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6. Proximal gradient method

e motivation
e proximal mapping
e proximal gradient method with fixed step size

e proximal gradient method with line search
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Proximal mapping

the proximal mapping (prox-operator) of a convex function h is defined as

1
prox;(r) = argmin (h(u) + §Hu — :1:||§)
examples

e h(x)=0: prox,(z) =«
e h(x) = Io(x) (indicator function of C'): prox, is projection on C

prox, (z) = argmin ||u — z||3 = Po(z)
ucC

e h(x) = ||z||1: prox, is the ‘soft-threshold’ (shrinkage) operation

prox,(z); = ¢ 0 ;| <1
i +1 2, < -1
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Proximal gradient method

unconstrained optimization with objective split in two components
minimize f(x) = g(x) + h(x)
e ¢ convex, differentiable, dom g = R"

e h convex with inexpensive prox-operator (many examples in lecture 9)

proximal gradient algorithm
k) = prox, p, (x(k_D — thg(x<k_1)))

t > 0 is step size, constant or determined by line search

Proximal gradient method
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Interpretation

" = prox,, (z — tVg(z))

from definition of proximal mapping:

u

1
¥ = argmin (h(u) + o lu—a+ th(ﬂ?)Hg)

= argmin (h(u) +g(z) + Vg(x)" (u—z) + 2%““ - xH%)

u

2 minimizes h(u) plus a simple quadratic local model of g(u) around x
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Examples

minimize g(x) + h(x)

gradient method: special case with h(z) =0

rt =1 —tVg(x)

gradient projection method: special case with h(x) = Io(x)

x

.

2" = Po (v — tVg(z)) ¢

x —tVg(x)
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soft-thresholding: special case with h(x) = ||z||1

v+ = prox,, (z — tVg(x))

where pros,, (),
U; — t U, Z t

prox,,(u); = ¢ 0 —t <wu; <t
uU; + t U, S —1
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Proximal mapping

if h is convex and closed (has a closed epigraph), then

1
prox;(r) = argmin (h(u) + §Hu — :1:||§>

u

exists and is unique for all z

e will be studied in more detail in lecture 9

e from optimality conditions of minimization in the definition:

u = proxy, () = r—u € Oh(u)

= h(z) > h(u) 4+ (x —uw)!(z —u) Vz

Proximal gradient method
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Projection on closed convex set

proximal mapping of indicator function I~ is Euclidean projection on C

prox; (z) = argmin |ju — z||3 = Po(x)
ueC

subgradient characterization

u = Po(x)

0

(x —uw)l'(z—u) <0 VzeC

we will see that proximal mappings have many properties of projections
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Nonexpansiveness
if u = prox,,(x), v = prox,(y), then
(u—v)"(z—y) > lu—2|3
prox;, is firmly nonexpansive, or co-coercive with constant 1
e follows from characterization of page 6-7 and monotonicity (page 4-10)
r—ucOhu), y—vedhlv) = @—-—u—-y+v)(u—v)>0
e implies (from Cauchy-Schwarz inequality)

[prox;, () — prox, (y)|l, < |l =yl
prox, Is nonexpansive, or Lipschitz continuous with constant 1

Proximal gradient method 6-9



Outline

introduction
proximal mapping
proximal gradient method with fixed step size

proximal gradient method with line search



Convergence of proximal gradient method

to minimize g + h, choose (%) and repeat

k) = prox, p, (x(k_l) — th(az(k_l))) : kE>1

assumptions

e ¢ convex with dom g = R"™; Vg Lipschitz continuous with constant L:

IVg(xz) = Vg(y)lls < L||lz—yll2  Vx,y

e h is closed and convex (so that prox,, is well defined)

e optimal value f* is finite and attained at x* (not necessarily unique)

convergence result: 1/k rate convergence with fixed step size tx, = 1/L
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Gradient map

Gu(x) = 1 (& — prosy,(x — V()

G+(x) is the negative ‘step’ in the proximal gradient update

vt = proxy, (z —tVg(z))

r — tGy(x)

e G(x) is not a gradient or subgradient of f =g+ h

e from subgradient definition of prox-operator (page 6-7),

Gi(z) € Vg(x) + 0h (x — tGy(x))

e Gi(x) =0 if and only if z minimizes f(z) = g(x) + h(x)

Proximal gradient method
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Consequences of Lipschitz assumption

recall upper bound (p.1-12) for convex g with Lipschitz continuous gradient

o(v) < () ~ Vo) (y— ) + 2y —al3 Vo

e substitute y = x — tG¢(x):
T t°L 2
gl —tGi(2)) < gz) — tVg(2)" Gelz) + [ Ge(2)]]3

o if 0 <t<1/L, then

g(z — 1Gy(z)) < g(x) — tVg(z)" Gi(x) + %I\Gt(fv)l\% (1)
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A global inequality

if the inequality (1) holds, then for all z,

f(z —tGi(x)) < f(2) + Gi(z)" (z — 2) = %HGt(JJ)H% (2)

proof: (define v = Gy(x) — Vg(x))
flz —tGy(x)) < g(x) —tVg(a)' Gi(z) + %lth(x)llg +h(z —1Gy(x))

< 4(2) + V@) (@ — 2) — V(@) Gul) + 5]|Gu(a)|3
+ h(z) + vl (x — 2 — tGy(x))

= g(2) + h(2) + Gi(2)" (z — 2) - %HGt(x)H%

line 2 follows from convexity of g and h, and v € Oh(x — tGy(x))
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Progress in one iteration

xt =1 — tGy(7)

e inequality (2) with z = x shows the algorithm is a descent method:
¢
fla) < f(@) = S Gulw)]
e inequality (2) with z = z™*:

fl@™) —f*

IA

Gula)T (& — %) — 5 Gu()

1 .2 2
= = (lz=a*3 — o — o —tGi(@)13)
1 2
=~ (le—a"I3 - =+ =" 13) (3)

(hence, ||z — 2*||2 < ||z — 2*|

2, 1.€., distance to optimal set decreases)
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Analysis for fixed step size

add inequalities (3) for z = 20~V 2t =2®) t=t, =1/L

k k
) * 1 71— * ) *
(@M =) < >0 (Il =) 2 - 2(3)
=1 1=1
1 * *
= = (12 = |3 = a® - 2*(3)
]‘ *
< oo — a3

since f(x(?) is nonincreasing,

K 1
L3 < et o

?vlr—‘

f)

conclusion: reaches f(x®)) — f* < € after O(1/¢) iterations
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Quadratic program with box constraints

minimize (1/2)z? Az + bz
subjectto 0=z =<1

(F@®) — /1]
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n = 3000; fixed step size t = 1/Apax(A)
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1-norm regularized least-squares

1
minimize §|\Aa: — b3 + ||zl

10

10

10

(f(@®y — )/ f*

-5 ‘ ‘ \ \
1079 20 40 60 80 100
k

randomly generated A € R*%%9*19%0: step ¢, = 1/L with L = A\pax(AT A)
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Line search
e the analysis for fixed step size (page 6-12) starts with the inequality
g(z — tGy(x)) < g(x) — tVg(z)" Gi(x) + %I\Gt(ﬂf)l\% (1)
this inequality is known to hold for 0 <t < 1/L

e if L is not known, we can satisfy (1) by a backtracking line search:

start at some ¢ := ¢ > 0 and backtrack (¢ := Bt) until (1) holds
e step size t selected by the line search satisfies t > t,,;, = min{t, 3/L}
e requires one evaluation of g and prox,; per line search iteration

several other types of line search work
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example: line search for projected gradient method

vt = Po (v —tVg(z)) = v — tGy(x)

xr

A B*tVg(x))

¢ Po(x — BtV g(x))

®

| Po(x — tVg(x))

T — ng(a:)
backtrack until x — tG4(x) satisfies ‘sufficient decrease’ inequality (1)
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Analysis with line search

from p. 6-14, if (1) holds in iteration 4, then f(z(") < f(2(*~1) and

) * 1 71— * ) *
Fa) = < o (I =23 = 1o —27)3)
1 11— * ) *
< g (I = 23— 2 — 2|3)

e adding inequalities for : = 1 to 1 = k gives

k

> () - ) < 5

B thin

|2 — |3

e since f(z¥)) is nonincreasing, obtain similar 1/k bound as for fixed t;:

1
2ktmin

|2 — 2|13

fla®) — f* <
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