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6. Proximal gradient method
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Proximal mapping

the proximal mapping (prox-operator) of a convex function h is defined as

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

examples

• h(x) = 0: proxh(x) = x

• h(x) = IC(x) (indicator function of C): proxh is projection on C

proxh(x) = argmin
u∈C

‖u− x‖22 = PC(x)

• h(x) = ‖x‖1: proxh is the ‘soft-threshold’ (shrinkage) operation

proxh(x)i =







xi − 1 xi ≥ 1
0 |xi| ≤ 1
xi + 1 xi ≤ −1
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Proximal gradient method

unconstrained optimization with objective split in two components

minimize f(x) = g(x) + h(x)

• g convex, differentiable, dom g = Rn

• h convex with inexpensive prox-operator (many examples in lecture 9)

proximal gradient algorithm

x(k) = proxtkh

(

x(k−1) − tk∇g(x(k−1))
)

tk > 0 is step size, constant or determined by line search
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Interpretation

x+ = proxth (x− t∇g(x))

from definition of proximal mapping:

x+ = argmin
u

(

h(u) +
1

2t
‖u− x+ t∇g(x)‖22

)

= argmin
u

(

h(u) + g(x) +∇g(x)T (u− x) +
1

2t
‖u− x‖22

)

x+ minimizes h(u) plus a simple quadratic local model of g(u) around x
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Examples

minimize g(x) + h(x)

gradient method: special case with h(x) = 0

x+ = x− t∇g(x)

gradient projection method: special case with h(x) = IC(x)

x+ = PC (x− t∇g(x)) C

x

x − t∇g(x)
x+
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soft-thresholding: special case with h(x) = ‖x‖1

x+ = proxth (x− t∇g(x))

where

proxth(u)i =







ui − t ui ≥ t
0 −t ≤ ui ≤ t
ui + t ui ≤ −t

ui
t

−t

proxth(u)i
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Proximal mapping

if h is convex and closed (has a closed epigraph), then

proxh(x) = argmin
u

(

h(u) +
1

2
‖u− x‖22

)

exists and is unique for all x

• will be studied in more detail in lecture 9

• from optimality conditions of minimization in the definition:

u = proxh(x) ⇐⇒ x− u ∈ ∂h(u)

⇐⇒ h(z) ≥ h(u) + (x− u)T (z − u) ∀z
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Projection on closed convex set

proximal mapping of indicator function IC is Euclidean projection on C

proxIC(x) = argmin
u∈C

‖u− x‖22 = PC(x)

subgradient characterization

u = PC(x)

m

(x− u)T (z − u) ≤ 0 ∀z ∈ C

PC(x)

x

NC(u)

C

we will see that proximal mappings have many properties of projections
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Nonexpansiveness

if u = proxh(x), v = proxh(y), then

(u− v)T (x− y) ≥ ‖u− v‖22

proxh is firmly nonexpansive, or co-coercive with constant 1

• follows from characterization of page 6-7 and monotonicity (page 4-10)

x− u ∈ ∂h(u), y − v ∈ ∂h(v) =⇒ (x− u− y + v)T (u− v) ≥ 0

• implies (from Cauchy-Schwarz inequality)

‖proxh(x)− proxh(y)‖2 ≤ ‖x− y‖2

proxh is nonexpansive, or Lipschitz continuous with constant 1

Proximal gradient method 6-9



Outline

• introduction

• proximal mapping

• proximal gradient method with fixed step size

• proximal gradient method with line search



Convergence of proximal gradient method

to minimize g + h, choose x(0) and repeat

x(k) = proxtkh

(

x(k−1) − t∇g(x(k−1))
)

, k ≥ 1

assumptions

• g convex with dom g = Rn; ∇g Lipschitz continuous with constant L:

‖∇g(x)−∇g(y)‖2 ≤ L‖x− y‖2 ∀x, y

• h is closed and convex (so that proxth is well defined)

• optimal value f⋆ is finite and attained at x⋆ (not necessarily unique)

convergence result: 1/k rate convergence with fixed step size tk = 1/L
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Gradient map

Gt(x) =
1

t
(x− proxth(x− t∇g(x)))

Gt(x) is the negative ‘step’ in the proximal gradient update

x+ = proxth (x− t∇g(x))

= x− tGt(x)

• Gt(x) is not a gradient or subgradient of f = g + h

• from subgradient definition of prox-operator (page 6-7),

Gt(x) ∈ ∇g(x) + ∂h (x− tGt(x))

• Gt(x) = 0 if and only if x minimizes f(x) = g(x) + h(x)
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Consequences of Lipschitz assumption

recall upper bound (p.1-12) for convex g with Lipschitz continuous gradient

g(y) ≤ g(x)−∇g(x)T (y − x) +
L

2
‖y − x‖22 ∀x, y

• substitute y = x− tGt(x):

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t2L

2
‖Gt(x)‖

2
2

• if 0 < t ≤ 1/L, then

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖

2
2 (1)
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A global inequality

if the inequality (1) holds, then for all z,

f(x− tGt(x)) ≤ f(z) +Gt(x)
T (x− z)−

t

2
‖Gt(x)‖

2
2 (2)

proof: (define v = Gt(x)−∇g(x))

f(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖

2
2 + h(x− tGt(x))

≤ g(z) +∇g(x)T (x− z)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖

2
2

+ h(z) + vT (x− z − tGt(x))

= g(z) + h(z) +Gt(x)
T (x− z)−

t

2
‖Gt(x)‖

2
2

line 2 follows from convexity of g and h, and v ∈ ∂h(x− tGt(x))
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Progress in one iteration

x+ = x− tGt(x)

• inequality (2) with z = x shows the algorithm is a descent method:

f(x+) ≤ f(x)−
t

2
‖Gt(x)‖

2
2

• inequality (2) with z = x⋆:

f(x+)− f⋆ ≤ Gt(x)
T (x− x⋆)−

t

2
‖Gt(x)‖

2
2

=
1

2t

(

‖x− x⋆‖22 − ‖x− x⋆ − tGt(x)‖
2
2

)

=
1

2t
(‖x− x⋆‖22 −

∥

∥x+ − x⋆‖22
)

(3)

(hence, ‖x+−x⋆‖2 ≤ ‖x−x⋆‖2, i.e., distance to optimal set decreases)
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Analysis for fixed step size

add inequalities (3) for x = x(i−1), x+ = x(i), t = ti = 1/L

k
∑

i=1

(f(x(i))− f⋆) ≤
1

2t

k
∑

i=1

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22

)

=
1

2t

(

‖x(0) − x⋆‖22 − ‖x(k) − x⋆‖22

)

≤
1

2t
‖x(0) − x⋆‖22

since f(x(i)) is nonincreasing,

f(x(k))− f∗ ≤
1

k

k
∑

i=1

(f(x(i))− f⋆) ≤
1

2kt
‖x(0) − x⋆‖22

conclusion: reaches f(x(k))− f⋆ ≤ ǫ after O(1/ǫ) iterations
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Quadratic program with box constraints

minimize (1/2)xTAx+ bTx
subject to 0 � x � 1

0 10 20 30 40 5010-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

k

(f
(x

(k
) )

−
f
⋆
)/

|f
⋆
|

n = 3000; fixed step size t = 1/λmax(A)
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1-norm regularized least-squares

minimize
1

2
‖Ax− b‖22 + ‖x‖1

0 20 40 60 80 10010-5

10-4

10-3

10-2

10-1

100

k

(f
(x

(k
) )

−
f
⋆
)/

f
⋆

randomly generated A ∈ R2000×1000; step tk = 1/L with L = λmax(A
TA)
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Line search

• the analysis for fixed step size (page 6-12) starts with the inequality

g(x− tGt(x)) ≤ g(x)− t∇g(x)TGt(x) +
t

2
‖Gt(x)‖

2
2 (1)

this inequality is known to hold for 0 < t ≤ 1/L

• if L is not known, we can satisfy (1) by a backtracking line search:

start at some t := t̂ > 0 and backtrack (t := βt) until (1) holds

• step size t selected by the line search satisfies t ≥ tmin = min{t̂, β/L}

• requires one evaluation of g and proxth per line search iteration

several other types of line search work
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example: line search for projected gradient method

x+ = PC (x− t∇g(x)) = x− tGt(x)

C
x

x − t̂∇g(x)

PC(x − t̂∇g(x))

x − βt̂∇g(x) PC(x − βt̂∇g(x))

PC(x − β2t̂∇g(x))

backtrack until x− tGt(x) satisfies ‘sufficient decrease’ inequality (1)
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Analysis with line search

from p. 6-14, if (1) holds in iteration i, then f(x(i)) < f(x(i−1)) and

f(x(i))− f⋆ ≤
1

2ti

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22

)

≤
1

2tmin

(

‖x(i−1) − x⋆‖22 − ‖x(i) − x⋆‖22

)

• adding inequalities for i = 1 to i = k gives

k
∑

i=1

(f(x(i))− f⋆) ≤
1

2tmin
‖x(0) − x⋆‖22

• since f(x(i)) is nonincreasing, obtain similar 1/k bound as for fixed ti:

f(x(k))− f⋆ ≤
1

2ktmin
‖x(0) − x⋆‖22
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