proximal gradient methods for convex-concave optimization (2008)

FISTA

- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. on Imaging Sciences (2009)
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal recovery, in: Y. Eldar and D. Palomar (Eds.), Convex Optimization in Signal Processing and Communications (2009)

line search strategies

- FISTA papers by Beck and Teboulle
- D. Goldfarb and K. Scheinberg, Fast first-order methods for composite convex optimization with line search (2011)
- Yu. Nesterov, Gradient methods for minimizing composite objective function (2007)
- O. Güler, New proximal point algorithms for convex minimization, SIOPT (1992)

Nesterov's third method (not covered in this lecture)

- Yu. Nesterov, Smooth minimization of non-smooth functions, Mathematical Programming (2005)
- S. Becker, J. Bobin, E.J. Candès, NESTA: a fast and accurate first-order method for sparse recovery, SIAM J. Imaging Sciences (2011)

