Block Coordinate Descent for Regularized Multi-convex Optimization

Yangyang Xu and Wotao Yin

CAAM Department, Rice University

February 12, 2013

Outline

Multi-convex optimization
Model definition
Applications
Algorithms and existing convergence results
Algorithm framework
Three block-update schemes
Convergence
Subsequence convergence
Global convergence and rate
Kurdyka-Łojasiewicz (KL) property
Numerical experiments
Nonnegative matrix factorization
Nonnegative 3-way tensor factorization
Nonnegative 3-way tensor completion
Conclusions

Slides, paper, and matlab demos at: www.caam.rice.edu/~optimization/bcu

Regularized multi-convex optimization

Model

$$
\underset{\mathbf{x}}{\operatorname{minimize}} F\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right) \equiv f\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right)+\sum_{i=1}^{s} r_{i}\left(\mathbf{x}_{i}\right)
$$

where

1. f is differentiable and multi-convex, generally non-convex;

$$
\text { e.g., } f\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}^{2}+2 x_{1}^{2}+x_{2}
$$

2. each r_{i} is convex, possibly non-smooth; e.g., $r_{i}\left(\mathbf{x}_{i}\right)=\left\|\mathbf{x}_{i}\right\|_{1}$;
3. r_{i} is defined on $\mathbb{R} \cup \infty$; it can enforce $\mathbf{x}_{i} \in \mathcal{X}_{i}$ by setting

$$
r_{i}\left(\mathbf{x}_{i}\right)=\delta_{\mathcal{X}_{i}}\left(\mathbf{x}_{i}\right)= \begin{cases}0, & \text { if } \mathbf{x}_{i} \in \mathcal{X}_{i} \\ \infty, & \text { otherwise }\end{cases}
$$

Applications

- Low-rank matrix recovery (Recht et. al, 2010)

$$
\underset{\mathbf{X}, \mathbf{Y}}{\operatorname{minimize}}\|\mathcal{A}(\mathbf{X Y})-\mathcal{A}(\mathbf{M})\|^{2}+\alpha\|\mathbf{X}\|_{F}^{2}+\beta\|\mathbf{Y}\|_{F}^{2}
$$

- Sparse dictionary learning (Mairal et. al, 2009)

$$
\underset{\mathbf{D}, \mathbf{X}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{D} \mathbf{X}-\mathbf{Y}\|_{F}^{2}+\lambda \sum_{i}\left\|\mathbf{x}_{i}\right\|_{1}, \text { subject to }\left\|\mathbf{d}_{j}\right\|_{2} \leq 1, \forall j
$$

- Blind source separation (Zibulevsky and Pearlmutter, 2001)

$$
\underset{\mathbf{A}, \mathbf{Y}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{A Y B}-\mathbf{X}\|_{F}^{2}+\lambda\|\mathbf{Y}\|_{1}, \text { subject to }\left\|\mathbf{a}^{j}\right\|_{2} \leq 1, \forall j ;
$$

- Nonnegative matrix factorization (Lee and Seung, 1999)

$$
\underset{\mathbf{X}, \mathbf{Y}}{\operatorname{minimize}}\|\mathbf{M}-\mathbf{X Y}\|_{F}^{2}, \text { subject to } \mathbf{X} \geq 0, \mathbf{Y} \geq 0
$$

- Nonnegative tensor factorization (Welling and Weber, 2001)

$$
\underset{\mathbf{A}_{1}, \cdots, \mathbf{A}_{N} \geq 0}{\operatorname{minimize}}\left\|\boldsymbol{M}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \cdots \circ \mathbf{A}_{N}\right\|_{F}^{2} ;
$$

Challenges

Non-convexity and non-smoothness cause

1. tricky convergence analysis;
2. expensive updates to all variables simultaneously.

Challenges

Non-convexity and non-smoothness cause

1. tricky convergence analysis;
2. expensive updates to all variables simultaneously.

Goal: to develop an efficient algorithm with simple update and global convergence (of course, to a stationary point)

Framework of block coordinate descent (BCD) ${ }^{1}$

$$
\underset{\mathbf{x}}{\operatorname{minimize}} F\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right) \equiv f\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right)+\sum_{i=1}^{s} r_{i}\left(\mathbf{x}_{i}\right)
$$

```
Algorithm 1 Block coordinate descent
    Initialization: choose \(\left(\mathbf{x}_{1}^{0}, \cdots, \mathbf{x}_{s}^{0}\right)\)
    for \(k=1,2, \cdots\) do
        for \(i=1,2, \cdots, s\) do
            update \(\mathbf{x}_{i}^{k}\) with all other blocks fixed
        end for
        if stopping criterion is satisfied then
            return \(\left(\mathbf{x}_{1}^{k}, \cdots, \mathbf{x}_{s}^{k}\right)\).
        end if
    end for
```

Throughout iterations, each block \mathbf{x}_{i} is updated by one of the three update schemes (coming next...)

[^0]
Scheme 1: block minimization

The most-often used update:

$$
\mathbf{x}_{i}^{k}=\underset{\mathbf{x}_{i}}{\operatorname{argmin}} F\left(\mathbf{x}_{<i}^{k}, \mathbf{x}_{i}, \mathbf{x}_{>i}^{k-1}\right) ;
$$

Existing results for differentiable convex F :

- Differentiable F and bounded level set \Rightarrow objective converges to optimal value (Warga'63);
- Further with strict convexity \Rightarrow sequence converges (Luo and Tseng'92);

Scheme 1: block minimization

Existing results for non-differentiable convex F :

- Non-differentiable F can cause stagnation at a non-critical point (Warga'63):

$$
F(x, y)=|x-y|-\min (x, y), 0 \leq x, y \leq 1
$$

Given y, minimizing F over x gives $x=y$. Starting from any (x^{0}, y^{0}) and cyclically updating x, y, x, y, \cdots produces

$$
x^{k}=y^{k}=y^{0}, k \geq 1 .
$$

- Non-smooth part is separable \Rightarrow subsequence convergence (i.e., exists a limit point) (Tseng'93)

Scheme 1: block minimization

Existing results for non-convex F :

- May cycle or stagnate at a non-critical point (Powell'73):

$$
F\left(x_{1}, x_{2}, x_{3}\right)=-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{1}+\sum_{i=1}^{3}\left[\left(x_{i}-1\right)_{+}^{2}+\left(-x_{i}-1\right)_{+}^{2}\right]
$$

Each $F\left(x_{i}\right)$ has the form $(-a) x_{i}+\left[\left(x_{i}-1\right)_{+}^{2}+\left(-x_{i}-1\right)_{+}^{2}\right]$.
Its minimizer: $x_{i}^{*}=\operatorname{sign}(a)(1+0.5|a|)$.
Starting from ($-1-\epsilon, 1+\frac{1}{2} \epsilon,-1-\frac{1}{4} \epsilon$) with $\epsilon>0$, minimizing F over $x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}, \cdots$ produces:

$$
\begin{array}{ll}
\xrightarrow{x_{1}}\left(1+\frac{1}{8} \epsilon, 1+\frac{1}{2} \epsilon,-1-\frac{1}{4} \epsilon\right) & \xrightarrow{x_{2}}\left(1+\frac{1}{8} \epsilon,-1-\frac{1}{16} \epsilon,-1-\frac{1}{4} \epsilon\right) \\
\xrightarrow{x_{3}}\left(1+\frac{1}{8} \epsilon,-1-\frac{1}{16} \epsilon, 1+\frac{1}{32} \epsilon\right) & \xrightarrow{x_{1}}\left(-1-\frac{1}{64} \epsilon,-1-\frac{1}{16} \epsilon, 1+\frac{1}{32} \epsilon\right) \\
\xrightarrow{x_{2}}\left(-1-\frac{1}{64} \epsilon, 1+\frac{1}{128} \epsilon, 1+\frac{1}{32} \epsilon\right) \xrightarrow{x_{3}}\left(-1-\frac{1}{64} \epsilon, 1+\frac{1}{128} \epsilon,-1-\frac{1}{256} \epsilon\right)
\end{array}
$$

Scheme 1: block minimization

Remedies for non-convex F :

- F is differentiable and strictly quasiconvex over each block \Rightarrow limit point is a critical point (Grippo and Sciandrone'00);

$$
\text { quasiconvex: } F(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \max (F(\mathbf{x}), F(\mathbf{y})), \forall \lambda \in[0,1]
$$

- F is pseudoconvex over every two blocks and non-differentiable part is separable \Rightarrow limit point is a critical point (Tseng'01);

$$
\text { pseudoconvex: }\langle\mathbf{g}, \mathbf{y}-\mathbf{x}\rangle \geq 0, \text { some } \mathbf{g} \in \partial F(\mathbf{x}) \Rightarrow F(\mathbf{x}) \leq F(\mathbf{y})
$$

There is not global convergence result.

Scheme 2: block proximal descent

Adding $\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k-1}\right\|_{2}^{2}$ gives better stability:

$$
\mathbf{x}_{i}^{k}=\underset{\mathbf{x}_{i}}{\operatorname{argmin}} F\left(\mathbf{x}_{<i}^{k}, \mathbf{x}_{i}, \mathbf{x}_{>i}^{k-1}\right)+\frac{L_{i}^{k-1}}{2}\left\|\mathbf{x}_{i}-\mathbf{x}_{i}^{k-1}\right\|^{2} ;
$$

Convergence results require fewer assumptions on F :

- F is convex \Rightarrow objective converges to optimal value (Auslender'92);
- F is non-convex \Rightarrow limit point is stationary (Grippo and Sciandrone'00);

Non-smooth terms must still be separable. No global convergence for non-convex F.

Also, it can reduce the "swamp effect" of scheme 1 on tensor decomposition (Navasca et. al, '08)

Scheme 3: block proximal linear

Linearize f over block i and add $\frac{L_{i}^{k-1}}{2}\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}^{k-1}\right\|^{2}$:
$\mathbf{x}_{i}^{k}=\underset{\mathbf{x}_{i}}{\operatorname{argmin}}\left\langle\nabla_{i} f\left(\mathbf{x}_{<i}^{k}, \hat{\mathbf{x}}_{i}^{k-1}, \mathbf{x}_{>i}^{k-1}\right), \mathbf{x}_{i}-\hat{\mathbf{x}}_{i}^{k-1}\right\rangle+r_{i}\left(\mathbf{x}_{i}\right)+\frac{L_{i}^{k-1}}{2}\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}_{i}^{k-1}\right\|^{2} ;$

- Extrapolate $\hat{\mathbf{x}}_{i}^{k-1}=\mathbf{x}_{i}^{k-1}+\omega_{i}^{k-1}\left(\mathbf{x}_{i}^{k-1}-\mathbf{x}_{i}^{k-2}\right)$ with weight $\omega_{i}^{k-1} \geq 0$;
- Much easier than schemes 1 \& 2; may have closed-form solutions for simple r_{i};
- Used in randomized BCD for differentiable convex problems (Nesterov'12);
- The update is less greedy than schemes $1 \& 2$, causes more iterations, but may save total time;
- Empirically, the "relaxation" tend to avoid "shallow-puddle" local minima better than schemes $1 \& 2$.

Comparisons

1. Block coordinate minimization (scheme 1) is mostly used

- May generally cycle or stagnate at a non-critical point (Powell'73);
- Globally convergent for strictly convex problem (Luo and Tseng'92);
- For non-convex problem, each limit point is a critical point if each subproblem has unique solution and objective is regular (Tseng'01);
- Global convergence for non-convex problems is unknown;

2. Block proximal (scheme 2) can stabilize iterates

- Each limit point is a critical point (Grippo and Sciandrone'00);
- Global convergence for non-convex problems is unknown;

3. Block proximal linearization (scheme 3) is often easiest

- Very few works use this scheme for non-convex problems yet;
- Related to the coordinate gradient descent method (Tseng and Yun'09).

Why different update schemes?

- They deal with subproblems of different properties;
- Implementations are easier for many applications;
- Schemes 2 \& 3 may save total time than scheme 1 ;
- Convergence can be analyzed in a unified way.

Example: sparse dictionary learning

$$
\underset{\mathbf{D}, \mathbf{X}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{D} \mathbf{X}-\mathbf{Y}\|_{F}^{2}+\|\mathbf{X}\|_{1}, \text { subject to }\|\mathbf{D}\|_{F} \leq 1
$$

apply scheme 1 to \mathbf{D} and scheme 3 to \mathbf{X}; both are closed-form.

Convergence results

Assumptions

$$
\underset{\mathbf{x}}{\operatorname{minimize}} F\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right) \equiv f\left(\mathbf{x}_{1}, \cdots, \mathbf{x}_{s}\right)+\sum_{i=1}^{s} r_{i}\left(\mathbf{x}_{i}\right)
$$

Assumption 1. Continuous, lower-bounded, and \exists a stationary point.
Assumption 2. Each block uses only one update scheme throughout, and

1. block using scheme 1: subproblem is strongly convex with modulus L_{i}^{k};
2. block using scheme 3: subproblem has Lipschitz continuous gradient.

Assumption 3. $\exists 0<\ell \leq L<\infty$ such that $\ell \leq L_{i}^{k} \leq L, \forall i, k$.
Assumptions 1-3 are assumed for all results below.

Convergence results

Lemma 2.2 Let $\left\{\mathbf{x}^{k}\right\}$ be the sequence generated by BCD. If block i is updated by scheme 3 , the extrapolation weight is controlled as $0 \leq \omega_{i}^{k} \leq \delta_{\omega} \sqrt{\frac{L_{i}^{k-1}}{L_{i}^{k}}}$ with $\delta_{\omega}<1$ for all k. Then,

$$
\sum_{i=1}^{\infty}\left\|\mathbf{x}^{k}-\mathbf{x}^{k+1}\right\|^{2}<\infty
$$

Theorem 2.1 (Limit point is stationary point) Under the assumptions of Lemma 2.2, any limit point of $\left\{\mathbf{x}^{k}\right\}$ is a stationary point.

As a trivial extension:
Theorem 2.2 (Isolated stationary points) If $\left\{x^{k}\right\}$ is bounded and the stationary points are isolated, then \mathbf{x}^{k} converges to a stationary point.

Remark: The isolation condition of Theorem 2.2 is difficult to check. Existing results considering non-convexity and/or non-smoothness have only subsequence convergence. We need a better tool for global convergence.

Global convergence and rate (using the Kurdyka-Łojasiewicz property)

Theorem 2.3: Let $\left\{\mathrm{x}^{k}\right\}$ be the sequence of BCD . If block i is updated by Scheme 3, assume $0 \leq \omega_{i}^{k} \leq \delta_{\omega} \sqrt{\frac{L_{i}^{k-1}}{L_{i}^{k}}}$ with $\delta_{\omega}<1$ for all k. Assume $F\left(\mathrm{x}^{k}\right) \leq F\left(\mathrm{x}^{k-1}\right)$. If $\left\{\mathrm{x}^{k}\right\}$ has a finite limit point $\overline{\mathrm{x}}$ and

$$
\begin{equation*}
\frac{|F(\mathbf{x})-F(\overline{\mathbf{x}})|^{\theta}}{\operatorname{dist}(\mathbf{0}, \partial F(\mathbf{x}))} \text { is bounded around } \overline{\mathbf{x}} \text { for } \theta \in[0,1) \tag{1}
\end{equation*}
$$

then

$$
\mathbf{x}^{k} \rightarrow \overline{\mathbf{x}}
$$

Theorem 2.4 (rate of convergence): In addition, in (1),

1. if $\theta=0, \mathbf{x}^{k}$ converges to $\overline{\mathbf{x}}$ in finitely many iterations;
2. if $\theta \in\left(0, \frac{1}{2}\right],\left\|\mathbf{x}^{k}-\overline{\mathbf{x}}\right\| \leq C \tau^{k}, \forall k$, for certain $C>0, \tau \in[0,1)$;
3. if $\theta \in\left(\frac{1}{2}, 1\right),\left\|\mathbf{x}^{k}-\overline{\mathbf{x}}\right\| \leq C k^{-(1-\theta) /(2 \theta-1)}, \forall k$, for certain $C>0$.

The Kurdyka-Łojasiewicz (KL) property

Definition 2.9. (Łojasiewicz'93) $\psi(\mathbf{x})$ has the Kurdyka-Łojasiewicz (KL) property if there exists $\theta \in[0,1)$ such that

$$
\begin{equation*}
\frac{|\psi(\mathbf{x})-\psi(\overline{\mathbf{x}})|^{\theta}}{\operatorname{dist}(\mathbf{0}, \partial \psi(\mathbf{x}))} \tag{2}
\end{equation*}
$$

is bounded around $\overline{\mathbf{x}}$.
History:

- Introduced by (Łojasiewicz'93) on real analytic functions, for which the term with $\theta \in\left[\frac{1}{2}, 1\right)$ in (2) is bounded around any critical point $\overline{\mathbf{x}}$.
- (Kurdyka'98) extended the properties to functions on the o-minimal structure.
- (Bolte et. al '07) extended the property to nonsmooth sub-analytic functions.

Functions satisfying the KL property

Real analytic functions (some $\theta \in\left[\frac{1}{2}, 1\right)$): $\varphi(t)$ is analytic if $\left(\frac{\varphi^{(k)}(t)}{k!}\right)^{\frac{1}{k}}$ is bounded for all k and on any compact set $\mathcal{D} \subset \mathbb{R}$. $\psi(\mathbf{x})$ on \mathbb{R}^{n} is analytic if $\varphi(t) \triangleq \psi(\mathbf{x}+t \mathbf{y})$ is so for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
Examples:

- Polynomial functions: $\|\mathbf{X Y}-\mathbf{M}\|_{F}^{2}$ and $\left\|\boldsymbol{\mathcal { M }}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \cdots \circ \mathbf{A}_{N}\right\|_{F}^{2}$;
- $L_{q}(\mathbf{x})=\sum_{i=1}^{n}\left(x_{i}^{2}+\varepsilon^{2}\right)^{q / 2}+\frac{1}{2 \lambda}\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}$ with $\varepsilon>0$;
- Logistic loss function

$$
\psi(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-c_{i}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+b\right)}\right)
$$

Locally strongly convex functions $\left(\theta=\frac{1}{2}\right): \psi(\mathbf{x})$ is strongly convex in a neighborhood \mathcal{D} with modulus μ, if for any $\gamma(\mathbf{x}) \in \partial \psi(\mathbf{x})$ and $\mathbf{x}, \mathbf{y} \in \mathcal{D}$

$$
\psi(\mathbf{y}) \geq \psi(\mathbf{x})+\langle\gamma(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\frac{\mu}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Example:

- Logistic loss function: $\log \left(1+e^{-t}\right)$;

Semi-algebraic functions

$\mathcal{D} \subset \mathbb{R}^{n}$ is a semi-algebraic set if it can be represented as

$$
\mathcal{D}=\bigcup_{i=1}^{s} \bigcap_{j=1}^{t}\left\{\mathbf{x} \in \mathbb{R}^{n}: p_{i j}(\mathbf{x})=0, q_{i j}(\mathbf{x})>0\right\}
$$

where $p_{i j}, q_{i j}$ are real polynomial functions for $1 \leq i \leq s, 1 \leq j \leq t$.
ψ is a semi-algebraic function if its graph

$$
\operatorname{Gr}(\psi) \triangleq\{(\mathbf{x}, \psi(\mathbf{x})): \mathbf{x} \in \operatorname{dom}(\psi)\}
$$

is a semi-algebraic set.

Properties of semi-algebraic sets and functions:

1. If a set \mathcal{D} is semi-algebraic, so is its closure $\operatorname{cl}(\mathcal{D})$.
2. If \mathcal{D}_{1} and \mathcal{D}_{2} are both semi-algebraic, so are $\mathcal{D}_{1} \cup \mathcal{D}_{2}, \mathcal{D}_{1} \cap \mathcal{D}_{2}$ and $\mathbb{R}^{n} \backslash \mathcal{D}_{1}$.
3. Indicator functions of semi-algebraic sets are semi-algebraic.
4. Finite sums and products of semi-algebraic functions are semi-algebraic.
5. The composition of semi-algebraic functions is semi-algebraic.

Functions satisfying the KL property (cont.)

Semi-algebraic functions: some $\theta \in[0,1)$ in (2)

- Indicator functions of polyhedral sets: $\{\mathbf{x}: \mathbf{A x} \geq \mathbf{b}\}$;
- Polynomial functions: $\|\mathbf{X Y}-\mathbf{M}\|_{F}^{2}$ and $\left\|\boldsymbol{M}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \cdots \circ \mathbf{A}_{N}\right\|_{F}^{2}$;
- ℓ_{1}-norm $\|\mathbf{x}\|_{1}$, sup-norm $\|\mathbf{x}\|_{\infty}$, and Euclidean norm $\|\mathbf{x}\|$;
- TV semi-norm $\|\mathbf{x}\|_{T V}$;
- Indicator functions of set of positive semidefinite matrices
- Finite sum, product or composition of all these functions.

Sum of real analytic and semi-algebraic functions: some $\theta \in[0,1)$ in (2)

- Sparse logistic regression: $\frac{1}{n} \sum_{i=1}^{n} \log \left(1+e^{-c_{i}\left(\mathbf{a}_{i}^{\top} \mathbf{x}+b\right)}\right)+\lambda\|\mathbf{x}\|_{1}$;

Examples of global convergence by BCD

- Low-rank matrix recovery (Recht et. al, 2010)

$$
\min _{\mathbf{X}, \mathbf{Y}}\|\mathcal{A}(\mathbf{X Y})-\mathcal{A}(\mathbf{M})\|_{2}^{2}+\alpha\|\mathbf{X}\|_{F}^{2}+\beta\|\mathbf{Y}\|_{F}^{2}
$$

- Sparse dictionary learning (Mairal et. al, 2009)

$$
\min _{\mathbf{D}, \mathbf{X}} \frac{1}{2}\|\mathbf{D} \mathbf{X}-\mathbf{Y}\|_{F}^{2}+\|\mathbf{X}\|_{1}+\delta_{\mathcal{D}}(\mathbf{D}) ; \mathcal{D}=\left\{\mathbf{D}:\left\|\mathbf{d}_{j}\right\|_{2}^{2} \leq 1, \forall j\right\}
$$

- Blind source separation (Zibulevsky and Pearlmutter, 2001)

$$
\min _{\mathbf{A}, \mathbf{Y}} \frac{\lambda}{2}\|\mathbf{A Y B}-\mathbf{X}\|_{F}^{2}+\|\mathbf{Y}\|_{1}+\delta_{\mathcal{A}}(\mathbf{A}) ; \mathcal{A}=\left\{\mathbf{A}:\left\|\mathbf{a}^{j}\right\|_{2}^{2} \leq 1, \forall j\right\}
$$

- Nonnegative matrix factorization (Lee and Seung, 1999)

$$
\min _{\mathbf{X}, \mathbf{Y}}\|\mathbf{M}-\mathbf{X} \mathbf{Y}\|_{F}^{2}+\delta_{\mathbb{R}_{+}^{m \times r}}(\mathbf{X})+\delta_{\mathbb{R}_{+}^{r \times n}}(\mathbf{Y})
$$

- Nonnegative tensor factorization (Welling and Weber, 2001)

$$
\min _{\mathbf{A}_{1}, \cdots, \mathbf{A}_{N}} \frac{1}{2}\left\|\boldsymbol{\mathcal { M }}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \cdots \circ \mathbf{A}_{N}\right\|_{F}^{2}+\sum_{n=1}^{N} \delta_{\mathbb{R}_{+}^{I_{n} \times r}}\left(\mathbf{A}_{n}\right) ;
$$

Numerical results

Part I: nonnegative matrix factorization (NMF)

Model:

$$
\underset{\mathbf{X}, \mathbf{Y}}{\operatorname{minimize}} \frac{1}{2}\|\mathbf{M}-\mathbf{X Y}\|_{F}^{2} \text {, subject to } \mathbf{X} \in \mathbb{R}_{+}^{m \times r}, \mathbf{Y} \in \mathbb{R}_{+}^{r \times n}
$$

Algorithms compared:

1. APG-MF (proposed): BCD with scheme $3, \omega_{i}^{k}=\min \left(\hat{\omega}_{k}, \sqrt{\frac{L_{i}^{k-1}}{L_{i}^{k}}}\right), i=1,2$, where $\hat{\omega}_{k}=\frac{t_{k-1}-1}{t_{k}}$ and $t_{0}=1, t_{k}=\frac{1}{2} \sqrt{1+4 t_{k-1}^{2}} ; \hat{\omega}_{k}$ used in FISTA (Beck and Teboulle'09);
2. ADM-MF: alternating direction method for NMF (Y. Zhang'10);
3. Blockpivot-MF: BCD with block minimization (scheme 1); subproblems solved by block principle pivoting method (Kim and Park'08);
4. Als-MF and Mult-MF: Matlab's implementation.

Extrapolation accelerates convergence

- Extrapolation acceleration: $\omega_{i}^{k}=\min \left(\hat{\omega}_{k}, \sqrt{\frac{L_{i}^{k-1}}{L_{i}^{k}}}\right), i=1,2$, where $\hat{\omega}_{k}=\frac{t_{k-1}-1}{t_{k}}$ and $t_{0}=1, t_{k}=\frac{1}{2} \sqrt{1+4 t_{k-1}^{2}}$;
- No acceleration: $\omega_{i}^{k}=0, i=1,2$;

Comparison on synthetic data

- Random $\mathbf{M}=\mathbf{L R}$ and $\mathbf{L} \in \mathbb{R}_{+}^{500 \times 30}, \mathbf{R} \in \mathbb{R}_{+}^{30 \times 1000}$;
- relerr $=\frac{\|\mathbf{M}-\mathbf{X Y}\|_{F}}{\|\mathbf{M}\|_{F}}$ and running time (sec)

running time is second

Comparison on hyperspectral data

- $163 \times 150 \times 150$ hyperspectral cube is reshaped to 22500×163 matrix \mathbf{M}

Part II: Nonnegative 3-way tensor factorization

Model:

$$
\underset{\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}}{\operatorname{minimize}} \frac{1}{2}\left\|\boldsymbol{\mathcal { M }}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \mathbf{A}_{3}\right\|_{F}^{2}, \text { subject to } \mathbf{A}_{n} \in \mathbb{R}_{+}^{I_{n} \times r}, \forall n
$$

Compared algorithms

1. APG-TF (proposed) : BCD with scheme $3, \omega_{i}^{k}=\min \left(\hat{\omega}_{k}, \sqrt{\frac{L_{i}^{k-1}}{L_{i}^{k}}}\right)$, $i=1,2,3$, where $\hat{\omega}_{k}=\frac{t_{k-1}-1}{t_{k}}$ and $t_{0}=1, t_{k}=\frac{1}{2} \sqrt{1+4 t_{k-1}^{2}}$;
2. AS-TF: BCD with scheme 1) subproblems solved by active set method (Kim et. al, '08);
3. Blockpivot-TF: BCD with scheme 1; subproblems solved by block principle pivoting method (Kim and Park '12);

Swimmer dataset ${ }^{2}$

Shashua and Hazan'05: NMF tends to form invariant parts as ghosts while NTF can correctly resolve all parts

8 among 256 images

factors by NMF

factors by NTF

\cdots	1	1	\checkmark	,	,	/	,	\checkmark
1	$/$,	-	-	-	-	1	1

[^1]
Comparison on the Swimmer dataset

$32 \times 32 \times 256$ nonnegative tensor $\boldsymbol{\mathcal { M }}$; run to 50 seconds; r set to 60 ;

Part III: Nonnegative 3-way tensor completion

Compared algorithms

- APG-TC (proposed) solves

$$
\min _{\mathbf{A}, \mathcal{X}} \frac{1}{2}\left\|\mathcal{X}-\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \mathbf{A}_{3}\right\|_{F}^{2} \text {, s.t. } \mathcal{P}_{\Omega}(\boldsymbol{\mathcal { X }})=\mathcal{P}_{\Omega}(\boldsymbol{\mathcal { M }}), \mathbf{A}_{n} \in \mathbb{R}_{+}^{I_{n} \times r}, \forall n
$$

BCD with scheme 3 applied to \mathbf{A}-subproblems and scheme 1 to \mathcal{X}-subproblem;

- FaLRTC and HaLRTC (Liu et. al, '12) solve

$$
\begin{equation*}
\min _{\mathcal{X}} \sum_{n=1}^{3} \alpha_{n}\left\|\mathbf{X}_{(n)}\right\|_{*}, \text { subject to } \mathcal{P}_{\Omega}(\boldsymbol{\mathcal { X }})=\mathcal{P}_{\Omega}(\boldsymbol{\mathcal { M }}) \tag{3}
\end{equation*}
$$

- FaLRTC first smoothes (3) and then applies an accelerated proximal gradient method;
- HaLRTC applies an alternating direction method to (3).

Comparison on synthetic data

- Random $\boldsymbol{\mathcal { M }}=\mathbf{L} \circ \mathbf{C} \circ \mathbf{R}$ with $\mathbf{L}, \mathbf{C} \in \mathbb{R}_{+}^{50 \times 20}$ and $\mathbf{R} \in \mathbb{R}_{+}^{500 \times 20}$;
- Compare relerr $=\frac{\left\|\mathbf{A}_{1} \circ \mathbf{A}_{2} \circ \mathbf{A}_{3}-\boldsymbol{\mathcal { M }}\right\|_{F}}{\|\mathcal{M}\|_{F}}$ for APG-TC and relerr $=\frac{\|\mathcal{X}-\boldsymbol{\mathcal { M }}\|_{F}}{\|\mathcal{M}\|_{F}}$ for FaLRTC and HaLRTC; running time is in second

	APG-TC (pros'd) $r=20$		APG-TC (pros'd) $r=25$	FaLRTC	HaLRTC			
SR	relerr	time	relerr			time	relerr	time
0.10	$1.65 \mathrm{e}-4$	2.25 e 1	$3.87 \mathrm{e}-4$	4.62 e 1	$3.13 \mathrm{e}-1$	1.40 e 2	$3.56 \mathrm{e}-1$	2.55 e 2
0.30	$1.06 \mathrm{e}-4$	1.38 e 1	$1.69 \mathrm{e}-4$	3.65 e 1	$1.73 \mathrm{e}-2$	1.53 e 2	$1.42 \mathrm{e}-3$	2.24 e 2
0.50	$1.01 \mathrm{e}-4$	1.33 e 1	$1.14 \mathrm{e}-4$	3.46 e 1	$1.14 \mathrm{e}-2$	1.07 e 2	$1.95 \mathrm{e}-4$	1.17 e 2

Observation: APG-TC (proposed) gives lower errors and runs faster.

Summary

- Multi-convex optimization has very interesting applications;
- A 3-scheme block-coordinate descent method is introduced;
- The three schemes allow easy implementation and fast running time on many applications;
- Global convergence and rate are established; the assumptions are met by many applications;
- Applied BCD with prox-linear scheme to nonnegative matrix factorization, nonnegative tensor factorization, and completion;
- Extrapolation significantly speeds up convergence;
- BCD based on scheme 3 (or hybrid schemes $1 \& 3$) is much faster than the current state-of-the-art solvers and achieves lower objectives.

[^0]: ${ }^{1}$ block coordinate update (BCU) is perhaps a more accurate name

[^1]: ${ }^{2}$ Donoho and Stodden'03, When does non-negative matrix factorization give a correct decomposition into parts

