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IR M 7 A2 2Rk

Given matrix A € R™"7 and b € R™
Ax=b

@ structure of A: dense, banded, sparse ...?
@ factorization: Cholesky, QR, eigenvalue

Suppose m < n, find a sparsest solution?
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Compressive Sensing

Find the sparest solution
@ Given n=256, m=128.
@ A =randn(m,n); u = sprandn(n, 1, 0.1); b = A*u;

Ui WMMW UKy

E) 0 150 m

! 0 mln HX”Z ! 1
st. Ax=»b st. Ax=0>b st. Ax=5b

(a) £o-minimization (b) £2-minimization (c) £1-minimization
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MRI: Magnetic Resonance Imaging

(a) (b) Fourier Coefficients

Is it possible to cut the scan time into half?




MRI: Magnetic Resonance Imaging

@ MR images often have sparse sparse representations under some
wavelet transform ¢
@ Solve
min||®ulls + 51Ru - b

R: partial discrete Fourier transform
@ The higher the SNR (signal-noise ratio) is, the better the image
quality is.

(a) full sampling (b) 39% sampling,
SNR=32.2
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MRI: Magnetic Resonance Imaging

(a) full sampling (b) 39% sampling,
SNR=32.2

(c) 22% sampling, (d) 14% sampling,
SNR=21.4 SNR=15.8
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Compressive sensing

Standard Acquisition: signal x € R"

@ Sample and compress: subject to the Nyquist rates

@ Analog-to-digital converters may reach speed limit

@ Time, power, speed, ...can become bottlenecks
Compressive Sensing: signal x € R”

@ Acquire lessdata bj = a/ x*,i=1,....m<n

@ A should be “random-like”

@ Decoding is costly: recover x* from Ax = b
Difference: acquisition size reduced from nto m
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Decoding in CS

Given (A, b, V), find the sparsest point:

x* =argmin{||Vx|p : Ax = b}
From combinatorial to convex optimization:

x = argmin{||Wx||{ : Ax = b}

1-norm is sparsity promoting
@ Basis pursuit (Donoho et al 98)
@ Many variants: ||Ax — b||2 < o for noisy b
@ Greedy algorithms
@ Theoretical question: when'is || - [l <> || - ||1 ?
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Sufficient condition for recovery

@ {x:Ax=b}={Xx+v:veNulA)}
@ X uniquely solves ¢1-problem iff

IIX + v+ > ||X]|1,¥v € Null(A)
@ letS={i:x;#0}and Z = {i: x; =0}, we have

X+ vt = [Xs+ vsll1 + 10+ vz
= |Ix[ls + ([vzlls = llvsll1) +
([Ixs + vsllt = IXsllt + [[vs]l1)
> |Ixll 4+ (lvzlls = llvsll1)

@ Hence, |[X + vil1 > [[X|[1 if [[vz[ls — [lvs+ = O

° [lvsllt < V/ISlllvsllz < v/IIXllollVll2;

o Sufficient condition: \/[X[lo < 4, v € Null(A) \ {0}
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Sufficient condition for recovery

1< Ivils <\/’ VVER”\{O}

vl
@ Garnaev and Gluskin established that for any natural number
p < n, there exist p-dimensional subspaces V,, C R" in which

v+ cyn—p
Vil = log(n/(n - p))’vv € Vo \ {0},

@ vectors in the null space of A will satisfy, with high probability, the
Garnaev and Gluskin inequality for V, = Null(A) and p = n— m.

@ for a random Gaussian matrix A, x will uniquely solve ¢1-min with
high probability whenever

C2 m

[X[lo < TW
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Algorithmic challenges

@ Has large-scale and/or dense data in practice
@ Has a nonsmooth objective function

@ CS:small errors in A or b can cause large errors in the solution
(when A does not obey the RIP)

@ Linear algebra in matrix problems are much more expensive
@ Standard (simplex, interior-point) methods not suitable
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Netflix Problem: 1 million dollar award

@ Given m movies x € X and n customers y € Y

@ predict the “rating” W(x, y) of customer y for movie x

@ training data: known ratings of some customers for some movies
@ Goal: complete the matrix

@ other applications: collaborative filtering, system identification, etc.

B
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Matrix Rank Minimization

Given X € R™<" A . R™" — RP, b € RP, we consider
@ maitrix completion problem:

min rank(X), s.t. X; = Mj, (i,j) € Q
@ the matrix rank minimization problem:
min rank(X), s.t. A(X)=0b
@ nuclear norm minimization:
min || X]|. s.t. A(X)=0»b

where || X||. = >_;0; and o; = ith singular value of matrix X.
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Video separation

@ Partition the video into moving and static parts
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Sparse and low-rank matrix separation

@ Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.

@ Convex approximation:

min Wil + ullElly, s.t. W+ E =M

@ Robust PCA
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Extension of sparsity

@ Sparse inverse covariance estimation for a given empirical
covariance matrix S € S”

max logdet X — Tr(SX) — || X
max logdet X — Tr(SX) — A X[l
@ Sparse principal component analysis (PCA)
e Variations:
max x ' Ix s.t. Card(x) <k, ||| =1

max x' Xx — p Card(x), s.t. || x| =1

o SDP relaxations:
max Tr(XX) — p||X|1, st. Tr(X)=1, X =0
@ Other formulations:

max Tr(V I V) —p||V|1, s.t. VTEVis diagonal, VTV =1/
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Portfolio optimization

@ r;, random variable, the rate of return for stock /
@ x;, the relative amount invested in stock i

@ Return: r=rnxqi + rXxo + ...+ nxp

@ expectedreturn: R = E(r) =Y E(r)xi = >_ piX;
@ Risk: V = Var(r) =X, ojxix; = x ' £x

1
min—x ' ¥x

i 2x ,
s.t. Z,u,,'X,' >

Z:X,':'I7

X,'ZO
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Correlation Matrices

A correlation matrix satisfies
X=X, Xj=1,i=1,....,n, X = 0.
Example: (low-rank) nearest correlation matrix estimation
ming X — CI.
st X=X", Xj=1,i=1,...,n, X =0
@ objective fun.: [W o (X — C)|2

@ lower and upper bounds
@ rank constraints rank(X) < r
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Optimization Formulation

Mathmatical optimization problem

minf(x)
st ci(x)=0,ieé&
ci(x)>0,iel

@ X =(Xy,...,Xxp)": variable

@ f(x): R" — R: objective function

@ ¢i(x) : R" — R: constraints

@ optimal solution x*: a feasible point with the smallest value of f
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Classification

@ Continuous versus discrete optimization

@ Unconstrained versus constrained optimization

@ Global and local optimization

@ Stochastic and deterministic optimization

@ Linear/nonlinear/quadratic programming, Convex/nonconvex
optimization

@ Least square problem, equation solving

@ sparse optimization, PDE-constrained optimization, robust
optimization
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Nonlinear optimization

@ local optimization methods (nonlinear programming)
find a point that minimizes f among feasible points near it
fast, can handle large problems

require initial guess

provide no information about distance to (global) optimum

@ global optimization methods

o find the (global) solution
o worst-case complexity grows exponentially with problem size
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Brief History of Convex Optimization

@ Theory (convex analysis):

@ Algorithms

@ 1947: simplex algorithm for linear programming (Dantzig)

e 1960s: early interior-point methods (Fiacco & McCormick, Dikin)

e 1970s: ellipsoid method and other subgradient methods

@ 1980s: polynomial-time interior-point methods for linear
programming (Karmarkar 1984)

o late 1980s2000s: polynomial-time interior-point methods for
nonlinear convex optimization (Nesterov & Nemirovski 1994)

e 2010s: first-order methods

@ Application
o before 1990: mostly in operations research; few in engineering
@ since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, ...); new problem
classes (semidefinite and second-order cone programming, robust
optimization)
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Course Goals

@ recognize/formulate problems as convex optimization problems
@ understand the basic knowlege of convex optimization

@ familar with the basic algorithms and develop code for problems of
moderate size
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