凸优化简介

文再文

wenzw@math.pku.edu.cn 北京大学— 北京国际数学研究中心

Acknowledgement: Prof. Lieven Vandenberghe and Prof. Wotao Yin

从解线性方程组谈起

Given matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$

$$Ax = b$$

- structure of A: dense, banded, sparse . . . ?
- factorization: Cholesky, QR, eigenvalue

Suppose m < n, find a sparsest solution?

Compressive Sensing

Find the sparest solution

- Given n=256, m=128.
- A = randn(m,n); u = sprandn(n, 1, 0.1); $b = A^*u$;

MRI: Magnetic Resonance Imaging

(b) Fourier Coefficients

Is it possible to cut the scan time into half?

MRI: Magnetic Resonance Imaging

- MR images often have sparse sparse representations under some wavelet transform Φ
- Solve

$$\min_{u} \|\Phi u\|_{1} + \frac{\mu}{2} \|Ru - b\|^{2}$$

R: partial discrete Fourier transform

• The higher the SNR (signal-noise ratio) is, the better the image quality is.

(a) full sampling

(b) 39% sampling, SNR=32.2

MRI: Magnetic Resonance Imaging

(a) full sampling

(c) 22% sampling, SNR=21.4

(b) 39% sampling, SNR=32.2

(d) 14% sampling, SNR=15.8

Compressive sensing

Standard Acquisition: signal $x \in \mathbb{R}^n$

- Sample and compress: subject to the Nyquist rates
- Analog-to-digital converters may reach speed limit
- Time, power, speed, ... can become bottlenecks

Compressive Sensing: signal $x \in \mathbb{R}^n$

- Acquire less data $b_i = a_i^{\top} x^*, i = 1, \dots, m \ll n$
- A should be "random-like"
- Decoding is costly: recover x^* from Ax = b

Difference: acquisition size reduced from *n* to *m*

Decoding in CS

Given (A, b, Ψ) , find the sparsest point:

$$x^* = \arg\min\{\|\Psi x\|_0 : Ax = b\}$$

From combinatorial to convex optimization:

$$\bar{x} = \arg\min\{\|\Psi x\|_1 : Ax = b\}$$

1-norm is sparsity promoting

- Basis pursuit (Donoho et al 98)
- Many variants: $||Ax b||_2 \le \sigma$ for noisy b
- Greedy algorithms
- Theoretical question: when is $\|\cdot\|_0 \leftrightarrow \|\cdot\|_1$?

文再文 (BICMR, PKU) 8 / 23

Sufficient condition for recovery

- \bar{x} uniquely solves ℓ_1 -problem iff

$$\|\bar{x} + v\|_1 > \|\bar{x}\|_1, \forall v \in Null(A)$$

• Let $S = \{i : \bar{x}_i \neq 0\}$ and $Z = \{i : \bar{x}_i = 0\}$, we have

$$\begin{split} \|\bar{x} + v\|_{1} &= \|\bar{x}_{S} + v_{S}\|_{1} + \|0 + v_{Z}\|_{1} \\ &= \|\bar{x}\|_{1} + (\|v_{Z}\|_{1} - \|v_{S}\|_{1}) + \\ &(\|\bar{x}_{S} + v_{S}\|_{1} - \|\bar{x}_{S}\|_{1} + \|v_{S}\|_{1}) \\ &\geq \|\bar{x}\|_{1} + (\|v_{Z}\|_{1} - \|v_{S}\|_{1}) \end{split}$$

- Hence, $\|\bar{x} + v\|_1 \ge \|\bar{x}\|_1$ if $\|v_Z\|_1 \|v_S\|_1 \ge 0$
- $\|v_{\mathcal{S}}\|_1 \leq \sqrt{|\mathcal{S}|} \|v_{\mathcal{S}}\|_2 \leq \sqrt{\|\bar{x}\|_0} \|v\|_2$,
- Sufficient condition: $\sqrt{\|\bar{x}\|_0} < \frac{1}{2} \frac{\|v\|_1}{\|v\|_2}, \ \forall v \in \text{Null}(A) \setminus \{0\}$

9/23

Sufficient condition for recovery

- $1 \leq \frac{\|v\|_1}{\|v\|_2} \leq \sqrt{n}, \quad \forall v \in \mathbb{R}^n \setminus \{0\}$
- Garnaev and Gluskin established that for any natural number p < n, there exist p-dimensional subspaces $V_p \subset \mathbb{R}^n$ in which

$$\frac{\|\boldsymbol{v}\|_1}{\|\boldsymbol{v}\|_2} \geq \frac{C\sqrt{n-p}}{\sqrt{\log(n/(n-p))}}, \forall \boldsymbol{v} \in \textit{V}_p \setminus \{0\},$$

- vectors in the null space of A will satisfy, with high probability, the Garnaev and Gluskin inequality for $V_p = \text{Null}(A)$ and p = n m.
- for a random Gaussian matrix A, \bar{x} will uniquely solve ℓ_1 -min with high probability whenever

$$\|\bar{x}\|_0<\frac{C^2}{4}\frac{m}{\log(n/m)}.$$

Algorithmic challenges

- Has large-scale and/or dense data in practice
- Has a nonsmooth objective function
- CS: small errors in A or b can cause large errors in the solution (when A does not obey the RIP)
- Linear algebra in matrix problems are much more expensive
- Standard (simplex, interior-point) methods not suitable

Netflix Problem: 1 million dollar award

- Given m movies $x \in \mathcal{X}$ and n customers $y \in \mathcal{Y}$
- predict the "rating" W(x, y) of customer y for movie x
- training data: known ratings of some customers for some movies
- Goal: complete the matrix
- other applications: collaborative filtering, system identification, etc.

Matrix Rank Minimization

Given $X \in \mathbb{R}^{m \times n}$, $A : \mathbb{R}^{m \times n} \to \mathbb{R}^p$, $b \in \mathbb{R}^p$, we consider

matrix completion problem:

min rank(
$$X$$
), s.t. $X_{ij} = M_{ij}$, $(i,j) \in \Omega$

• the matrix rank minimization problem:

min rank(
$$X$$
), s.t. $A(X) = b$

nuclear norm minimization:

$$\min \|X\|_* \text{ s.t. } \mathcal{A}(X) = b$$

where $||X||_* = \sum_i \sigma_i$ and $\sigma_i = i$ th singular value of matrix X.

Video separation

• Partition the video into moving and static parts

Sparse and low-rank matrix separation

- Given a matrix M, we want to find a low rank matrix W and a sparse matrix E, so that W + E = M.
- Convex approximation:

$$\min_{{\pmb W},{\pmb E}} \; \|{\pmb W}\|_* + \mu \|{\pmb E}\|_1, \; \text{s.t.} \; {\pmb W} + {\pmb E} = {\pmb M}$$

Robust PCA

Extension of sparsity

• Sparse inverse covariance estimation for a given empirical covariance matrix $S \in S^n$

$$\max_{X \succ 0} \log \det X - \text{Tr}(SX) - \lambda ||X||_1$$

- Sparse principal component analysis (PCA)
 - Variations:

$$\max \ x^{\top} \Sigma x \ \text{ s.t. } \frac{\operatorname{Card}(x)}{} \leq k, \ \|x\| = 1$$
$$\max \ x^{\top} \Sigma x - \rho \ \frac{\operatorname{Card}(x)}{}, \ \text{ s.t. } \|x\| = 1$$

SDP relaxations:

max
$$\operatorname{Tr}(\Sigma X) - \rho ||X||_1$$
, s.t. $\operatorname{Tr}(X) = 1$, $X \succeq 0$

Other formulations:

max
$$\operatorname{Tr}(V^{\top}\Sigma V) - \rho ||V||_1$$
, s.t. $V^{\top}\Sigma V$ is diagonal, $V^{\top}V = I$

Portfolio optimization

- r_i, random variable, the rate of return for stock i
- x_i, the relative amount invested in stock i
- Return: $r = r_1 x_1 + r_2 x_2 + \ldots + r_n x_n$
- expected return: $R = E(r) = \sum E(r_i)x_i = \sum \mu_i x_i$
- Risk: $V = Var(r) = \sum_{i,j} \sigma_{ij} x_i x_j = x^{\top} \Sigma x$

$$\min \frac{1}{2} x^{\top} \Sigma x,$$
s.t.
$$\sum_{i} \mu_{i} x_{i} \geq r_{0}$$

$$\sum_{i} x_{i} = 1,$$

$$x_{i} \geq 0$$

Correlation Matrices

A correlation matrix satisfies

$$X = X^{\top}, \ X_{ii} = 1, \ i = 1, \dots, n, \ X \succeq 0.$$

Example: (low-rank) nearest correlation matrix estimation

$$\begin{aligned} & \min \frac{1}{2} \, \| X - C \|_F^2 \,, \\ & \text{s.t. } X = X^\top, \ X_{ii} = 1, \ i = 1, \dots, n, \ X \succeq 0 \end{aligned}$$

- objective fun.: $\|W \odot (X C)\|_F^2$
- lower and upper bounds
- rank constraints $rank(X) \le r$

18 / 23

Optimization Formulation

Mathmatical optimization problem

$$minf(x)$$

s.t. $c_i(x) = 0, i \in \mathcal{E}$
 $c_i(x) \ge 0, i \in \mathcal{I}$

- $x = (x_1, \dots, x_n)^{\top}$: variable
- $f(x): \mathbb{R}^n \to \mathbb{R}$: objective function
- $c_i(x): \mathbb{R}^n \to \mathbb{R}$: constraints
- optimal solution x^* : a feasible point with the smallest value of f

19/23

Classification

- Continuous versus discrete optimization
- Unconstrained versus constrained optimization
- Global and local optimization
- Stochastic and deterministic optimization
- Linear/nonlinear/quadratic programming, Convex/nonconvex optimization
- Least square problem, equation solving
- sparse optimization, PDE-constrained optimization, robust optimization

Nonlinear optimization

- local optimization methods (nonlinear programming)
 - find a point that minimizes f among feasible points near it
 - fast, can handle large problems
 - require initial guess
 - provide no information about distance to (global) optimum

global optimization methods

- find the (global) solution
- worst-case complexity grows exponentially with problem size

Brief History of Convex Optimization

- Theory (convex analysis):
- Algorithms
 - 1947: simplex algorithm for linear programming (Dantzig)
 - 1960s: early interior-point methods (Fiacco & McCormick, Dikin)
 - 1970s: ellipsoid method and other subgradient methods
 - 1980s: polynomial-time interior-point methods for linear programming (Karmarkar 1984)
 - late 1980s2000s: polynomial-time interior-point methods for nonlinear convex optimization (Nesterov & Nemirovski 1994)
 - 2010s: first-order methods
- Application
 - before 1990: mostly in operations research; few in engineering
 - since 1990: many new applications in engineering (control, signal processing, communications, circuit design, ...); new problem classes (semidefinite and second-order cone programming, robust optimization)

Course Goals

- recognize/formulate problems as convex optimization problems
- understand the basic knowlege of convex optimization
- familar with the basic algorithms and develop code for problems of moderate size