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Regularized multi-convex optimization

Model
minimize F(x1, - ,Xs) = f(x1, -+ ,Xs) + ZT’i(Xi),

xX
where
1. f is differentiable and multi-convex, generally non-convex;
e.g., f(x1,m2) = xiad + 227 + xo;

2. each r; is convex, possibly non-smooth; e.g., 7i(x:) = ||x||1;

3. r; is defined on R U oo; it can enforce x; € X; by setting

07 if X; € Xz‘7
ri(xi) = 0x; (xi) =
o0,  otherwise.



Applications

Low-rank matrix recovery (Recht et. al, 2010)

minimize | AXY) — AM)|* + ol X||% + BIY |7

Sparse dictionary learning (Mairal et. al, 2009)

R | 2 . )
ml%lgl(lze §||DX -Y|++ /\Z [|x:]|1, subject to ||dj]l2 < 1,Vj;
1

Blind source separation (Zibulevsky and Pearlmutter, 2001)

1 .
mi%ir\r}ize 5“AYB — X% + AIY|l1, subject to [|la’||2 < 1,V5;

Nonnegative matrix factorization (Lee and Seung, 1999)

minimize | M — XY|%, subject to X >0,Y > 0;

Nonnegative tensor factorization (Welling and Weber, 2001)

M — Ay oAgo---oANH%;

minimize
Ay, AN>0



Challenges

Non-convexity and non-smoothness cause

1. tricky convergence analysis;

2. expensive updates to all variables simultaneously.



Challenges

Non-convexity and non-smoothness cause

1. tricky convergence analysis;

2. expensive updates to all variables simultaneously.

Goal: to develop an efficient algorithm with simple update and global
convergence (of course, to a stationary point)



Framework of block coordinate descent (BCD)!

minimize F(x1, - ,Xs) = f(x1, "+ ,Xs) + Zm(xi)
x =1

Algorithm 1 Block coordinate descent

Initialization: choose (x{,---,x?)

for k=1,2,--- do
fori=1,2,---,sdo

update x¥ with all other blocks fixed

end for
if stopping criterion is satisfied then
return (x5, ,x%).
end if
end for

Throughout iterations, each block x; is updated by one of the three update
schemes (coming next...)

Iblock coordinate update (BCU) is perhaps a more accurate name



Scheme 1: block minimization

The most-often used update:

ko in F(x" k—1y.
x; = argmin F(XZ;, x;, X3, );

X

Existing results for differentiable convex F':

o Differentiable F' and bounded level set = objective converges to optimal value
(Warga'63);

e Further with strict convexity = sequence converges (Luo and Tseng'92);



Scheme 1: block minimization

Existing results for non-differentiable convex F:

¢ Non-differentiable F' can cause stagnation at a non-critical point (Warga'63):
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F(z,y) = |z — y| — min(z,y),0 < z,y < 1

Given y, minimizing F' over = gives x = y.
Starting from any (2, 4°) and cyclically

updating =, y,z,y, - - - produces

b =yF =40 k>1

e Non-smooth part is separable = subsequence convergence (i.e., exists a limit

point) (Tseng'93)



Scheme 1: block minimization

Existing results for non-convex F:

e May cycle or stagnate at a non-critical point (Powell'73):

3
F(z1,22,73) = —2172 — 2233 — 2371 + »_ (2 — 1) + (=2 — 1)7]
=1

Each F(z;) has the form (—a)z; + [(z; — 1)3_ + (—z; —1)3].
Its minimizer: =} = sign(a)(1+ 0.5/al).

Starting from (—1 —¢,1+ %e, —-1-— ie) with € > 0, minimizing F over

r1,%2,%3,T1,T2,x3, - produces:
%(1+ée,1+%e,717%) 3(14%6,717%66,717%)
%’(1+ée,717%e,1+3i2e) &(7176%6,717%65,1+$)
%(7176%15,1+ 1;8 1+§ )3’(7176%‘6,1+1;—8e,71 2;6 €)



Scheme 1: block minimization

Remedies for non-convex F:

e F'is differentiable and strictly quasiconvex over each block = limit point is a
critical point (Grippo and Sciandrone’00);

quasiconvex: F(Ax + (1 — \)y) < max(F(x), F(y)), VA € [0,1]

e F'is pseudoconvex over every two blocks and non-differentiable part is separable
= limit point is a critical point (Tseng'01);

pseudoconvex: (g,y —x) > 0, some g € OF(x) = F(x) < F(y)

There is not global convergence result.



Scheme 2: block proximal descent
Adding |x; — x"71||3 gives better stability:

k—1

k . k k—1 L;

x; = argmin F'(x2,, x;, X3; )+ 12
Xj

) k—1)2.
llxi — =511
Convergence results require fewer assumptions on F:

e F is convex = objective converges to optimal value (Auslender'92);

e Fis non-convex = limit point is stationary (Grippo and Sciandrone’00);

Non-smooth terms must still be separable. No global convergence for non-convex

F.

10°
1 +— ALS
10
10°
" Also, it can reduce the “swamp effect”
o | ; of scheme 1 on tensor decomposition
0 - (Navasca et. al, '08)
10

N
10° \ ﬁ
. ;



Scheme 3: block proximal linear

~k 1”2
k k=1 _k—1 k-1 k_l k=12
xi = argmin (Vi f (x%;, %, x5, % =% +ri(xi) -% %
X3
e Extrapolate )Acf_l = xf_l + wf_l(xf_l - xf_Q) with weight wf_l >0

® Much easier than schemes 1 & 2; may have closed-form solutions for simple 7;;
e Used in randomized BCD for differentiable convex problems (Nesterov'12);

® The update is less greedy than schemes 1 & 2, causes more iterations, but may
save total time;

e Empirically, the “relaxation” tend to avoid “shallow-puddle” local minima better
than schemes 1 & 2.



Comparisons

1. Block coordinate minimization (scheme 1) is mostly used

e May generally cycle or stagnate at a non-critical point (Powell'73);
e Globally convergent for strictly convex problem (Luo and Tseng'92);
e For non-convex problem, each limit point is a critical point if each

subproblem has unique solution and objective is regular (Tseng'01);
e Global convergence for non-convex problems is unknown;

2. Block proximal (scheme 2) can stabilize iterates

e Each limit point is a critical point (Grippo and Sciandrone’00);
e Global convergence for non-convex problems is unknown;

3. Block proximal linearization (scheme 3) is often easiest

e Very few works use this scheme for non-convex problems yet;
e Related to the coordinate gradient descent method (Tseng and Yun'09).



Why different update schemes?

They deal with subproblems of different properties;

Implementations are easier for many applications;

Schemes 2 & 3 may save total time than scheme 1;

o Convergence can be analyzed in a unified way.

Example: sparse dictionary learning
1 .
mirlljir)r(lize §||DX —Y||% 4 ||X]|1, subject to |D||r <1

apply scheme 1 to D and scheme 3 to X; both are closed-form.



Convergence results



Assumptions

X

minimize F'(x1, - ,Xs) = f(x1,- -+ ,Xs) +Z7’i(xi)

Assumption 1. Continuous, lower-bounded, and 3 a stationary point.

Assumption 2. Each block uses only one update scheme throughout, and

1. block using scheme 1: subproblem is strongly convex with modulus L¥;

2. block using scheme 3: subproblem has Lipschitz continuous gradient.

Assumption 3. 30 < ¢ < L < oo such that £ < Lf < L,Vi,k.

Assumptions 1-3 are assumed for all results below.



Convergence results

Lemma 2.2 Let {x"*} be the sequence generated by BCD. If block i is updated

by scheme 3, the extrapolation weight is controlled as 0 < wf < §,,
with d, < 1 for all k. Then,

oo
Z [x* — x"T? < oo.
i=1

Theorem 2.1 (Limit point is stationary point) Under the assumptions of

Lemma 2.2, any limit point of {x"} is a stationary point.

As a trivial extension:

Theorem 2.2 (Isolated stationary points) If {x*} is bounded and the
stationary points are isolated, then x* converges to a stationary point.

Remark: The isolation condition of Theorem 2.2 is difficult to check. Existing
results considering non-convexity and/or non-smoothness have only

subsequence convergence. We need a better tool for global convergence.



Global convergence and rate
(using the Kurdyka-tojasiewicz property)

Theorem 2.3: Let {xk} be the sequence of BCD. If block i is updated by
k—1
Scheme 3, assume 0 < w¥ < §,, sz with &, < 1 for all k. Assume

F(x*) < F(x*7"). If {x"} has a finite limit point X and

[F(x) — F()|’

dist(0, OF (x)) is bounded around x for 6 € [0, 1),

then

x" = x.
Theorem 2.4 (rate of convergence): In addition, in (1),

1. if 0 = 0, x® converges to X in finitely many iterations;
2. if 0 € (0, 3], [|x" —x|| < C7*, Vk, for certain C > 0, 7 € [0,1);
3.if0e(3,1), |x" —x| < Ck~U=9/C7D v for certain C' > 0.




The Kurdyka-tojasiewicz (KL) property

Definition 2.9. (Lojasiewicz'93) (x) has the Kurdyka-tojasiewicz (KL)
property if there exists 6 € [0, 1) such that

[¥(x) —(x)|°
dist(0, 9y (x)) (2)

is bounded around x.

History:

e Introduced by (Lojasiewicz'93) on real analytic functions, for which the term with
0c [%, 1) in (2) is bounded around any critical point X.
e (Kurdyka'98) extended the properties to functions on the o-minimal structure.

e (Bolte et. al '07) extended the property to nonsmooth sub-analytic functions.



Functions satisfying the KL property

. . 1 . ) % .
Real analytic functions (some 6 € [5,1)): o(t) is analytic if | *—r= is bounded

for all k and on any compact set D C R. 1(x) on R™ is analytic if ¢(t) £ ¥ (x + ty)
is so for any x,y € R".

Examples:
e Polynomial functions: | XY — M||% and M — Ajo0Azo0---0Ax|%;
o Ly(x) =30 (22 +2)9/2 + %HAX — b||2 with € > 0;
® Logistic loss function

Vx) = % log (1 + e—Ci<aIx+b>)
n

i=1
Locally strongly convex functions (6 = %) (%) is strongly convex in a neighborhood
D with modulus g, if for any v(x) € 9¢(x) and x,y € D
o
P(y) 2 %) + (1(x),y —x) + Sllx - ylI?
Example:

o Logistic loss function: log(1 + e~%);



Semi-algebraic functions

D C R™ is a semi-algebraic set if it can be represented as

s t
D= [ {x€R":pij(x) =0,qi;(x) > 0},
i=1j=1

where p;;, q;; are real polynomial functions for 1 <i <s, 1 <j <t

1 is a semi-algebraic function if its graph

Gr(y) = {(x,¢(x)) : x € dom(¥)}

is a semi-algebraic set.

Properties of semi-algebraic sets and functions:

If a set D is semi-algebraic, so is its closure cl(D).
If D1 and Dy are both semi-algebraic, so are D1 U Dy, D1 N D2 and R™\D;.
Indicator functions of semi-algebraic sets are semi-algebraic.

Finite sums and products of semi-algebraic functions are semi-algebraic.

o Bk N

The composition of semi-algebraic functions is semi-algebraic.



Functions satisfying the KL property (cont.)

Semi-algebraic functions: some 6 € [0,1) in (2)

e |Indicator functions of polyhedral sets: {x : Ax > b};
e Polynomial functions: | XY —M]|% and M — Ajo0Az0---0Ay|%;

£1-norm ||x||1, sup-norm ||x||oc, and Euclidean norm ||x||;

e TV semi-norm ||x||7v;

Indicator functions of set of positive semidefinite matrices

e Finite sum, product or composition of all these functions.

Sum of real analytic and semi-algebraic functions: some 6 € [0,1) in (2)

n
e Sparse logistic regression: == > log (1 + e_c'i(a?x+b)) + Alx|l1;
i=1

1
n



Examples of global convergence by BCD

Low-rank matrix recovery (Recht et. al, 2010)

min [|AXY) — AM)[3 + ol X% + BIY 17

Sparse dictionary learning (Mairal et. al, 2009)

L1 .
win S IDX = Y + X[ +9p(D); D ={D [ld;3 < 1,7}

Blind source separation (Zibulevsky and Pearlmutter, 2001)

LA ; .
win SIAYB = X|[3 + [ +5.4(A); A ={A: a3 < 1,9}

Nonnegative matrix factorization (Lee and Seung, 1999)

. 2 .
)I‘gl{l_ HM - XY”F +6R$XT(X) +(5R:—><n(Y),

Nonnegative tensor factorization (Welling and Weber, 2001)

N
1
in  Z|M—Aj0Azo---0Ap|? 5 1w (An);
Al,”-[-l-”,“ANz”M 10Az0:-0 NIIF+7§L:1 Ri”x( n);



Numerical results



Part I: nonnegative matrix factorization (NMF)

Model:

1 . m s T n
mir)l(ir{(lize §HM — XY||%, subject to X € RT*", Y € R}

Algorithms compared:

E—1
1. APG-MF (proposed): BCD with scheme 3, wf = min (&k, Li > i=1,2,

i

where & = 22171 and 4o = 1,4, = 1, /1+ 42 & used in FISTA (Beck
T 2 k—1
and Teboulle’09);

2. ADM-MF: alternating direction method for NMF (Y. Zhang'10);

3. Blockpivot-MF: BCD with block minimization (scheme 1); subproblems solved by
block principle pivoting method (Kim and Park’08);

4. Als-MF and Mult-MF: Matlab’s implementation.



Extrapolation accelerates convergence

E—1
. . R N [ L; )
Extrapolation acceleration: wf = min <wk, £k> ,5=1,2, where
i

W = 7tk_tllc_l and tg = 1, = %1/1 +4ti71;

No acceleration: wf =0,t=1,2

Relative Error

accelerated
————— no acceleration

10 . . . . n n
0 200 400 600 800 1000 1200 1400 1600

Iterations



Comparison on synthetic data

e Random M = LR and L € R37°*%* R € R30%10%0;

e relerr = % and running time (sec)
10% ‘ ‘ ‘ ‘ ‘ ‘
APG-MF (proposed)
I R RERR ADM-MF
e e Blockpivot-MF
- = = Als-MF
e L= = Mult-MF
<]
=
L
)
=
8
[]
o - —————
1075 L L L L L L
0 10 20 30 40 50 60

Running time

running time is second



Comparison on hyperspectral data

® 163 x 150 x 150 hyperspectral cube is reshaped to 22500 x 163 matrix M

10° ‘ ‘ ‘ : : :

APG-MF (proposed)
A R ADM-MF
= = = Blockpivot-MF

Relative Error

10 " " " " " "
0 20 40 60 80 100 120

Running time (sec)



Part IlI: Nonnegative 3-way tensor factorization

Model:

minimize fHM A0 Ajo AslF, subject to A, € R, vn.
A1,Az,A3

Compared algorithms

Lk

i=1,2,3, where &) = tk’t’t_l and tg = 1, = 71/1+4tk :

2. AS-TF: BCD with scheme 1) subproblems solved by active set method (Kim et.
al, '08);

F—1
1. APG-TF (proposed) : BCD with scheme 3, wf = min (&;k, Ly >

3. Blockpivot-TF: BCD with scheme 1; subproblems solved by block principle
pivoting method (Kim and Park '12);



Swimmer dataset?

Shashua and Hazan’05: NMF tends to form invariant parts as ghosts while NTF can

correctly resolve all parts

8 among 256 i |mages

2Donoho and Stodden’03, When does non-negative matrix factorization give a correct
decomposition into parts



Comparison on the Swimmer dataset

32 x 32 x 256 nonnegative tensor M; run to 50 seconds; r set to 60;

10° 10°
\
) S\
10 10 -
1
o - f APG-TF (propos
SR e .,
5 5 10
© ©
= =
8 0 8 0
E 10 E 10
10 10
10° 10°
o 10 20 30 a0 50 o
Running Time
10° 10°
\
F T Nl 10"
1
= PG-TF (proposed) =
2 1o : ASTTE 2 1o
i ' Blockpivot-TF i}
o v ©
= \ =
% 107 See % 107
@ Semiail, o
10 10
107 107
o 10 20 30 40 50 o 10 20 30 40 50

Running Time Running Time



Part Ill: Nonnegative 3-way tensor completion

Compared algorithms
e APG-TC (proposed) solves
.1
min SI1X —AioAz0 As|%, st. Po(X) = Po(M), A, € RIVXT vn.
BCD with scheme 3 applied to A-subproblems and scheme 1 to X’-subproblem;

e FaLRTC and HaLRTC (Liu et. al, '12) solve

3
min n; an[[X )l subject to Po(X) = Po(M) ®)

e FaLRTC first smoothes (3) and then applies an accelerated proximal
gradient method,;

e HalLRTC applies an alternating direction method to (3).



Comparison on synthetic data

e Random M = Lo CoR with L,C € R?**" and R € R}"***’;

o Compare relerr

= lA10A2085=MIlp g5 APG-TC and relerr = [X Ml

M7 M7
for FaLRTC and HaLRTC; running time is in second
APG-TC 'd APG-TC 'd
(pros'd) (pros'd) FaLRTC HaLRTC
r =20 r=25
SR relerr time relerr time relerr time relerr time
0.10 1.65e-4 2.25el | 3.87e-4 4.62el | 3.13e-1 1.40e2 | 3.56e-1 2.55e2
0.30 1.06e-4 1.38el | 1.69e-4 3.65el | 1.73e-2 1.53e2 | 1.42e-3 2.24e2
0.50 || 1.0le-4 1.33el | 1.14e-4 3.46el | 1.14e-2 1.07e2 | 1.95e-4 1.17e2

Observation: APG-TC (proposed) gives lower errors and runs faster.




Summary

Multi-convex optimization has very interesting applications;

A 3-scheme block-coordinate descent method is introduced;

e The three schemes allow easy implementation and fast running time on
many applications;

Global convergence and rate are established; the assumptions are met by

many applications;

Applied BCD with prox-linear scheme to nonnegative matrix factorization,
nonnegative tensor factorization, and completion;

e Extrapolation significantly speeds up convergence;

e BCD based on scheme 3 (or hybrid schemes 1 & 3) is much faster than the
current state-of-the-art solvers and achieves lower objectives.
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