
Presentation in Convex Optimization

Mingrui Zhang, Xialiang Dou, Dongming Huang

Dec 22, 2014

Mingrui Zhang, Xialiang Dou, Dongming Huang Presentation in Convex Optimization



Introduction

Sample size selection in optimization methods
for machine learning

Main results: presents a methodology for using
varying sample sizes in batch-type optimization
methods for large-scale machine learning problems.

Dynamic sample selection in the evaluation of
the function and gradient.

A practical Newton method that uses smaller
sample to compute Hessian vector-products.
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The dynamic sample size gradient method

ProblemµTo determine the values of the parameters ω ∈ Rm of a
prediction function f(ω;x), where we assume:

f(ω, x) = ωTx (1)

Common Approach:To minimize the empirical loss function:

J(ω) =
1

N

N∑
i=1

l(f(ω;xi), yi) (2)

where l(ŷ, y) is a convex loss function.
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The dynamic sample size gradient method

AssumptionµThe size of the data set N is extremely large,
numbered somewhere in the millions or billions, so that the
evaluation of J(ω) is very expensive.

A gradient-based mini-batch optimization algorithm: At every
iteration, chooses a subset S ⊂ {1, 2, · · · , N} of the training set,
and applies one step of an optimization algorithm to the objective
function:

JS(ω) =
1

|S|
∑
i∈S

l(f(ω;xi), yi) (3)
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The dynamic sample size gradient method

Measure of the quality of the sample S: the variance in the
gradient ∇JS

It’s easy to verify that the vector d = −∇JS(ω) is a descent
direction for J at ω if:

δS(ω) ≡ ‖∇JS(ω)−∇J(ω)‖2 ≤ θ‖∇JS(ω)‖2 (4)

where θ ∈ [0, 1).

Note that

E[δS(ω)2] = E[‖∇JS(ω)− J(ω)‖22] = ‖Var(∇JS)‖1 (5)
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The dynamic sample size gradient method

By simple calculations, we have:

Var(∇JS(ω)) =
Var(∇l(ω; i))

|S|
N − |S|
N − 1

(6)

where
N − |S|
N − 1

≈ 1.

Then we can rewrite the condition in the following format:

|S| = ‖Vari∈S(∇l(ω; i))‖1
θ2‖∇JS(ω)‖22

(7)

This is also the criterion that we use to determine the dynamic
sample size.
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A Newton-CG method with dynamic sampling

At each iteration, the subsampled Newton-CG method chooses
samples Sk and Hk such that |Hk| � |Sk|, and defines the search
direction dk as an approximate solution of the linear system

∇2JHk
(ωk)d = −∇JSk

(ωk) (8)

Now we turn to create automatic criterion for deciding the
accuracy in the solution of (8)
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A Newton-CG method with dynamic sampling

rk ≡ ∇2JHk
(ωk)d+∇JSk

(ωk) (9)

Then we write the residual of the standard Newton iteration as:

∇2JSk
(ωk)d+∇JSk

(ωk) = rk + [∇2JSk
(ωk)−∇2JHk

(ωk)]d (10)

If we define:

E[∆Hk
(ωk; d)2] ≡ [∇2JSk

(ωk)−∇2JHk
(ωk)]d (11)

Then we can make the approximation:

E[∆Hk
(ωk; d)2] ≈ ‖Vari∈Hk

(∇2l(ωk; i)d)‖1
|Hk|

(12)
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A Newton-CG method with dynamic sampling

In order to avoid to recompute the variance at every CG iteration,
we initialize the CG iteration at the zero vector. From (9), we have
that the initial CG search direction is given by
p0 = −r0 = −∇JSk

(ωk).

We compute (12) at the beginning of the CG iteration, for d = p0.

The stop test for the j + 1 CG iteration is then set as:

‖rj+1‖22 ≤ Ψ ≡ (
‖Vari∈Hk

(∇2l(ωk; i)p0)‖1
|Hk|

)
‖dj‖22
‖p0‖22

(13)

where dj is the jth trial candidate for the solution of (8) generated
by the CG process and the last ratio accounts for the length of the
CG solution.
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