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1. Gradient method

• gradient method, first-order methods

• quadratic bounds on convex functions

• analysis of gradient method
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Approximate course outline

first-order methods

• gradient, conjugate gradient, quasi-Newton methods

• subgradient, proximal gradient methods

• accelerated (proximal) gradient methods

decomposition and splitting

• first-order methods and dual reformulations

• alternating minimization methods

interior-point methods

• conic optimization

• primal-dual methods for symmetric cones
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Gradient method

to minimize a convex differentiable function f : choose x(0) and repeat

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, . . .

step size rules

• fixed: tk constant

• backtracking line search

• exact line search: minimize f(x− t∇f(x)) over t

advantages of gradient method

• every iteration is inexpensive

• does not require second derivatives
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Quadratic example

f(x) =
1

2
(x2

1 + γx2
2) (γ > 1)

with exact line search, x(0) = (γ, 1)

‖x(k) − x⋆‖2
‖x(0) − x⋆‖2

=
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)k
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gradient method is often slow; very dependent on scaling
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Nondifferentiable example

f(x) =
√

x2
1 + γx2

2 (|x2| ≤ x1), f(x) =
x1 + γ|x2|√

1 + γ
(|x2| > x1)

with exact line search, x(0) = (γ, 1), converges to non-optimal point
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gradient method does not handle nondifferentiable problems
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First-order methods

address one or both disadvantages of the gradient method

methods with improved convergence

• quasi-Newton methods

• conjugate gradient method

• accelerated gradient method

methods for nondifferentiable or constrained problems

• subgradient method

• proximal gradient method

• smoothing methods

• cutting-plane methods
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Outline

• gradient method, first-order methods

• quadratic bounds on convex functions

• analysis of gradient method



Convex function

f is convex if dom f is a convex set and Jensen’s inequality holds:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀x, y ∈ dom f, θ ∈ [0, 1]

first-order condition

for (continuously) differentiable f , Jensen’s inequality can be replaced with

f(y) ≥ f(x) +∇f(x)T (y − x) ∀x, y ∈ dom f

second-order condition

for twice differentiable f , Jensen’s inequality can be replaced with

∇2f(x) � 0 ∀x ∈ dom f
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Strictly convex function

f is strictly convex if dom f is a convex set and

f(θx+(1−θ)y) < θf(x)+(1−θ)f(y) ∀x, y ∈ dom f, x 6= y, θ ∈ (0, 1)

hence, if a minimizer of f exists, it is unique

first-order condition

for differentiable f , strict Jensen’s inequality can be replaced with

f(y) > f(x) +∇f(x)T (y − x) ∀x, y ∈ dom f, x 6= y

second-order condition

note that ∇2f(x) ≻ 0 is not necessary for strict convexity (cf., f(x) = x4)

Gradient method 1-8



Monotonicity of gradient

differentiable f is convex if and only if dom f is convex and

(∇f(x)−∇f(y))
T
(x− y) ≥ 0 ∀x, y ∈ dom f

i.e., ∇f : Rn → Rn is a monotone mapping

differentiable f is strictly convex if and only if dom f is convex and

(∇f(x)−∇f(y))
T
(x− y) > 0 ∀x, y ∈ dom f, x 6= y

i.e., ∇f : Rn → Rn is a strictly monotone mapping
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proof

• if f is differentiable and convex, then

f(y) ≥ f(x) +∇f(x)T (y − x), f(x) ≥ f(y) +∇f(y)T (x− y)

combining the inequalities gives (∇f(x)−∇f(y))T (x− y) ≥ 0

• if ∇f is monotone, then g′(t) ≥ g′(0) for t ≥ 0 and t ∈ dom g, where

g(t) = f(x+ t(y − x)), g′(t) = ∇f(x+ t(y − x))T (y − x)

hence,

f(y) = g(1) = g(0) +

∫ 1

0

g′(t) dt ≥ g(0) + g′(0)

= f(x) +∇f(x)T (y − x)
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Lipschitz continuous gradient

gradient of f is Lipschitz continuous with parameter L > 0 if

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 ∀x, y ∈ dom f

• note that the definition does not assume convexity of f

• we will see that for convex f with dom f = Rn, this is equivalent to

L

2
xTx− f(x) is convex

(i.e., if f is twice differentiable, ∇2f(x) � LI for all x)
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Quadratic upper bound

suppose ∇f is Lipschitz continuous with parameter L and dom f is convex

• then g(x) = (L/2)xTx− f(x), with dom g = dom f , is convex

• convexity of g is equivalent to a quadratic upper bound on f :

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22 ∀x, y ∈ dom f

f(y) (x, f(x))
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proof

• Lipschitz continuity of ∇f and Cauchy-Schwarz inequality imply

(∇f(x)−∇f(y))T (x− y) ≤ L‖x− y‖22 ∀x, y ∈ dom f

this is monotonicity of the gradient ∇g(x) = Lx−∇f(x)

• hence, g is a convex function if its domain dom g = dom f is convex

• the quadratic upper bound is the first-order condition for convexity of g

g(y) ≥ g(x) +∇g(x)T (y − x) ∀x, y ∈ dom g
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Consequence of quadratic upper bound

if dom f = Rn and f has a minimizer x⋆, then

1

2L
‖∇f(x)‖22 ≤ f(x)− f(x⋆) ≤ L

2
‖x− x⋆‖22 ∀x

• right-hand inequality follows from quadratic upper bound at x = x⋆

• left-hand inequality follows by minimizing quadratic upper bound

f(x⋆) ≤ inf
y∈dom f

(

f(x) +∇f(x)T (y − x) +
L

2
‖y − x‖22

)

= f(x)− 1

2L
‖∇f(x)‖22

minimizer of upper bound is y = x− (1/L)∇f(x) because dom f = Rn
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Co-coercivity of gradient

if f is convex with dom f = Rn and (L/2)xTx− f(x) is convex then

(∇f(x)−∇f(y))T (x− y) ≥ 1

L
‖∇f(x)−∇f(y)‖22 ∀x, y

this property is known as co-coercivity of ∇f (with parameter 1/L)

• co-coercivity implies Lipschitz continuity of ∇f (by Cauchy-Schwarz)

• hence, for differentiable convex f with dom f = Rn

Lipschitz continuity of ∇f ⇒ convexity of (L/2)xTx− f(x)

⇒ co-coercivity of ∇f

⇒ Lipschitz continuity of ∇f

therefore the three properties are equivalent
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proof of co-coercivity: define convex functions fx, fy with domain Rn:

fx(z) = f(z)−∇f(x)Tz, fy(z) = f(z)−∇f(y)Tz

the functions (L/2)zTz − fx(z) and (L/2)zTz − fy(z) are convex

• z = x minimizes fx(z); from the left-hand inequality on page 1-14,

f(y)− f(x)−∇f(x)T (y − x) = fx(y)− fx(x)

≥ 1

2L
‖∇fx(y)‖22

=
1

2L
‖∇f(y)−∇f(x)‖22

• similarly, z = y minimizes fy(z); therefore

f(x)− f(y)−∇f(y)T (x− y) ≥ 1

2L
‖∇f(y)−∇f(x)‖22

combining the two inequalities shows co-coercivity
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Strongly convex function

f is strongly convex with parameter m > 0 if

g(x) = f(x)− m

2
xTx is convex

Jensen’s inequality: Jensen’s inequality for g is

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)− m

2
θ(1− θ)‖x− y‖22

monotonicity: monotonicity of ∇g gives

(∇f(x)−∇f(y))T (x− y) ≥ m‖x− y‖22 ∀x, y ∈ dom f

this is called strong monotonicity (coercivity) of ∇f

second-order condition: ∇2f(x) � mI for all x ∈ dom f
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Quadratic lower bound

from 1st order condition of convexity of g:

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
‖y − x‖22 ∀x, y ∈ dom f

f(y)

(x, f(x))

• implies sublevel sets of f are bounded

• if f is closed (has closed sublevel sets), it has a unique minimizer x⋆ and

m

2
‖x− x⋆‖22 ≤ f(x)− f(x⋆) ≤ 1

2m
‖∇f(x)‖22 ∀x ∈ dom f
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Extension of co-coercivity

if f is strongly convex and ∇f is Lipschitz continuous, then

g(x) = f(x)− m

2
‖x‖22

is convex and ∇g is Lipschitz continuous with parameter L−m

co-coercivity of g gives

(∇f(x)−∇f(y))
T
(x− y)

≥ mL

m+ L
‖x− y‖22 +

1

m+ L
‖∇f(x)−∇f(y)‖22

for all x, y ∈ dom f
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Outline

• gradient method, first-order methods

• quadratic bounds on convex functions

• analysis of gradient method



Analysis of gradient method

x(k) = x(k−1) − tk∇f(x(k−1)), k = 1, 2, . . .

with fixed step size or backtracking line search

assumptions

1. f is convex and differentiable with dom f = Rn

2. ∇f(x) is Lipschitz continuous with parameter L > 0

3. optimal value f⋆ = infx f(x) is finite and attained at x⋆
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Analysis for constant step size

from quadratic upper bound (page 1-12) with y = x− t∇f(x):

f(x− t∇f(x)) ≤ f(x)− t(1− Lt

2
)‖∇f(x)‖22

therefore, if x+ = x− t∇f(x) and 0 < t ≤ 1/L,

f(x+) ≤ f(x)− t

2
‖∇f(x)‖22

≤ f⋆ +∇f(x)T (x− x⋆)− t

2
‖∇f(x)‖22

= f⋆ +
1

2t

(

‖x− x⋆‖22 − ‖x− x⋆ − t∇f(x)‖22
)

= f⋆ +
1

2t

(

‖x− x⋆‖22 − ‖x+ − x⋆‖22
)
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take x = x(i−1), x+ = x(i), ti = t, and add the bounds for i = 1, . . . , k:

k
∑

i=1

(f(x(i))− f⋆) ≤ 1

2t

k
∑

i=1

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22
)

=
1

2t

(

‖x(0) − x⋆‖22 − ‖x(k) − x⋆‖22
)

≤ 1

2t
‖x(0) − x⋆‖22

since f(x(i)) is non-increasing,

f(x(k))− f⋆ ≤ 1

k

k
∑

i=1

(f(x(i))− f⋆) ≤ 1

2kt
‖x(0) − x⋆‖22

conclusion: #iterations to reach f(x(k))− f⋆ ≤ ǫ is O(1/ǫ)
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Backtracking line search

initialize tk at t̂ > 0 (for example, t̂ = 1); take tk := βtk until

f(x− tk∇f(x)) < f(x)− αtk‖∇f(x)‖22

t

f(x − t∇f(x))

f(x) − αt‖∇f(x)‖2
2

0 < β < 1; we will take α = 1/2 (mostly to simplify proofs)
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Analysis for backtracking line search

line search with α = 1/2 if f has a Lipschitz continuous gradient

t = 1/L

f(x − t∇f(x))

f(x) − t(1 −
tL

2
)‖∇f(x)‖

2
2

f(x) −
t

2
‖∇f(x)‖

2
2

selected step size satisfies tk ≥ tmin = min{t̂, β/L}
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convergence analysis

• from page 1-21:

f(x(i)) ≤ f⋆ +
1

2ti

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22
)

≤ f⋆ +
1

2tmin

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22
)

• add the upper bounds to get

f(x(k))− f⋆ ≤ 1

k

k
∑

i=1

(f(x(i))− f⋆) ≤ 1

2ktmin
‖x(0) − x⋆‖22

conclusion: same 1/k bound as with constant step size
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Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on
p. 1-20

analysis for constant step size

if x+ = x− t∇f(x) and 0 < t ≤ 2/(m+ L):

‖x+ − x⋆‖22 = ‖x− t∇f(x)− x⋆‖22
= ‖x− x⋆‖22 − 2t∇f(x)T (x− x⋆) + t2‖∇f(x)‖22

≤ (1− t
2mL

m+ L
)‖x− x⋆‖22 + t(t− 2

m+ L
)‖∇f(x)‖22

≤ (1− t
2mL

m+ L
)‖x− x⋆‖22

(step 3 follows from result on p. 1-19)
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distance to optimum

‖x(k) − x⋆‖22 ≤ ck‖x(0) − x⋆‖22, c = 1− t
2mL

m+ L

• implies (linear) convergence

• for t = 2/(m+ L), get c =

(

γ − 1

γ + 1

)2

with γ = L/m

bound on function value (from page 1-14),

f(x(k))− f⋆ ≤ L

2
‖x(k) − x⋆‖22 ≤

ckL

2
‖x(0) − x⋆‖22

conclusion: #iterations to reach f(x(k))− f⋆ ≤ ǫ is O(log(1/ǫ))
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Limits on convergence rate of first-order methods

first-order method: any iterative algorithm that selects x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . . ,∇f(x(k−1))}

problem class: any function that satisfies the assumptions on page 1-20

theorem (Nesterov): for every integer k ≤ (n− 1)/2 and every x(0), there
exist functions in the problem class such that for any first-order method

f(x(k))− f⋆ ≥ 3

32

L‖x(0) − x⋆‖22
(k + 1)2

• suggests 1/k rate for gradient method is not optimal

• recent fast gradient methods have 1/k2 convergence (see later)
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