L. Vandenberghe EE236C (Spring 2013-14)

7. Fast proximal gradient methods

e fast proximal gradient method (FISTA)
e FISTA with line search
e FISTA as descent method

e Nesterov's second method
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Fast (proximal) gradient methods

e Nesterov (1983, 1988, 2005): three gradient projection methods with
1/k? convergence rate

e Beck & Teboulle (2008): FISTA, a proximal gradient version of
Nesterov's 1983 method

e Nesterov (2004 book), Tseng (2008): overview and unified analysis of
fast gradient methods

e several recent variations and extensions

this lecture:

FISTA and Nesterov's 2nd method (1988) as presented by Tseng
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Outline

fast proximal gradient method (FISTA)
FISTA with line search

FISTA as descent method

Nesterov's second method



FISTA (basic version)

minimize f(x) = g(x) + h(x)

e ¢ convex, differentiable, with dom g = R"

e h closed, convex, with inexpensive prox,, operator

algorithm: choose any (9 = z(=1): for k > 1, repeat the steps

k—2
y = atkD gy k—ﬂ(x(k_l) _ g (2))

™ = prox, , (y — teVy(y))

e step size tj fixed or determined by line search

e acronym stands for ‘Fast lterative Shrinkage-Thresholding Algorithm’
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Interpretation

e first iteration (k = 1) is a proximal gradient step at y = z(¥)

e next iterations are proximal gradient steps at extrapolated points y

2 ) = prox, ;, (y — t:Vg(y))

4 (k=2) (k1) Y

note: z(*) is feasible (in dom h); ¥ may be outside dom h
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Example

minimize log >_ exp(alx + b;)
—1

1=

randomly generated data with m = 2000, n = 1000, same fixed step size

— gradient
- - FISTA

f®) — f*
|

-6 ‘ ‘ ‘
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another instance

gradient
FISTA

x
S
|

=
\g/ \
“~|  10%

107

-6 ‘
10 g 50

FISTA is not a descent method
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Convergence of FISTA

assumptions

e ¢ convex with dom g = R"™; Vg Lipschitz continuous with constant L:

IVg(z) —Vyg(y)lls < L||lz—yll2  Vz,y

e h is closed and convex (so that prox,,(u) is well defined)

e optimal value f* is finite and attained at x* (not necessarily unique)

convergence result: f(2(®)) — f* decreases at least as fast as 1/k?

e with fixed step size t;, = 1/L

e with suitable line search
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Reformulation of FISTA

define 9, = 2/(k + 1) and introduce an intermediate variable v(*¥)

algorithm: choose (9 = v(9): for k > 1, repeat the steps

y = (1—0p)2" Y 4 gpo-b
™ = prox, , (y — t,Vy(y))
RO CC(k—1>+9i(g,;<1~c>_xuc—l))

k

substituting expression for v(*) in formula for y gives FISTA of page 7-3
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Important inequalities

choice of 0;: the sequence 0, = 2/(k + 1) satisfies ; = 1 and

10, 1
< : >
O~ 0

upper bound on g from Lipschitz property (page 1-12)

o(u) < 9(2) + Vg(=) (u—2)+ Slu—2lf Va2

upper bound on h from definition of prox-operator (page 6-7)

1

h(u) < h(z) + Z(w —u)(u— 2) Vw, u = prox,,(w), z
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Progress in one iteration
define x = 201 2+ =20 =01 yT =@ t=1¢, 6 =06,

e upper bound from Lipschitz property: if 0 <t < 1/L,
1
9(z") < g(y) + V()" (=7 =) + llz" —yl; (1)

e upper bound from definition of prox-operator:

h(z®) < h(=) + Vo(u)T(z —a*) + (" )T (z — o) V2

e add the upper bounds and use convexity of g

Fa*) < f2) + 4@ — ) (= a) + ol — gl Vs
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e make convex combination of upper bounds for z = x and z = z*

f@T) = =1 =0)(f(z) - )
= flx)—0f —(1—-0)f(x)
< @ -yt 0+ (1 -0z —aT) + l||5’f+ — s

1
= (||y—(1—9):c—9x*\|2— |zt — (1 —0)z — Oz~ Hg)

@2
= o (lo=a"15 = [lo* = =*]3)

conclusion: if the inequality (1) holds at iteration 4, then

1 .
g2 (P =) + 5l )

— 0;)t - .
< L0 (o p) s lpv—orp @

)
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Analysis for fixed step size

take t; =t = 1/L and apply (2) recursively, using (1 —6;)/6%? < 1/6%_

t * ]‘ *
gz (P = 1)+ 5l — o
(1—61)t

<
— 2
(91

(£~ 1) + 5l — 273

1 *
— 512 - 2"

therefore,

fa®) — <2k

conclusion: reaches f(xz®)) — f* < € after O(1/\/€) iterations
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Example: quadratic program with box constraints

minimize (1/2)z? Az + bz
subjectto 0=z =<1

— gradient

0 - - FISTA

(F@®) — /1]

n = 3000; fixed step size t = 1/Apax(A)
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1-norm regularized least-squares

1
minimize §|\Aa: — b3 + ||zl

(f(@®y — )/ f*

— gradient
- - FISTA

20 40 60 80 100

randomly generated A € R*%%9*19%0: step ¢, = 1/L with L = A\pax(AT A)
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Outline

fast proximal gradient method (FISTA)
FISTA with line search

FISTA as descent method

Nesterov's second method



Key steps in the analysis of FISTA

e the starting point (page 7-10) is the inequality

1
9(z7) < g(y) + Va(y)" («7 —y) + 2" =yl (1)
this inequality is known to hold for 0 <t < 1/L

e if (1) holds, then the progress made in iteration ¢ is bounded by

t; : 1 .
a2 (i) _ p* - (¢) %2
72 (@) = 1)+ 31 — 2|
1 —0,)t; i R e .
< W (patny — p) 4 O -3 (2)

e to combine these inequalities recursively, we need

ti—1

(1 . fi)ti <5 (i > 2) (3)
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e if 61 = 1, combining the inequalities (2) from ¢ = 1 to k gives the bound

0;

fa®) = fr < F 2 — 2|3

- 2t

conclusion: rate 1/k* convergence if (1) and (3) hold with

07 1
7k — O(=
tr (kQ)
FISTA with fixed step size
1 2
tr = — O, = ——
k=T ES L

these values satisfy (1) and (3) with

2 4L
tk_(k}—f—l)Q
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FISTA with line search (method 1)

replace update of z in iteration k (page 7-8) with

t:=t,_1 (definetg =1 > 0)

T := prox,,(y — tVg(y))

while g(z) > g(y) + Vg(y)T (z — y) + % /lz — y|I3
t:= pt

T 1= prox;,(y —tVg(y))
end

e inequality (1) holds trivially, by the backtracking exit condition
e inequality (3) holds with 0, = 2/(k 4+ 1) because t; < t;_1
e Lipschitz continuity of Vg guarantees t;, > tyin = min{t, 5/L}

e preserves 1/k? convergence rate because 0%/t = O(1/k?):

92 ’
<
tr (k + 1)2tmin
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FISTA with line search (method 2)

replace update of y and x in iteration k (page 7-8) with

t:=1t>0

0 := positive root of t_10% =t67_,(1 —6)

y = (1 -0z~ 4 gyE=1)

z = proxy, (y —tVg(y))

while g(z) > g(y) + Vg(y) (z — y) + % lz — y||3
t:= pt
0 := positive root of t_10% = t67_ (1 —6)
y = (1 —)x*=D 4 gpk—1)
x = proxy, (y —tVg(y))

end

assume tg = 0 in the first iteration (k = 1), i.e., take 1 =1, y = z(0)
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discussion

e inequality (1) holds trivially, by the backtracking exit condition

e inequality (3) holds trivially, by construction of 6

e Lipschitz continuity of Vg guarantees ¢, > t,,in = min{t, 3/L}

e 0; is defined as the positive root of 62/t; = (1 — 6;)07_,/t;_1; hence

tio1 /(1= 0t < Vi Vit

ei_1 (97; - ‘92' 2
. . Vi 1
combine inequalities from i = 2 to k to get v/t; < ~—— — —Z Vit
O 243
e rearranging shows that 67 /t;, = O(1/k?):

07 1 4
< <

tr ) k 2= (k+ 1)2tr1111r1

(vir+i3 va)
i=2
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Comparison of line search methods

method 1
e uses nonincreasing step sizes (enforces ty < ti_1)

e one evaluation of g(x), one prox,; evaluation per line search iteration

method 2
e allows non-monotonic step sizes

e one evaluation of g(x), one evaluation of g(y), Vg(y), one evaluation of
prox,;, per line search iteration

the two strategies can be combined and extended in various ways
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Outline

fast proximal gradient method (FISTA)
FISTA with line search

FISTA as descent method

Nesterov's second method



Descent version of FISTA

choose (9 = v(0): for k > 1, repeat the steps

Yy = (1 — 9k>$(k_1) + ka(k_l)
u = prox,, (y—tVg(y))
w o flu) < f(z*=D)
(=1 otherwise
o) = g L e
Ok

o step 3 implies f(z®) < f(x(F=D)
e use 0, =2/(k+ 1) and t; = 1/L, or one of the line search methods
e same iteration complexity as original FISTA

e changes on page 7-10: replace ™ with v and use f(z™) < f(u)
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Example

(from page 7-6)

100 T T T ]
5 — gradient
L F|STA

107 N -~ FISTA-d |1

107, 50 100 150 200
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Outline

fast proximal gradient method (FISTA)
line search strategies
enforcing descent

Nesterov’s second method



Nesterov’s second method

algorithm: choose (9 = v(9): for k > 1, repeat the steps

y = (1—0)z* Y 40k
_ Lk
ol = PTOX (11 /65 )h (v(k U avg(y))
e *) = (1 =0z + 0,00

e use O, =2/(k+1) and tx = 1/L, or one of the line search methods
e identical to FISTA if h(z) =0

e unlike in FISTA, y is feasible (in dom h) if we take (%) € dom h
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Convergence of Nesterov’'s second method

assumptions

e g convex; Vg is Lipschitz continuous on domh C domg

IVg(z) = Vg()llz < Lllz —ylla Yo,y € domh

e h is closed and convex (so that prox,,(u) is well defined)

e optimal value f* is finite and attained at x* (not necessarily unique)

convergence result: f(2(®)) — f* decreases at least as fast as 1/k?

e with fixed step size t;, = 1/L

e with suitable line search
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Analysis of one iteration

define x = 201 2t =20 =01 pT =@ ¢t =1¢, 6 =0,

e from Lipschitz property if 0 <t < 1/L
1
9(x7) < g(y) + Va(y)" (=7 —y) + 2" —yl;

e pluginzt=(1-60)z+06vt and 2T —y =0(v" —v)

o) < gu) + Vg(u)" (1~ O) +0u* ) + _[[v* — o]

e from convexity of g, h

(1 0)9(a) + 0 (9() + Ve() (0 — 1)) + furt

2t
(1 - 0)h(z) + Oh(v™)

—vll3

S
8
-
IA

=
8

=
IA
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e upper bound on A from p. 7-9 (with u = v+, w=v — (¢/6)Vg(y))

A" < h(2) + Vo) (z - vh) = St — o) = 2) Vs

e combine the upper bounds on g(z™), h(z™), h(v™) with z = x*

2 2
flat) < (U= 0)f@) +0f — (" ) — o) + ot ol
92
= (L= f(@) 405+ o (o 2t o — 2 )

this is identical to the final inequality (2) in the analysis of FISTA on p.7-11

t; : 1 .
v (1)) _ £x S k2
7 (@) = 1)+ 31 — 2|
1 —0,)t i R e .
< QP (patn) = ) 4 5 D — 23
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