6. Proximal gradient method

- motivation
- proximal mapping
- proximal gradient method with fixed step size
- proximal gradient method with line search

Proximal mapping

the proximal mapping (prox-operator) of a convex function h is defined as

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

examples

- $h(x)=0: \operatorname{prox}_{h}(x)=x$
- $h(x)=I_{C}(x)$ (indicator function of C): prox $_{h}$ is projection on C

$$
\operatorname{prox}_{h}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}=P_{C}(x)
$$

- $h(x)=\|x\|_{1}: \operatorname{prox}_{h}$ is the 'soft-threshold' (shrinkage) operation

$$
\operatorname{prox}_{h}(x)_{i}= \begin{cases}x_{i}-1 & x_{i} \geq 1 \\ 0 & \left|x_{i}\right| \leq 1 \\ x_{i}+1 & x_{i} \leq-1\end{cases}
$$

Proximal gradient method

unconstrained optimization with objective split in two components

$$
\operatorname{minimize} \quad f(x)=g(x)+h(x)
$$

- g convex, differentiable, $\operatorname{dom} g=\mathbf{R}^{n}$
- h convex with inexpensive prox-operator (many examples in lecture 9)
proximal gradient algorithm

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t_{k} \nabla g\left(x^{(k-1)}\right)\right)
$$

$t_{k}>0$ is step size, constant or determined by line search

Interpretation

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

from definition of proximal mapping:

$$
\begin{aligned}
x^{+} & =\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2 t}\|u-x+t \nabla g(x)\|_{2}^{2}\right) \\
& =\underset{u}{\operatorname{argmin}}\left(h(u)+g(x)+\nabla g(x)^{T}(u-x)+\frac{1}{2 t}\|u-x\|_{2}^{2}\right)
\end{aligned}
$$

x^{+}minimizes $h(u)$ plus a simple quadratic local model of $g(u)$ around x

Examples

$$
\operatorname{minimize} \quad g(x)+h(x)
$$

gradient method: special case with $h(x)=0$

$$
x^{+}=x-t \nabla g(x)
$$

gradient projection method: special case with $h(x)=I_{C}(x)$

$$
x^{+}=P_{C}(x-t \nabla g(x))
$$

soft-thresholding: special case with $h(x)=\|x\|_{1}$

$$
x^{+}=\operatorname{prox}_{t h}(x-t \nabla g(x))
$$

where
$\operatorname{prox}_{t h}(u)_{i}= \begin{cases}u_{i}-t & u_{i} \geq t \\ 0 & -t \leq u_{i} \leq t \\ u_{i}+t & u_{i} \leq-t\end{cases}$

Outline

- introduction
- proximal mapping
- proximal gradient method with fixed step size
- proximal gradient method with line search

Proximal mapping

if h is convex and closed (has a closed epigraph), then

$$
\operatorname{prox}_{h}(x)=\underset{u}{\operatorname{argmin}}\left(h(u)+\frac{1}{2}\|u-x\|_{2}^{2}\right)
$$

exists and is unique for all x

- will be studied in more detail in lecture 9
- from optimality conditions of minimization in the definition:

$$
\begin{aligned}
u=\operatorname{prox}_{h}(x) & \Longleftrightarrow \quad x-u \in \partial h(u) \\
& \Longleftrightarrow \quad h(z) \geq h(u)+(x-u)^{T}(z-u) \quad \forall z
\end{aligned}
$$

Projection on closed convex set

proximal mapping of indicator function I_{C} is Euclidean projection on C

$$
\operatorname{prox}_{I_{C}}(x)=\underset{u \in C}{\operatorname{argmin}}\|u-x\|_{2}^{2}=P_{C}(x)
$$

subgradient characterization

$$
\begin{gathered}
u=P_{C}(x) \\
\hat{\Downarrow} \\
(x-u)^{T}(z-u) \leq 0 \quad \forall z \in C
\end{gathered}
$$

we will see that proximal mappings have many properties of projections

Nonexpansiveness

if $u=\operatorname{prox}_{h}(x), v=\operatorname{prox}_{h}(y)$, then

$$
(u-v)^{T}(x-y) \geq\|u-v\|_{2}^{2}
$$

prox_{h} is firmly nonexpansive, or co-coercive with constant 1

- follows from characterization of page 6-7 and monotonicity (page 4-10)

$$
x-u \in \partial h(u), \quad y-v \in \partial h(v) \quad \Longrightarrow \quad(x-u-y+v)^{T}(u-v) \geq 0
$$

- implies (from Cauchy-Schwarz inequality)

$$
\left\|\operatorname{prox}_{h}(x)-\operatorname{prox}_{h}(y)\right\|_{2} \leq\|x-y\|_{2}
$$

prox_{h} is nonexpansive, or Lipschitz continuous with constant 1

Outline

- introduction
- proximal mapping
- proximal gradient method with fixed step size
- proximal gradient method with line search

Convergence of proximal gradient method

to minimize $g+h$, choose $x^{(0)}$ and repeat

$$
x^{(k)}=\operatorname{prox}_{t_{k} h}\left(x^{(k-1)}-t \nabla g\left(x^{(k-1)}\right)\right), \quad k \geq 1
$$

assumptions

- g convex with $\operatorname{dom} g=\mathbf{R}^{n} ; \nabla g$ Lipschitz continuous with constant L :

$$
\|\nabla g(x)-\nabla g(y)\|_{2} \leq L\|x-y\|_{2} \quad \forall x, y
$$

- h is closed and convex (so that prox $_{\text {th }}$ is well defined)
- optimal value f^{\star} is finite and attained at x^{\star} (not necessarily unique) convergence result: $1 / k$ rate convergence with fixed step size $t_{k}=1 / L$

Gradient map

$$
G_{t}(x)=\frac{1}{t}\left(x-\operatorname{prox}_{t h}(x-t \nabla g(x))\right)
$$

$G_{t}(x)$ is the negative 'step' in the proximal gradient update

$$
\begin{aligned}
x^{+} & =\operatorname{prox}_{t h}(x-t \nabla g(x)) \\
& =x-t G_{t}(x)
\end{aligned}
$$

- $G_{t}(x)$ is not a gradient or subgradient of $f=g+h$
- from subgradient definition of prox-operator (page 6-7),

$$
G_{t}(x) \in \nabla g(x)+\partial h\left(x-t G_{t}(x)\right)
$$

- $G_{t}(x)=0$ if and only if x minimizes $f(x)=g(x)+h(x)$

Consequences of Lipschitz assumption

recall upper bound (p.1-12) for convex g with Lipschitz continuous gradient

$$
g(y) \leq g(x)-\nabla g(x)^{T}(y-x)+\frac{L}{2}\|y-x\|_{2}^{2} \quad \forall x, y
$$

- substitute $y=x-t G_{t}(x)$:

$$
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t^{2} L}{2}\left\|G_{t}(x)\right\|_{2}^{2}
$$

- if $0<t \leq 1 / L$, then

$$
\begin{equation*}
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

A global inequality

if the inequality (1) holds, then for all z,

$$
\begin{equation*}
f\left(x-t G_{t}(x)\right) \leq f(z)+G_{t}(x)^{T}(x-z)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

proof: (define $v=G_{t}(x)-\nabla g(x)$)

$$
\begin{aligned}
f\left(x-t G_{t}(x)\right) \leq & g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}+h\left(x-t G_{t}(x)\right) \\
\leq & g(z)+\nabla g(x)^{T}(x-z)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \\
& +h(z)+v^{T}\left(x-z-t G_{t}(x)\right) \\
= & g(z)+h(z)+G_{t}(x)^{T}(x-z)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}
\end{aligned}
$$

line 2 follows from convexity of g and h, and $v \in \partial h\left(x-t G_{t}(x)\right)$

Progress in one iteration

$$
x^{+}=x-t G_{t}(x)
$$

- inequality (2) with $z=x$ shows the algorithm is a descent method:

$$
f\left(x^{+}\right) \leq f(x)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}
$$

- inequality (2) with $z=x^{\star}$:

$$
\begin{align*}
f\left(x^{+}\right)-f^{\star} & \leq G_{t}(x)^{T}\left(x-x^{\star}\right)-\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x-x^{\star}-t G_{t}(x)\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x-x^{\star}\right\|_{2}^{2}-\left\|x^{+}-x^{\star}\right\|_{2}^{2}\right) \tag{3}
\end{align*}
$$

(hence, $\left\|x^{+}-x^{\star}\right\|_{2} \leq\left\|x-x^{\star}\right\|_{2}$, i.e., distance to optimal set decreases)

Analysis for fixed step size

add inequalities (3) for $x=x^{(i-1)}, x^{+}=x^{(i)}, t=t_{i}=1 / L$

$$
\begin{aligned}
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) & \leq \frac{1}{2 t} \sum_{i=1}^{k}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& =\frac{1}{2 t}\left(\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
\end{aligned}
$$

since $f\left(x^{(i)}\right)$ is nonincreasing,

$$
f\left(x^{(k)}\right)-f^{*} \leq \frac{1}{k} \sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq \frac{1}{2 k t}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

conclusion: reaches $f\left(x^{(k)}\right)-f^{\star} \leq \epsilon$ after $O(1 / \epsilon)$ iterations

Quadratic program with box constraints

$$
\begin{array}{ll}
\operatorname{minimize} & (1 / 2) x^{T} A x+b^{T} x \\
\text { subject to } & 0 \preceq x \preceq \mathbf{1}
\end{array}
$$

$n=3000 ;$ fixed step size $t=1 / \lambda_{\max }(A)$

1-norm regularized least-squares

$$
\operatorname{minimize} \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\|x\|_{1}
$$

randomly generated $A \in \mathbf{R}^{2000 \times 1000}$; step $t_{k}=1 / L$ with $L=\lambda_{\max }\left(A^{T} A\right)$

Outline

- introduction
- proximal mapping
- proximal gradient method with fixed step size
- proximal gradient method with line search

Line search

- the analysis for fixed step size (page 6-12) starts with the inequality

$$
\begin{equation*}
g\left(x-t G_{t}(x)\right) \leq g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

this inequality is known to hold for $0<t \leq 1 / L$

- if L is not known, we can satisfy (1) by a backtracking line search: start at some $t:=\hat{t}>0$ and backtrack $(t:=\beta t)$ until (1) holds
- step size t selected by the line search satisfies $t \geq t_{\text {min }}=\min \{\hat{t}, \beta / L\}$
- requires one evaluation of g and $\operatorname{prox}_{t h}$ per line search iteration several other types of line search work
example: line search for projected gradient method

$$
x^{+}=P_{C}(x-t \nabla g(x))=x-t G_{t}(x)
$$

backtrack until $x-t G_{t}(x)$ satisfies 'sufficient decrease' inequality (1)

Analysis with line search

from p. 6-14, if (1) holds in iteration i, then $f\left(x^{(i)}\right)<f\left(x^{(i-1)}\right)$ and

$$
\begin{aligned}
f\left(x^{(i)}\right)-f^{\star} & \leq \frac{1}{2 t_{i}}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right) \\
& \leq \frac{1}{2 t_{\min }}\left(\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}\right)
\end{aligned}
$$

- adding inequalities for $i=1$ to $i=k$ gives

$$
\sum_{i=1}^{k}\left(f\left(x^{(i)}\right)-f^{\star}\right) \leq \frac{1}{2 t_{\min }}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

- since $f\left(x^{(i)}\right)$ is nonincreasing, obtain similar $1 / k$ bound as for fixed t_{i} :

$$
f\left(x^{(k)}\right)-f^{\star} \leq \frac{1}{2 k t_{\min }}\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}
$$

References

convergence analysis of proximal gradient method

- A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences (2009)
- A. Beck and M. Teboulle, Gradient-based algorithms with applications to signal recovery, in: Y. Eldar and D. Palomar (Eds.), Convex Optimization in Signal Processing and Communications (2009)

