L. Vandenberghe EE236C (Spring 2013-14)

1. Gradient method

e gradient method, first-order methods
e quadratic bounds on convex functions

e analysis of gradient method
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Approximate course outline

first-order methods

e gradient, conjugate gradient, quasi-Newton methods
e subgradient, proximal gradient methods

e accelerated (proximal) gradient methods
decomposition and splitting

e first-order methods and dual reformulations

e alternating minimization methods

interior-point methods

e conic optimization

e primal-dual methods for symmetric cones

Gradient method
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Gradient method

to minimize a convex differentiable function f: choose z(?) and repeat

p(F) = pk=1) _ thf(w(k_l)), k=1,2,...

step size rules

e fixed: t;, constant
e backtracking line search
e exact line search: minimize f(x —tV f(z)) over t

advantages of gradient method

e every iteration Is inexpensive

e does not require second derivatives

Gradient method
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Quadratic example

fa)= (@l +72)  (r> 1)

with exact line search, (%) = (v, 1)

X2

|2 — a2 _ (2 1>k
2@ =2, ~ \y+1

gradient method is often slow; very dependent on scaling
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Nondifferentiable example

_ T+l

Vv1+7y

with exact line search, z(0) = (7, 1), converges to non-optimal point

fl@) = /ot + 723 (lwof <a1),  fla) (2] > 1)

2

X2
o

gradient method does not handle nondifferentiable problems
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First-order methods

address one or both disadvantages of the gradient method
methods with improved convergence
e quasi-Newton methods

e conjugate gradient method

e accelerated gradient method

methods for nondifferentiable or constrained problems

e subgradient method
e proximal gradient method
e smoothing methods

e cutting-plane methods

Gradient method
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Outline

e gradient method, first-order methods
e quadratic bounds on convex functions

e analysis of gradient method



Convex function

f is convex if dom f is a convex set and Jensen's inequality holds:

fllz+(1-0)y) <0f(z)+(1-0)f(y) Y,y €dom/f, §¢€[0,1]

first-order condition

for (continuously) differentiable f, Jensen’s inequality can be replaced with

fy) = f(z) + Vf(z)" (y —2) Vz,y € dom f

second-order condition

for twice differentiable f, Jensen’s inequality can be replaced with

V2f(z) =0 Vz € dom f
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Strictly convex function

f is strictly convex if dom f is a convex set and
F(0x+(1—0)y) < 0f (@) +(1-0)f(y) Va,ycdomf, z+y, 0 (0,1)
hence, if a minimizer of f exists, it is unique

first-order condition

for differentiable f, strict Jensen's inequality can be replaced with

fy) > f(2) + Vf(2)" (y—2) Vo,yedomf.x#y

second-order condition

note that VZf(x) = 0 is not necessary for strict convexity (cf., f(z) = x*)
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Monotonicity of gradient

differentiable f is convex if and only if dom f is convex and
(Vf(x) = V() (@—y) 20 Vz,ycdom

i.e., Vf: R" — R" is a monotone mapping

differentiable f is strictly convex if and only if dom f is convex and

(Vf(z) = Viy) (z—y) >0 Vo,ycdomf, z#y

i.e., Vf : R" — R" is a strictly monotone mapping
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proof

e if f is differentiable and convex, then

fy) = f@)+ Vi) (y—2), fl@)=>fy)+Viy)' (@—y)

combining the inequalities gives (Vf(z) — Vf(y))!(x —y) > 0

e if Vf is monotone, then ¢’'(t) > ¢'(0) for t > 0 and ¢ € dom g, where

g(t) = flz +tly—2)), )=V flz+tly—=2))" (y—2)
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Lipschitz continuous gradient

gradient of f is Lipschitz continuous with parameter L > 0 if

IVf(z) = VYl < Lz —yl2 Vr,y € dom f

e note that the definition does not assume convexity of f

e we will see that for convex f with dom f = R", this is equivalent to

L
axT:z: — f(x) is convex

(i.e., if f is twice differentiable, VZf(x) < LI for all x)
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Quadratic upper bound

suppose V f is Lipschitz continuous with parameter L and dom f is convex
e then g(z) = (L/2)z'z — f(x), with dom g = dom f, is convex

e convexity of g is equivalent to a quadratic upper bound on f:

F() < (@) + VI @)y~ ) + 5]y~ 2l} Va,y € dom f

Fw) T, f(2)
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proof

e Lipschitz continuity of V f and Cauchy-Schwarz inequality imply
(Vi) =V () (z—-y) < Llz—yl3 Vr,y € dom f

this is monotonicity of the gradient Vg(z) = Lx — V f(x)

e hence, g is a convex function if its domain dom g = dom f is convex

e the quadratic upper bound is the first-order condition for convexity of g

9(y) > g(z) + Vg(z)' (y —x) Vz,y € domg
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Consequence of quadratic upper bound

if dom f = R" and f has a minimizer x*, then

L
V@R < f@) ~ f@) < Sle— 23 Va

e right-hand inequality follows from quadratic upper bound at x = x*

e left-hand inequality follows by minimizing quadratic upper bound

fe) <t (f@)+ Vi@ -0+ - lp)

= f(@) ~ 57 IV (@)

minimizer of upper bound is y =z — (1/L)V f(x) because dom f = R"
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Co-coercivity of gradient

if fis convex with dom f = R" and (L/2)z'2z — f(x) is convex then

1
(V@) = VW) (@ —y) = ZIVI(@) = VI)l5 Yoy
this property is known as co-coercivity of V f (with parameter 1/L)

e co-coercivity implies Lipschitz continuity of V f (by Cauchy-Schwarz)

e hence, for differentiable convex f with dom f = R"

Lipschitz continuity of Vf = convexity of (L/2)z'x — f(x)
= co-coercivity of Vf
= Lipschitz continuity of V f

therefore the three properties are equivalent
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proof of co-coercivity: define convex functions f,, f, with domain R"™:
fo(2) = f(2) =V f(2)2,  fylz) = f(2) = V@) 2
the functions (L/2)z'z — f,(z) and (L/2)z"z — f,(z) are convex
e z = x minimizes f,(z); from the left-hand inequality on page 1-14,
fly) = f(@) = V@) (y—2) = fuly) = fol2)
> V()5

= Vi) - Vi)
e similarly, z = y minimizes f,(z); therefore
f@) ~ f) = Vi) (@~ v) > oV F) ~ V@)

combining the two inequalities shows co-coercivity
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Strongly convex function

f is strongly convex with parameter m > 0 if
g(x) = f(x) — %xT:c is convex
Jensen’s inequality: Jensen's inequality for g is
[+ (1= 0)y) < 6f(2) + (1= 6)f(y) — 50(1 = 6) [ — y]]3
monotonicity: monotonicity of Vg gives

(Vf(@)=Vfy) (z—y)>mlz—yl5 Vzr,ycdomf

this is called strong monotonicity (coercivity) of V f

second-order condition: V?f(z) = mI for all z € dom f
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Quadratic lower bound

from 1st order condition of convexity of g:

F(y) 2 [(@) + V(@) (y— ) + Zlly 2|} Vo,y € dom f

f(y)

(z, f(z))

e implies sublevel sets of f are bounded

o if fis closed (has closed sublevel sets), it has a unique minimizer z* and
m * (12 * 1 2
o llz =2tz = fz) = f(2%) = %I\Vf(iv)llg Vx € dom f
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Extension of co-coercivity

if f is strongly convex and V f is Lipschitz continuous, then
m
9(2) = fla) = Dl

is convex and Vg is Lipschitz continuous with parameter L — m

co-coercivity of g gives

(VI(x) = VFy)' (z—vy)

mL

> ——7 IVf(2) = Vil

|l — yll3 +

m + L

for all z,y € dom f
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Outline

e gradient method, first-order methods
e quadratic bounds on convex functions

e analysis of gradient method



Analysis of gradient method

e ®) = k=1 _ ¢, 7 f(2F~1), k=1,2,...

with fixed step size or backtracking line search

assumptions

1. f is convex and differentiable with dom f = R"
2. Vf(x) is Lipschitz continuous with parameter L > 0

3. optimal value f* =inf, f(x) is finite and attained at z*
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Analysis for constant step size

from quadratic upper bound (page 1-12) with y = = — tV f(x):

Lt
1 — —
2

flaz =tV f(z)) < f(z) — 1 NV F ()]l

therefore, if 27 =2 —tVf(z) and 0 <t < 1/L,
fat) < fl@) - IVi@)B
< PV )~ V)

_ * 1 x12 R 2
= 5 (le =213 - o —a* - 9 f@)]3)

L1
= o (o=l = et -2 ))
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take z = 20—V, 2t = 2®) ¢, = ¢, and add the bounds fori =1,...,k:

k k
1 * 1 1 * 1 *
S (Fa =) < 23 (1207 =2t 3 — 0@ - 2*)3)
=1 1=1
= 2 (12— 2*3 ~ 2 — *|3)
-2t 2
< o le® — a3
-2t
since f(z(") is non-increasing,
k
1 1 .
FE) =17 3 2 U6 = 1) = gl = I

conclusion: #iterations to reach f(z*)) — f* < ¢eis O(1/¢)
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Backtracking line search

initialize ¢, at ¢ > 0 (for example, ¢ = 1); take tj, := St;, until

flz =tV f2)) < f(z) = atp|Vf(2)]]3

flz =tV f(z))

(@) — atl| V@)
t

0 < B < 1; we will take @ = 1/2 (mostly to simplify proofs)
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Analysis for backtracking line search

line search with &« = 1/2 if f has a Lipschitz continuous gradient

JF@) =0 = V@)

flz =tV f(z))

t=1/L

selected step size satisfies ¢, > t,,in = min{t, 3/L}
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convergence analysis

e from page 1-21:

. 1 . .
F@) < ft o (I =23 — e - 2)3)
* 1 1— * ) *

< Ftg— (I =23 - 2 - 2)3)

e add the upper bounds to get

?rlr—l

(k) : L0 2
fa < 52U ) < e — 273

conclusion: same 1/k bound as with constant step size
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Gradient method for strongly convex functions

better results exist if we add strong convexity to the assumptions on
p. 1-20

analysis for constant step size

if et =2 —tVf(x) and 0 <t < 2/(m+ L):

lz* =23 = [z —tVf(z)—z*|3
= |z —a*3 -2tV f(a)" (z —2*) + 2|V f(2)]3
2mL 2
< 1 — L ax]]2 . 2
< (-t - B+t - — )V @)
2mL .
< (-t e - a3

(step 3 follows from result on p. 1-19)

Gradient method 1-26



distance to optimum

2mL
m + L

|2 — 2|5 < Flla'® — 23, e=1-t
e implies (linear) convergence

2
v—1 .
o fort=2/(m+ L), getc=(——| withy=L/m
/( ). 8 (v+1> v=1L/

bound on function value (from page 1-14),

L
F®) = < Zle® — 73 < S - 27|

conclusion: #iterations to reach f(z*)) — f* < eis O(log(1/¢))
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Limits on convergence rate of first-order methods

first-order method: any iterative algorithm that selects z(*) in

2O 4 span{V (=), Vf(=M),..., Vfz*1)}

problem class: any function that satisfies the assumptions on page 1-20

theorem (Nesterov): for every integer k < (n — 1)/2 and every z(?), there
exist functions in the problem class such that for any first-order method

3 L]z — 2|3

)y _
f@) = 2 s ke

e suggests 1/k rate for gradient method is not optimal

e recent fast gradient methods have 1/k? convergence (see later)
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