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Why dimension reduction
Random Sampling

Recall : minϕ(x) = 1

m

m∑
i=1

ϕi(x),

where ϕi(x) = ρ(ri(x)) = ρ(di − Fi(x)qi)

Disadvantage: Expensive Computation

How to solve? Stochastic Gradient Descent
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Sampling with and without replacement

When loss function is square function,

ϕ(x) = 1

m tr(R(x)TR(x))

where R(x) = [r1(x), r2(x), . . . , rm(x)]

’New Data’: d̃j =
∑m

i=1 wijdi, q̃j =
∑m

i=1 wijqi, j = 1, . . . , s
r̃j(x) = d̃j − F(x)q̃j,RW(x) := [̃r1(x), r̃2(x), . . . , r̃s(x)]

RW(x) = R(x)W

ϕW(x) = 1

s

s∑
j=1

∥̃rj(x)∥2 =
1

s tr(RW(x)TRW(x))
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Proposition
If E[WWT] = I, then

E[ϕW(x)] = ϕ(x), E[∇ϕW(x)] = ∇ϕ(x)

Disadvantage: Conclusion holds only for 2-norm.
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Sample a small subset S ⊂ {1, . . . ,m}

ϕS(x) =
1

s
∑
i∈S

ϕi(x),∇ϕS(x) =
1

s
∑
i∈S

∇ϕi(x)

E[ϕW(x)] = ϕ(x), E[∇ϕW(x)] = ∇ϕ(x)

In each iteration step, cost is about s
m -fraction of the ture cost.
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Error Analysis

What we care about are the sample gradient.

e := ∇ϕS −∇ϕ

E[∥e∥2] = V[∥∇ϕS∥]

σg :=
1

m − 1

m∑
i=1

∥∇ϕi −∇ϕ∥2

E[∥e∥2] = 1

s (1−
s
m)σg (without replacement)

E[∥e∥2] = 1

sσg (with replacement)
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