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Introduction

Consider the generic parameter-estimation scheme :

di = Fi(z)qi +€¢ for i=1,..,m,

e observation d; is obtained by the linear action of the
forward model F;(z) on known source parameters g;.

e ¢; captures the discrepancy between d; and prediction
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FWI Application in Seismology

This paper focuses the full-waveform inversion(FWI) application
in seismology, which is used to image the earth’s subsurface.

e forward model F : the solution operator of the wave equ.

e 1 : sound-velocity parameters for a 2- or 3-dimensional
mesh.

e ¢; encode the location and signature; d; corresponding
measurements.
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Mathematical Methods

Minimizing some measure of misfit:
1 m
H;in o(x) == . z;qﬁz(x)
1=

where each ¢;(z) is some measure of the residual

ri(z) :=d; — Fi(z)g;
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Typical Penalties

e Least-squares penalty : ¢;(z) = ||r;(z)]|?
equivalent to MAP estimate of x;

¢; independent and Gaussian.

e general ML or MAP estimation : ¢;(x) = —logp;(ri(x))
where p; is a particular probability density function of e;.
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Main Work:
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Goal & Main Work

Main Work:

® Penalty Construction
Overcome the data contamination;
From a statistical perspective: Student’s t-distribution
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Goal & Main Work

Main Work:

® Penalty Construction
Overcome the data contamination;
From a statistical perspective: Student’s t-distribution

® Dimensionality Reduction Technique
Costly computation of seismic data;
Sample average approximations;
Stochastic optimization
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Basic Penalty Form

Natural Option for ML, or MAP selection:

e using a log-concave density, p(r) o exp(—p(r)),
p convex penalty;

e ¢i(x) = p(ri(x)), fori=1,...,m.
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Basic Penalty Form

Natural Option for ML, or MAP selection:

e using a log-concave density, p(r) o exp(—p(r)),
p convex penalty;

e ¢i(x) = p(ri(x)), fori=1,...,m.

Two NOTES:
e for nonlinear Fj, typically nonconvex even for convex p;

e even for linear Fj, beneficial to choose a nonconvex p for
outliers in the data.
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Student’s t-distribution

Student’s t-density function:
p(rlp, v) o< (1+ (r — p)? fv) =0+
e heavy tail;
e the corresponding penalty function (4 = 0): nonconvex

p(r) =log(1+1%/v)
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Outlier Removal
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Outlier Removal

Typical question:

Given that a scalar residual deviates from the mean by more
than ¢, what is the probability that it actually deviates by more
than 2¢?
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Outlier Removal

Typical question:

Given that a scalar residual deviates from the mean by more
than ¢, what is the probability that it actually deviates by more
than 2¢?

e l-norm (the slowest-growing convex penalty; Laplace
distribution with mean 1/a)

Pr(|r| > ta||r| > t1) = Pr(|r| > ta — t1) = exp(—afte — t1])
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Outlier Removal

¢ Student’s t-distribution (Cauchy distribution with v = 1)

5 —arctan(2t) 1

Jm Prirl > 2dirl > 9) = lim S @) ~ 2

e general convex penalty (differentiable; proved)

Pr(|r| > ta||r| > t1) = Pr(|r| > ta — t1) < exp(—aplta — t1])
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Outlier Removal

¢ Student’s t-distribution (Cauchy distribution with v = 1)

5 —arctan(2t) 1

Jm Prirl > 2dirl > 9) = lim S @) ~ 2

e general convex penalty (differentiable; proved)

Pr(|r| > ta||r| > t1) = Pr(|r| > ta — t1) < exp(—aplta — t1])

One critical conclusion:
Log-concave density family ‘ignores’ the existence of outliers to
some extent while the Student’s t-distribution doesn’t.
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Outlier Removal

Another perspective: Influence Function p/(t)
e Laplace: sign function; Gaussian: linear function

e Student’s t-density:
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Outlier Removal

Another perspective: Influence Function p/(t)
e Laplace: sign function; Gaussian: linear function

e Student’s t-density:

2r

/ _
p(r)_l/—l—TQ

Tradeoft:

e Convex models are easier to characterize and solve, but
may be wrong in a situation in which large outliers are
expected.

e Nonconvex penalties are particularly useful with large
outliers.
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Explicit Diagram
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Fig. 1: The Gaussian (-—), Laplace (——), and Student’s t- (—) distributions: (a)
densities, (b) penalties, and (c) influence functions.
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Thank you!
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