1. Gradient method

- gradient method, first-order methods
- quadratic bounds on convex functions
- analysis of gradient method

Approximate course outline

first-order methods

- gradient, conjugate gradient, quasi-Newton methods
- subgradient, proximal gradient methods
- accelerated (proximal) gradient methods

decomposition and splitting

- first-order methods and dual reformulations
- alternating minimization methods
interior-point methods
- conic optimization
- primal-dual methods for symmetric cones

Gradient method

to minimize a convex differentiable function f : choose $x^{(0)}$ and repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right), \quad k=1,2, \ldots
$$

step size rules

- fixed: t_{k} constant
- backtracking line search
- exact line search: minimize $f(x-t \nabla f(x))$ over t
advantages of gradient method
- every iteration is inexpensive
- does not require second derivatives

Quadratic example

$$
f(x)=\frac{1}{2}\left(x_{1}^{2}+\gamma x_{2}^{2}\right) \quad(\gamma>1)
$$

with exact line search, $x^{(0)}=(\gamma, 1)$

$$
\frac{\left\|x^{(k)}-x^{\star}\right\|_{2}}{\left\|x^{(0)}-x^{\star}\right\|_{2}}=\left(\frac{\gamma-1}{\gamma+1}\right)^{k}
$$

gradient method is often slow; very dependent on scaling

Nondifferentiable example

$$
f(x)=\sqrt{x_{1}^{2}+\gamma x_{2}^{2}} \quad\left(\left|x_{2}\right| \leq x_{1}\right), \quad f(x)=\frac{x_{1}+\gamma\left|x_{2}\right|}{\sqrt{1+\gamma}} \quad\left(\left|x_{2}\right|>x_{1}\right)
$$

with exact line search, $\boldsymbol{x}^{(0)}=(\gamma, 1)$, converges to non-optimal point

gradient method does not handle nondifferentiable problems

First-order methods

address one or both disadvantages of the gradient method methods with improved convergence

- quasi-Newton methods
- conjugate gradient method
- accelerated gradient method
methods for nondifferentiable or constrained problems
- subgradient method
- proximal gradient method
- smoothing methods
- cutting-plane methods

Outline

- gradient method, first-order methods
- quadratic bounds on convex functions
- analysis of gradient method

Convex function

f is convex if $\operatorname{dom} f$ is a convex set and Jensen's inequality holds:

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y) \quad \forall x, y \in \operatorname{dom} f, \theta \in[0,1]
$$

first-order condition

for (continuously) differentiable f, Jensen's inequality can be replaced with

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x) \quad \forall x, y \in \operatorname{dom} f
$$

second-order condition

for twice differentiable f, Jensen's inequality can be replaced with

$$
\nabla^{2} f(x) \succeq 0 \quad \forall x \in \operatorname{dom} f
$$

Strictly convex function

f is strictly convex if $\operatorname{dom} f$ is a convex set and
$f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y) \quad \forall x, y \in \operatorname{dom} f, x \neq y, \theta \in(0,1)$
hence, if a minimizer of f exists, it is unique

first-order condition

for differentiable f, strict Jensen's inequality can be replaced with

$$
f(y)>f(x)+\nabla f(x)^{T}(y-x) \quad \forall x, y \in \operatorname{dom} f, x \neq y
$$

second-order condition
note that $\nabla^{2} f(x) \succ 0$ is not necessary for strict convexity ($c f ., f(x)=x^{4}$)

Monotonicity of gradient

differentiable f is convex if and only if $\operatorname{dom} f$ is convex and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0 \quad \forall x, y \in \operatorname{dom} f
$$

i.e., $\nabla f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a monotone mapping
differentiable f is strictly convex if and only if $\operatorname{dom} f$ is convex and

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y)>0 \quad \forall x, y \in \operatorname{dom} f, x \neq y
$$

i.e., $\nabla f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ is a strictly monotone mapping
proof

- if f is differentiable and convex, then

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x), \quad f(x) \geq f(y)+\nabla f(y)^{T}(x-y)
$$

combining the inequalities gives $(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq 0$

- if ∇f is monotone, then $g^{\prime}(t) \geq g^{\prime}(0)$ for $t \geq 0$ and $t \in \operatorname{dom} g$, where

$$
g(t)=f(x+t(y-x)), \quad g^{\prime}(t)=\nabla f(x+t(y-x))^{T}(y-x)
$$

hence,

$$
\begin{aligned}
f(y)=g(1)=g(0)+\int_{0}^{1} g^{\prime}(t) d t & \geq g(0)+g^{\prime}(0) \\
& =f(x)+\nabla f(x)^{T}(y-x)
\end{aligned}
$$

Lipschitz continuous gradient

gradient of f is Lipschitz continuous with parameter $L>0$ if

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y \in \operatorname{dom} f
$$

- note that the definition does not assume convexity of f
- we will see that for convex f with $\operatorname{dom} f=\mathbf{R}^{n}$, this is equivalent to

$$
\frac{L}{2} x^{T} x-f(x) \quad \text { is convex }
$$

(i.e., if f is twice differentiable, $\nabla^{2} f(x) \preceq L I$ for all x)

Quadratic upper bound

suppose ∇f is Lipschitz continuous with parameter L and $\operatorname{dom} f$ is convex

- then $g(x)=(L / 2) x^{T} x-f(x)$, with $\operatorname{dom} g=\operatorname{dom} f$, is convex
- convexity of g is equivalent to a quadratic upper bound on f :

$$
f(y) \leq f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2} \quad \forall x, y \in \operatorname{dom} f
$$

proof

- Lipschitz continuity of ∇f and Cauchy-Schwarz inequality imply

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \leq L\|x-y\|_{2}^{2} \quad \forall x, y \in \operatorname{dom} f
$$

this is monotonicity of the gradient $\nabla g(x)=L x-\nabla f(x)$

- hence, g is a convex function if its domain $\operatorname{dom} g=\operatorname{dom} f$ is convex
- the quadratic upper bound is the first-order condition for convexity of g

$$
g(y) \geq g(x)+\nabla g(x)^{T}(y-x) \quad \forall x, y \in \operatorname{dom} g
$$

Consequence of quadratic upper bound

if $\operatorname{dom} f=\mathbf{R}^{n}$ and f has a minimizer x^{\star}, then

$$
\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2} \leq f(x)-f\left(x^{\star}\right) \leq \frac{L}{2}\left\|x-x^{\star}\right\|_{2}^{2} \quad \forall x
$$

- right-hand inequality follows from quadratic upper bound at $x=x^{\star}$
- left-hand inequality follows by minimizing quadratic upper bound

$$
\begin{aligned}
f\left(x^{\star}\right) & \leq \inf _{y \in \operatorname{dom} f}\left(f(x)+\nabla f(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2}\right) \\
& =f(x)-\frac{1}{2 L}\|\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

minimizer of upper bound is $y=x-(1 / L) \nabla f(x)$ because $\operatorname{dom} f=\mathbf{R}^{n}$

Co-coercivity of gradient

if f is convex with $\operatorname{dom} f=\mathbf{R}^{n}$ and $(L / 2) x^{T} x-f(x)$ is convex then

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \quad \forall x, y
$$

this property is known as co-coercivity of ∇f (with parameter $1 / L$)

- co-coercivity implies Lipschitz continuity of ∇f (by Cauchy-Schwarz)
- hence, for differentiable convex f with $\operatorname{dom} f=\mathbf{R}^{n}$

Lipschitz continuity of $\nabla f \Rightarrow$ convexity of $(L / 2) x^{T} x-f(x)$
\Rightarrow co-coercivity of ∇f
\Rightarrow Lipschitz continuity of ∇f
therefore the three properties are equivalent
proof of co-coercivity: define convex functions f_{x}, f_{y} with domain \mathbf{R}^{n} :

$$
f_{x}(z)=f(z)-\nabla f(x)^{T} z, \quad f_{y}(z)=f(z)-\nabla f(y)^{T} z
$$

the functions $(L / 2) z^{T} z-f_{x}(z)$ and $(L / 2) z^{T} z-f_{y}(z)$ are convex

- $z=x$ minimizes $f_{x}(z)$; from the left-hand inequality on page 1-14,

$$
\begin{aligned}
f(y)-f(x)-\nabla f(x)^{T}(y-x) & =f_{x}(y)-f_{x}(x) \\
& \geq \frac{1}{2 L}\left\|\nabla f_{x}(y)\right\|_{2}^{2} \\
& =\frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
\end{aligned}
$$

- similarly, $z=y$ minimizes $f_{y}(z)$; therefore

$$
f(x)-f(y)-\nabla f(y)^{T}(x-y) \geq \frac{1}{2 L}\|\nabla f(y)-\nabla f(x)\|_{2}^{2}
$$

combining the two inequalities shows co-coercivity

Strongly convex function

f is strongly convex with parameter $m>0$ if

$$
g(x)=f(x)-\frac{m}{2} x^{T} x \quad \text { is convex }
$$

Jensen's inequality: Jensen's inequality for g is

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)-\frac{m}{2} \theta(1-\theta)\|x-y\|_{2}^{2}
$$

monotonicity: monotonicity of ∇g gives

$$
(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq m\|x-y\|_{2}^{2} \quad \forall x, y \in \operatorname{dom} f
$$

this is called strong monotonicity (coercivity) of ∇f
second-order condition: $\nabla^{2} f(x) \succeq m I$ for all $x \in \operatorname{dom} f$

Quadratic lower bound

from 1st order condition of convexity of g :

$$
f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2} \quad \forall x, y \in \operatorname{dom} f
$$

- implies sublevel sets of f are bounded
- if f is closed (has closed sublevel sets), it has a unique minimizer x^{\star} and

$$
\frac{m}{2}\left\|x-x^{\star}\right\|_{2}^{2} \leq f(x)-f\left(x^{\star}\right) \leq \frac{1}{2 m}\|\nabla f(x)\|_{2}^{2} \quad \forall x \in \operatorname{dom} f
$$

Extension of co-coercivity

if f is strongly convex and ∇f is Lipschitz continuous, then

$$
g(x)=f(x)-\frac{m}{2}\|x\|_{2}^{2}
$$

is convex and ∇g is Lipschitz continuous with parameter $L-m$
co-coercivity of g gives

$$
\begin{aligned}
& (\nabla f(x)-\nabla f(y))^{T}(x-y) \\
& \quad \geq \frac{m L}{m+L}\|x-y\|_{2}^{2}+\frac{1}{m+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\end{aligned}
$$

for all $x, y \in \operatorname{dom} f$

Outline

- gradient method, first-order methods
- quadratic bounds on convex functions
- analysis of gradient method

Analysis of gradient method

$$
x^{(k)}=x^{(k-1)}-t_{k} \nabla f\left(x^{(k-1)}\right), \quad k=1,2, \ldots
$$

with fixed step size or backtracking line search

assumptions

1. f is convex and differentiable with $\operatorname{dom} f=\mathbf{R}^{n}$
2. $\nabla f(x)$ is Lipschitz continuous with parameter $L>0$
3. optimal value $f^{\star}=\inf _{x} f(x)$ is finite and attained at x^{\star}

Analysis for constant step size

from quadratic upper bound (page 1-12) with $y=x-t \nabla f(x)$:

$$
f(x-t \nabla f(x)) \leq f(x)-t\left(1-\frac{L t}{2}\right)\|\nabla f(x)\|_{2}^{2}
$$

therefore, if $x^{+}=x-t \nabla f(x)$ and $0<t \leq 1 / L$,

$$
\begin{aligned}
f\left(x^{+}\right) & \leq f(x)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \\
& \leq f^{\star}+\nabla f(x)^{T}\left(x-x^{\star}\right)-\frac{t}{2}\|\nabla f(x)\|_{2}^{2} \\
& =f^{\star}+\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x-x^{\star}-t \nabla f(x)\right\|_{2}^{2}\right) \\
& =f^{\star}+\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x^{+}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

take $x=x^{(i-1)}, x^{+}=x^{(i)}, t_{i}=t$, and add the bounds for $i=1, \ldots, k$:

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) & \leq \frac{1}{2 t} \sum_{i=1}^{k}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

since $f\left(x^{(i)}\right)$ is non-increasing,

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq \frac{1}{2 k t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: \#iterations to reach $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ is $O(1 / \epsilon)$

Backtracking line search

initialize t_{k} at $\hat{t}>0$ (for example, $\hat{t}=1$); take $t_{k}:=\beta t_{k}$ until

$$
f\left(x-t_{k} \nabla f(x)\right)<f(x)-\alpha t_{k}\|\nabla f(x)\|_{2}^{2}
$$

$0<\beta<1$; we will take $\alpha=1 / 2$ (mostly to simplify proofs)

Analysis for backtracking line search

line search with $\alpha=1 / 2$ if f has a Lipschitz continuous gradient

selected step size satisfies $t_{k} \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$

convergence analysis

- from page 1-21:

$$
\begin{aligned}
f\left(x^{(i)}\right) & \leq f^{\star}+\frac{1}{2 t_{i}}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq f^{\star}+\frac{1}{2 t_{\min }}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

- add the upper bounds to get

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq \frac{1}{2 k t_{\min }}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: same $1 / k$ bound as with constant step size

Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on p. 1-20
analysis for constant step size
if $x^{+}=x-t \nabla f(x)$ and $0<t \leq 2 /(m+L)$:

$$
\begin{aligned}
\left\|x^{+}-x^{\star}\right\|_{2}^{2} & =\left\|x-t \nabla f(x)-x^{\star}\right\|_{2}^{2} \\
& =\left\|x-x^{\star}\right\|_{2}^{2}-2 t \nabla f(x)^{T}\left(x-x^{\star}\right)+t^{2}\|\nabla f(x)\|_{2}^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{\star}\right\|_{2}^{2}+t\left(t-\frac{2}{m+L}\right)\|\nabla f(x)\|_{2}^{2} \\
& \leq\left(1-t \frac{2 m L}{m+L}\right)\left\|x-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

(step 3 follows from result on p. 1-19)
distance to optimum

$$
\left\|x^{(k)}-x^{\star}\right\|_{2}^{2} \leq c^{k}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}, \quad c=1-t \frac{2 m L}{m+L}
$$

- implies (linear) convergence
- for $t=2 /(m+L)$, get $c=\left(\frac{\gamma-1}{\gamma+1}\right)^{2}$ with $\gamma=L / m$
bound on function value (from page 1-14),

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{L}{2}\left\|x^{(k)}-x^{\star}\right\|_{2}^{2} \leq \frac{c^{k} L}{2}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: \#iterations to reach $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ is $O(\log (1 / \epsilon))$

Limits on convergence rate of first-order methods

first-order method: any iterative algorithm that selects $x^{(k)}$ in

$$
x^{(0)}+\operatorname{span}\left\{\nabla f\left(x^{(0)}\right), \nabla f\left(x^{(1)}\right), \ldots, \nabla f\left(x^{(k-1)}\right)\right\}
$$

problem class: any function that satisfies the assumptions on page 1-20 theorem (Nesterov): for every integer $k \leq(n-1) / 2$ and every $x^{(0)}$, there exist functions in the problem class such that for any first-order method

$$
f\left(x^{(k)}\right)-f^{\star} \geq \frac{3}{32} \frac{L\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{(k+1)^{2}}
$$

- suggests $1 / k$ rate for gradient method is not optimal
- recent fast gradient methods have $1 / k^{2}$ convergence (see later)

References

- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004), section 2.1.
- B. T. Polyak, Introduction to Optimization (1987), section 1.4.
- the example on page 1-5 is from N. Z. Shor, Nondifferentiable Optimization and Polynomial Problems (1998), page 37.

