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Regularized multi-convex optimization

Model

minimize
x

F (x1, · · · ,xs) ≡ f(x1, · · · ,xs) +

s∑
i=1

ri(xi),

where

1. f is differentiable and multi-convex, generally non-convex;

e.g., f(x1, x2) = x2
1x

2
2 + 2x2

1 + x2;

2. each ri is convex, possibly non-smooth; e.g., ri(xi) = ‖xi‖1;

3. ri is defined on R ∪∞; it can enforce xi ∈ Xi by setting

ri(xi) = δXi(xi) =

 0, if xi ∈ Xi,

∞, otherwise.



Applications

• Low-rank matrix recovery (Recht et. al, 2010)

minimize
X,Y

‖A(XY)−A(M)‖2 + α‖X‖2F + β‖Y‖2F

• Sparse dictionary learning (Mairal et. al, 2009)

minimize
D,X

1

2
‖DX−Y‖2F + λ

∑
i

‖xi‖1, subject to ‖dj‖2 ≤ 1, ∀j;

• Blind source separation (Zibulevsky and Pearlmutter, 2001)

minimize
A,Y

1

2
‖AYB−X‖2F + λ‖Y‖1, subject to ‖aj‖2 ≤ 1,∀j;

• Nonnegative matrix factorization (Lee and Seung, 1999)

minimize
X,Y

‖M−XY‖2F , subject to X ≥ 0,Y ≥ 0;

• Nonnegative tensor factorization (Welling and Weber, 2001)

minimize
A1,··· ,AN≥0

‖M−A1 ◦A2 ◦ · · · ◦AN‖2F ;



Challenges

Non-convexity and non-smoothness cause

1. tricky convergence analysis;

2. expensive updates to all variables simultaneously.

Goal: to develop an efficient algorithm with simple update and global

convergence (of course, to a stationary point)
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Framework of block coordinate descent (BCD)1

minimize
x

F (x1, · · · ,xs) ≡ f(x1, · · · ,xs) +

s∑
i=1

ri(xi)

Algorithm 1 Block coordinate descent

Initialization: choose (x0
1, · · · ,x0

s)

for k = 1, 2, · · · do

for i = 1, 2, · · · , s do

update xki with all other blocks fixed

end for

if stopping criterion is satisfied then

return (xk1 , · · · ,xks ).

end if

end for

Throughout iterations, each block xi is updated by one of the three update

schemes (coming next...)

1block coordinate update (BCU) is perhaps a more accurate name



Scheme 1: block minimization

The most-often used update:

xki = argmin
xi

F (xk<i, xi, xk−1
>i );

Existing results for differentiable convex F :

• Differentiable F and bounded level set ⇒ objective converges to optimal value

(Warga’63);

• Further with strict convexity ⇒ sequence converges (Luo and Tseng’92);



Scheme 1: block minimization

Existing results for non-differentiable convex F :

• Non-differentiable F can cause stagnation at a non-critical point (Warga’63):
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F (x, y) = |x− y| −min(x, y), 0 ≤ x, y ≤ 1

Given y, minimizing F over x gives x = y.

Starting from any (x0, y0) and cyclically

updating x, y, x, y, · · · produces

xk = yk = y0, k ≥ 1.

• Non-smooth part is separable ⇒ subsequence convergence (i.e., exists a limit

point) (Tseng’93)



Scheme 1: block minimization

Existing results for non-convex F :

• May cycle or stagnate at a non-critical point (Powell’73):

F (x1, x2, x3) = −x1x2 − x2x3 − x3x1 +
3∑
i=1

[
(xi − 1)2

+ + (−xi − 1)2
+

]
Each F (xi) has the form (−a)xi +

[
(xi − 1)2

+ + (−xi − 1)2
+

]
.

Its minimizer: x∗i = sign(a)(1 + 0.5|a|).

Starting from (−1− ε, 1 + 1
2
ε,−1− 1

4
ε) with ε > 0, minimizing F over

x1, x2, x3, x1, x2, x3, · · · produces:

x1−→ (1 +
1

8
ε, 1 +

1

2
ε,−1−

1

4
ε)

x2−→ (1 +
1

8
ε,−1−

1

16
ε,−1−

1

4
ε)

x3−→ (1 +
1

8
ε,−1−

1

16
ε, 1 +

1

32
ε)

x1−→ (−1−
1

64
ε,−1−

1

16
ε, 1 +

1

32
ε)

x2−→ (−1−
1

64
ε, 1 +

1

128
ε, 1 +

1

32
ε)

x3−→ (−1−
1

64
ε, 1 +

1

128
ε,−1−

1

256
ε)



Scheme 1: block minimization

Remedies for non-convex F :

• F is differentiable and strictly quasiconvex over each block ⇒ limit point is a

critical point (Grippo and Sciandrone’00);

quasiconvex: F (λx + (1− λ)y) ≤ max(F (x), F (y)), ∀λ ∈ [0, 1]

• F is pseudoconvex over every two blocks and non-differentiable part is separable

⇒ limit point is a critical point (Tseng’01);

pseudoconvex: 〈g,y − x〉 ≥ 0, some g ∈ ∂F (x) ⇒ F (x) ≤ F (y)

There is not global convergence result.



Scheme 2: block proximal descent

Adding ‖xi − xk−1
i ‖22 gives better stability:

xki = argmin
xi

F (xk<i, xi, xk−1
>i ) +

Lk−1
i

2
‖xi − xk−1

i ‖2;

Convergence results require fewer assumptions on F :

• F is convex ⇒ objective converges to optimal value (Auslender’92);

• F is non-convex ⇒ limit point is stationary (Grippo and Sciandrone’00);

Non-smooth terms must still be separable. No global convergence for non-convex

F .

Also, it can reduce the “swamp effect”

of scheme 1 on tensor decomposition

(Navasca et. al, ’08)



Scheme 3: block proximal linear

Linearize f over block i and add
Lk−1

i
2
‖xi − x̂k−1

i ‖2:

xki = argmin
xi

〈∇if(xk<i, x̂
k−1
i ,xk−1

>i ),xi− x̂k−1
i 〉+ri(xi)+

Lk−1
i

2
‖xi − x̂k−1

i ‖2;

• Extrapolate x̂k−1
i = xk−1

i + ωk−1
i (xk−1

i − xk−2
i ) with weight ωk−1

i ≥ 0;

• Much easier than schemes 1 & 2; may have closed-form solutions for simple ri;

• Used in randomized BCD for differentiable convex problems (Nesterov’12);

• The update is less greedy than schemes 1 & 2, causes more iterations, but may

save total time;

• Empirically, the “relaxation” tend to avoid “shallow-puddle” local minima better

than schemes 1 & 2.



Comparisons

1. Block coordinate minimization (scheme 1) is mostly used

• May generally cycle or stagnate at a non-critical point (Powell’73);

• Globally convergent for strictly convex problem (Luo and Tseng’92);

• For non-convex problem, each limit point is a critical point if each

subproblem has unique solution and objective is regular (Tseng’01);

• Global convergence for non-convex problems is unknown;

2. Block proximal (scheme 2) can stabilize iterates

• Each limit point is a critical point (Grippo and Sciandrone’00);

• Global convergence for non-convex problems is unknown;

3. Block proximal linearization (scheme 3) is often easiest

• Very few works use this scheme for non-convex problems yet;

• Related to the coordinate gradient descent method (Tseng and Yun’09).



Why different update schemes?

• They deal with subproblems of different properties;

• Implementations are easier for many applications;

• Schemes 2 & 3 may save total time than scheme 1;

• Convergence can be analyzed in a unified way.

Example: sparse dictionary learning

minimize
D,X

1

2
‖DX−Y‖2F + ‖X‖1, subject to ‖D‖F ≤ 1

apply scheme 1 to D and scheme 3 to X; both are closed-form.



Convergence results



Assumptions

minimize
x

F (x1, · · · ,xs) ≡ f(x1, · · · ,xs) +

s∑
i=1

ri(xi)

Assumption 1. Continuous, lower-bounded, and ∃ a stationary point.

Assumption 2. Each block uses only one update scheme throughout, and

1. block using scheme 1: subproblem is strongly convex with modulus Lki ;

2. block using scheme 3: subproblem has Lipschitz continuous gradient.

Assumption 3. ∃ 0 < ` ≤ L <∞ such that ` ≤ Lki ≤ L, ∀i, k.

Assumptions 1–3 are assumed for all results below.



Convergence results

Lemma 2.2 Let {xk} be the sequence generated by BCD. If block i is updated

by scheme 3, the extrapolation weight is controlled as 0 ≤ ωki ≤ δω
√

Lk−1
i

Lk
i

with δω < 1 for all k. Then,

∞∑
i=1

‖xk − xk+1‖2 <∞.

Theorem 2.1 (Limit point is stationary point) Under the assumptions of

Lemma 2.2, any limit point of {xk} is a stationary point.

As a trivial extension:

Theorem 2.2 (Isolated stationary points) If {xk} is bounded and the

stationary points are isolated, then xk converges to a stationary point.

Remark: The isolation condition of Theorem 2.2 is difficult to check. Existing

results considering non-convexity and/or non-smoothness have only

subsequence convergence. We need a better tool for global convergence.



Global convergence and rate

(using the Kurdyka- Lojasiewicz property)

Theorem 2.3: Let {xk} be the sequence of BCD. If block i is updated by

Scheme 3, assume 0 ≤ ωki ≤ δω
√

Lk−1
i

Lk
i

with δω < 1 for all k. Assume

F (xk) ≤ F (xk−1). If {xk} has a finite limit point x̄ and

|F (x)− F (x̄)|θ

dist(0, ∂F (x))
is bounded around x̄ for θ ∈ [0, 1), (1)

then

xk → x̄.

Theorem 2.4 (rate of convergence): In addition, in (1),

1. if θ = 0, xk converges to x̄ in finitely many iterations;

2. if θ ∈ (0, 1
2
], ‖xk − x̄‖ ≤ Cτk, ∀k, for certain C > 0, τ ∈ [0, 1);

3. if θ ∈ ( 1
2
, 1), ‖xk − x̄‖ ≤ Ck−(1−θ)/(2θ−1), ∀k, for certain C > 0.



The Kurdyka- Lojasiewicz (KL) property

Definition 2.9. ( Lojasiewicz’93) ψ(x) has the Kurdyka- Lojasiewicz (KL)

property if there exists θ ∈ [0, 1) such that

|ψ(x)− ψ(x̄)|θ

dist(0, ∂ψ(x))
(2)

is bounded around x̄.

History:

• Introduced by ( Lojasiewicz’93) on real analytic functions, for which the term with

θ ∈ [ 1
2
, 1) in (2) is bounded around any critical point x̄.

• (Kurdyka’98) extended the properties to functions on the o-minimal structure.

• (Bolte et. al ’07) extended the property to nonsmooth sub-analytic functions.



Functions satisfying the KL property

Real analytic functions (some θ ∈ [ 1
2
, 1)): ϕ(t) is analytic if

(
ϕ(k)(t)
k!

) 1
k

is bounded

for all k and on any compact set D ⊂ R. ψ(x) on Rn is analytic if ϕ(t) , ψ(x + ty)

is so for any x,y ∈ Rn.

Examples:

• Polynomial functions: ‖XY −M‖2F and ‖M−A1 ◦A2 ◦ · · · ◦AN‖2F ;

• Lq(x) =
∑n
i=1(x2

i + ε2)q/2 + 1
2λ
‖Ax− b‖2 with ε > 0;

• Logistic loss function

ψ(x) =
1

n

n∑
i=1

log
(

1 + e−ci(a
>
i x+b)

)
.

Locally strongly convex functions (θ = 1
2

): ψ(x) is strongly convex in a neighborhood

D with modulus µ, if for any γ(x) ∈ ∂ψ(x) and x,y ∈ D

ψ(y) ≥ ψ(x) + 〈γ(x),y − x〉+
µ

2
‖x− y‖2

Example:

• Logistic loss function: log(1 + e−t);



Semi-algebraic functions

D ⊂ Rn is a semi-algebraic set if it can be represented as

D =
s⋃
i=1

t⋂
j=1

{x ∈ Rn : pij(x) = 0, qij(x) > 0},

where pij , qij are real polynomial functions for 1 ≤ i ≤ s, 1 ≤ j ≤ t.

ψ is a semi-algebraic function if its graph

Gr(ψ) , {(x, ψ(x)) : x ∈ dom(ψ)}

is a semi-algebraic set.

Properties of semi-algebraic sets and functions:

1. If a set D is semi-algebraic, so is its closure cl(D).

2. If D1 and D2 are both semi-algebraic, so are D1 ∪ D2, D1 ∩ D2 and Rn\D1.

3. Indicator functions of semi-algebraic sets are semi-algebraic.

4. Finite sums and products of semi-algebraic functions are semi-algebraic.

5. The composition of semi-algebraic functions is semi-algebraic.



Functions satisfying the KL property (cont.)

Semi-algebraic functions: some θ ∈ [0, 1) in (2)

• Indicator functions of polyhedral sets: {x : Ax ≥ b};

• Polynomial functions: ‖XY −M‖2F and ‖M−A1 ◦A2 ◦ · · · ◦AN‖2F ;

• `1-norm ‖x‖1, sup-norm ‖x‖∞, and Euclidean norm ‖x‖;

• TV semi-norm ‖x‖TV ;

• Indicator functions of set of positive semidefinite matrices

• Finite sum, product or composition of all these functions.

Sum of real analytic and semi-algebraic functions: some θ ∈ [0, 1) in (2)

• Sparse logistic regression: 1
n

n∑
i=1

log
(

1 + e−ci(a
>
i x+b)

)
+ λ‖x‖1;



Examples of global convergence by BCD

• Low-rank matrix recovery (Recht et. al, 2010)

min
X,Y
‖A(XY)−A(M)‖22 + α‖X‖2F + β‖Y‖2F

• Sparse dictionary learning (Mairal et. al, 2009)

min
D,X

1

2
‖DX−Y‖2F + ‖X‖1 + δD(D); D = {D : ‖dj‖22 ≤ 1, ∀j}

• Blind source separation (Zibulevsky and Pearlmutter, 2001)

min
A,Y

λ

2
‖AYB−X‖2F + ‖Y‖1 + δA(A); A = {A : ‖aj‖22 ≤ 1,∀j}

• Nonnegative matrix factorization (Lee and Seung, 1999)

min
X,Y
‖M−XY‖2F + δRm×r

+
(X) + δRr×n

+
(Y);

• Nonnegative tensor factorization (Welling and Weber, 2001)

min
A1,··· ,AN

1

2
‖M−A1 ◦A2 ◦ · · · ◦AN‖2F +

N∑
n=1

δRIn×r
+

(An);



Numerical results



Part I: nonnegative matrix factorization (NMF)

Model:

minimize
X,Y

1

2
‖M−XY‖2F , subject to X ∈ Rm×r+ ,Y ∈ Rr×n+

Algorithms compared:

1. APG-MF (proposed): BCD with scheme 3, ωki = min

(
ω̂k,

√
Lk−1

i

Lk
i

)
, i = 1, 2,

where ω̂k =
tk−1−1

tk
and t0 = 1, tk = 1

2

√
1 + 4t2k−1; ω̂k used in FISTA (Beck

and Teboulle’09);

2. ADM-MF: alternating direction method for NMF (Y. Zhang’10);

3. Blockpivot-MF: BCD with block minimization (scheme 1); subproblems solved by

block principle pivoting method (Kim and Park’08);

4. Als-MF and Mult-MF: Matlab’s implementation.



Extrapolation accelerates convergence

• Extrapolation acceleration: ωki = min

(
ω̂k,

√
Lk−1

i

Lk
i

)
, i = 1, 2, where

ω̂k =
tk−1−1

tk
and t0 = 1, tk = 1

2

√
1 + 4t2k−1;

• No acceleration: ωki = 0, i = 1, 2;
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Comparison on synthetic data

• Random M = LR and L ∈ R500×30
+ ,R ∈ R30×1000

+ ;

• relerr =
‖M−XY‖F
‖M‖F

and running time (sec)
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Comparison on hyperspectral data

• 163× 150× 150 hyperspectral cube is reshaped to 22500× 163 matrix M
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Part II: Nonnegative 3-way tensor factorization

Model:

minimize
A1,A2,A3

1

2
‖M−A1 ◦A2 ◦A3‖2F , subject to An ∈ RIn×r+ , ∀n.

Compared algorithms

1. APG-TF (proposed) : BCD with scheme 3, ωki = min

(
ω̂k,

√
Lk−1

i

Lk
i

)
,

i = 1, 2, 3, where ω̂k =
tk−1−1

tk
and t0 = 1, tk = 1

2

√
1 + 4t2k−1;

2. AS-TF: BCD with scheme 1) subproblems solved by active set method (Kim et.

al, ’08);

3. Blockpivot-TF: BCD with scheme 1; subproblems solved by block principle

pivoting method (Kim and Park ’12);



Swimmer dataset2

Shashua and Hazan’05: NMF tends to form invariant parts as ghosts while NTF can

correctly resolve all parts

8 among 256 images

factors by NMF

factors by NTF

2Donoho and Stodden’03, When does non-negative matrix factorization give a correct

decomposition into parts



Comparison on the Swimmer dataset

32× 32× 256 nonnegative tensor M; run to 50 seconds; r set to 60;
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Part III: Nonnegative 3-way tensor completion

Compared algorithms

• APG-TC (proposed) solves

min
A,X

1

2
‖X −A1 ◦A2 ◦A3‖2F , s.t. PΩ(X ) = PΩ(M),An ∈ RIn×r+ , ∀n.

BCD with scheme 3 applied to A-subproblems and scheme 1 to X -subproblem;

• FaLRTC and HaLRTC (Liu et. al, ’12) solve

min
X

3∑
n=1

αn‖X(n)‖∗, subject to PΩ(X ) = PΩ(M) (3)

• FaLRTC first smoothes (3) and then applies an accelerated proximal

gradient method;

• HaLRTC applies an alternating direction method to (3).



Comparison on synthetic data

• Random M = L ◦C ◦R with L,C ∈ R50×20
+ and R ∈ R500×20

+ ;

• Compare relerr = ‖A1◦A2◦A3−M‖F
‖M‖F

for APG-TC and relerr = ‖X−M‖F
‖M‖F

for FaLRTC and HaLRTC; running time is in second

APG-TC (pros’d) APG-TC (pros’d)
FaLRTC HaLRTC

r = 20 r = 25

SR relerr time relerr time relerr time relerr time

0.10 1.65e-4 2.25e1 3.87e-4 4.62e1 3.13e-1 1.40e2 3.56e-1 2.55e2

0.30 1.06e-4 1.38e1 1.69e-4 3.65e1 1.73e-2 1.53e2 1.42e-3 2.24e2

0.50 1.01e-4 1.33e1 1.14e-4 3.46e1 1.14e-2 1.07e2 1.95e-4 1.17e2

Observation: APG-TC (proposed) gives lower errors and runs faster.



Summary

• Multi-convex optimization has very interesting applications;

• A 3-scheme block-coordinate descent method is introduced;

• The three schemes allow easy implementation and fast running time on

many applications;

• Global convergence and rate are established; the assumptions are met by

many applications;

• Applied BCD with prox-linear scheme to nonnegative matrix factorization,
nonnegative tensor factorization, and completion;

• Extrapolation significantly speeds up convergence;

• BCD based on scheme 3 (or hybrid schemes 1 & 3) is much faster than the

current state-of-the-art solvers and achieves lower objectives.
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