> Robust Inversion, Dimensionality Reduction, and Randomized Sampling By Aleksandr Aravkin, Michael P. Friedlander, etc.

#### Shan You, Kai Zheng, Cong Fang

School of Information Science and Technology

December 15, 2014

イロト イポト イヨト イヨト

### Contents

### 1 Introduction

- **2** Mechanism Illustration
- **8** Numerical Experiments in Seismic Inversion

э

**4** Concluding Remarks

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks Topic Illustration Main Work

・ロン ・四と ・ヨン ・ヨン

# Introduction Topic Illustration

Main Work

**2** Mechanism Illustration

**3** Numerical Experiments in Seismic Inversion

**4** Concluding Remarks

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks

Introduction

Consider the generic parameter-estimation scheme :

$$d_i = F_i(x)q_i + \epsilon_i \quad for \quad i = 1, .., m,$$

- observation  $d_i$  is obtained by the linear action of the forward model  $F_i(x)$  on known source parameters  $q_i$ .
- $\epsilon_i$  captures the discrepancy between  $d_i$  and prediction  $F_i(x)q_i$ .

《曰》 《圖》 《臣》 《臣》

Fopic Illustratior Main Work

< 口 > (四 > (四 > ( 三 > ( 三 > )))

## **FWI** Application in Seismology

This paper focuses the full-waveform inversion(FWI) application in seismology, which is used to image the earth's subsurface.

- forward model F: the solution operator of the wave equ.
- x: sound-velocity parameters for a 2- or 3-dimensional mesh.
- $q_i$  encode the location and signature;  $d_i$  corresponding measurements.

Topic Illustration Main Work

< ロ > (四 > (四 > ( 三 > ( 三 > )))

2

### Mathematical Methods

Minimizing some measure of misfit:

$$\min_{x} \quad \phi(x) := \frac{1}{m} \sum_{i=1}^{m} \phi_i(x)$$

where each  $\phi_i(x)$  is some measure of the residual

$$r_i(x) := d_i - F_i(x)q_i$$

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks Topic Illustration Main Work

《曰》 《圖》 《臣》 《臣》

## **Typical Penalties**

- Least-squares penalty :  $\phi_i(x) = ||r_i(x)||^2$ equivalent to MAP estimate of x;  $\epsilon_i$  independent and Gaussian.
- general ML or MAP estimation :  $\phi_i(x) = -\log p_i(r_i(x))$ where  $p_i$  is a particular probability density function of  $\epsilon_i$ .

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks

Topic Illustration Main Work

< ロ > (四 > (四 > ( 三 > ( 三 > )))

2

### Goal & Main Work

#### Main Work:

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks Topic Illustration Main Work

・ロト ・四ト ・ヨト ・ヨト

э.

## Goal & Main Work

#### Main Work:

### **1** Penalty Construction

Overcome the data contamination;

From a statistical perspective: Student's t-distribution

Mechanism Illustration Numerical Experiments in Seismic Inversion Concluding Remarks Topic Illustration Main Work

## Goal & Main Work

### Main Work:

### **1** Penalty Construction

Overcome the data contamination;

From a statistical perspective: Student's t-distribution

### **2** Dimensionality Reduction Technique

Costly computation of seismic data; Sample average approximations; Stochastic optimization

Robust Statistics

・ロト ・四ト ・ヨト ・ヨト

#### Introduction

#### **2** Mechanism Illustration

Robust Statistics Sample Average Approximations Stochastic Optimization

#### **3** Numerical Experiments in Seismic Inversion

### **4** Concluding Remarks

Robust Statistics

(日)

3

## **Basic Penalty Form**

Natural Option for ML or MAP selection:

• using a log-concave density,  $p(r) \propto \exp(-\rho(r))$ ,  $\rho$  convex penalty;

• 
$$\phi_i(x) = \rho(r_i(x))$$
, for  $i = 1, ..., m$ .

Robust Statistics

< ロ > (四 > (四 > ( 三 > ( 三 > )))

3

## **Basic Penalty Form**

Natural Option for ML or MAP selection:

- using a log-concave density,  $p(r) \propto \exp(-\rho(r))$ ,  $\rho$  convex penalty;
- $\phi_i(x) = \rho(r_i(x))$ , for i = 1, ..., m.

### Two NOTES:

- for nonlinear  $F_i$ , typically nonconvex even for convex  $\rho$ ;
- even for linear  $F_i$ , beneficial to choose a nonconvex  $\rho$  for outliers in the data.

Robust Statistics

### Student's t-distribution

Student's t-density function:

$$p(r|\mu,\nu) \propto (1 + (r-\mu)^2/\nu)^{-(1+\nu)/2}$$

- heavy tail;
- the corresponding penalty function  $(\mu = 0)$ : nonconvex

$$\rho(r) = \log(1 + r^2/\nu)$$

< 口 > (四 > (四 > ( 三 > ( 三 > )))

э

Robust Statistics

ヘロト ヘ週ト ヘヨト ヘヨト

2

### **Outlier** Removal

Robust Statistics

ヘロン ヘロン ヘヨン ヘヨン

э

### **Outlier** Removal

#### Typical question:

Given that a scalar residual deviates from the mean by more than t, what is the probability that it actually deviates by more than 2t?

Robust Statistics

### **Outlier** Removal

#### Typical question:

Given that a scalar residual deviates from the mean by more than t, what is the probability that it actually deviates by more than 2t?

• 1-norm (the slowest-growing convex penalty; Laplace distribution with mean  $1/\alpha$ )

$$Pr(|r| > t_2 ||r| > t_1) = Pr(|r| > t_2 - t_1) = \exp(-\alpha[t_2 - t_1])$$

ヘロト ヘロト ヘヨト ヘヨト

### **Outlier** Removal

• Student's t-distribution (Cauchy distribution with  $\nu = 1$ )

$$\lim_{t \to \infty} \Pr(|r| > 2t ||r| > t) = \lim_{t \to \infty} \frac{\frac{\pi}{2} - \arctan(2t)}{\frac{\pi}{2} - \arctan(t)} = \frac{1}{2}$$

• general convex penalty (differentiable; proved)

$$Pr(|r| > t_2 ||r| > t_1) = Pr(|r| > t_2 - t_1) \leq \exp(-\alpha_0[t_2 - t_1])$$

《曰》 《圖》 《臣》 《臣》

э

Robust Statistics

### **Outlier** Removal

• Student's t-distribution (Cauchy distribution with  $\nu = 1$ )

$$\lim_{t \to \infty} \Pr(|r| > 2t ||r| > t) = \lim_{t \to \infty} \frac{\frac{\pi}{2} - \arctan(2t)}{\frac{\pi}{2} - \arctan(t)} = \frac{1}{2}$$

• general convex penalty (differentiable; proved)

$$Pr(|r| > t_2 ||r| > t_1) = Pr(|r| > t_2 - t_1) \leq \exp(-\alpha_0[t_2 - t_1])$$

・ロト ・四ト ・ヨト ・ヨト

#### One critical conclusion:

Log-concave density family 'ignores' the existence of outliers to some extent while the Student's t-distribution doesn't.

Robust Statistics

《曰》 《圖》 《臣》 《臣》

э

### **Outlier** Removal

Another perspective: Influence Function  $\rho'(t)$ 

- Laplace: sign function; Gaussian: linear function
- Student's t-density:

$$\rho'(r) = \frac{2r}{\nu + r^2}$$

Robust Statistics

・ロト ・回ト ・ヨト ・ヨト

### **Outlier** Removal

Another perspective: Influence Function  $\rho'(t)$ 

- Laplace: sign function; Gaussian: linear function
- Student's t-density:

$$\rho'(r) = \frac{2r}{\nu + r^2}$$

### Tradeoff:

- Convex models are easier to characterize and solve, but may be wrong in a situation in which large outliers are expected.
- Nonconvex penalties are particularly useful with large outliers.

Robust Statistics

## **Explicit** Diagram



Fig. 1: The Gaussian (-), Laplace (--), and Student's t- (-) distributions: (a) densities, (b) penalties, and (c) influence functions.

< 口 > (四 > (四 > ( 三 > ( 三 > )))

æ

#### Introduction

**2** Mechanism Illustration

### **8** Numerical Experiments in Seismic Inversion

・ロン ・四と ・ヨン ・ヨン

э

#### **4** Concluding Remarks

### Introduction

**2** Mechanism Illustration

**3** Numerical Experiments in Seismic Inversion

《曰》 《卽》 《臣》 《臣》

### **4** Concluding Remarks

# Thank you!

・ロン ・四と ・ヨン ・ヨン

æ