Sample Size Selection in Optimization Methods for Machine Learning

Xialiang Dou, Mingrui Zhang, Dongming Huang

22. December 2014

Assumption:

- J is L-Lipchistz and λ -strong convex.
- In every step, $\|g_k \nabla J(w_k)\| \le \theta \|g_k\|$

Then,

$$J(w_k) - J^* \le \frac{1}{\lambda} \|\nabla J(w_k)\|_2^2$$

 $J(w_k) - J^* \ge \frac{\lambda}{2J^2} \|\nabla J(w_k)\|_2^2$

Without loss of generality, we assume $J^*=0$. We take step length $\alpha=(1-\theta)/L$. Then

$$J(w_{k+1}) \le (1 - \beta \lambda/L)J(w_k)$$

, where
$$\beta = \frac{1-\theta}{2}$$

Proof.

by triangle inequality:

$$\|\nabla J_k\| \leq (1+\theta)g_k, \|\nabla J_k\| \geq (1-\theta)g_k$$

$$\begin{split} 2\nabla J_k^T g_k & \geq (1 - \theta^2) \|g_k\|^2 + \|\nabla J_k\|^2 \\ & \geq [1 - \theta^2 - (1 - \theta)^2] \|g_k\| \\ J(w_k) & \leq \frac{1}{\lambda} \|\nabla J(w_k)\|_2^2 \text{ (strong convex)} \end{split}$$

$$\Longrightarrow \frac{L}{2} \frac{(1-\theta^2)(1-\theta)}{L^2} \|g_k\|^2 - \frac{1-\theta}{L} \nabla J_k^T g_k \le -\frac{\lambda(1-\theta)}{2L} J(w_k)$$

$$egin{aligned} w_{k+1} &= w_k - lpha g_k ext{, note that } lpha &= (1- heta)/L \ &J(w_{k+1}) &\leq J(w_k) - lpha
abla J_k^T g_k + rac{L}{2} \|lpha g_k\|^2 ext{ (Lipschitz)} \ &\leq J(w_k) - rac{\lambda(1- heta)}{2I} J(w_k) \end{aligned}$$

Assumption:

- $\|Var(\nabla I(w; x_i, y_i))\|_1 \leq \omega$
- $\bullet \ n_k = [a^k]$

Explanation:

$$J(w_k) \geq \frac{\lambda}{2L^2} \|\nabla J(w_k)\|_2^2 \text{ (Lipschitz and strong convex)}$$

$$(1 - \frac{\beta \lambda}{L})^k J(w_0) \geq \frac{\lambda}{2L^2} \|\nabla J(w_k)\|_2^2$$

$$\geq C \frac{Var(S_k)}{n_k}$$

$$\begin{aligned} w_{k+1} &= w_k - \frac{1}{L} g_k, \text{ also } E(g_k) = \nabla J_k \\ &J(w_{k+1}) &\leq J(w_k) - \frac{1}{L} \nabla J(w_k)^T g_k + \frac{1}{2L} \|g_k\|^2 \text{ (Lipschitz)} \\ &EJ(w_{k+1}) &\leq J(w_k) - \frac{1}{L} \|\nabla J(w_k)\|^2 + \frac{1}{2L} \|\nabla J(w_k)\|^2 + \frac{1}{2L} Var(g_k) \\ &EJ(w_{k+1}) &\leq (1 - \frac{\lambda}{2L}) J(w_k) + \frac{\omega}{2Ln_k}, \text{ note } n_k = [a^k] \\ &\|Var(g_k)\|_1 \leq \frac{\|Var(\nabla I)\|_1}{n_k} \end{aligned}$$

Notice that the expectation are taken condition on $J(w_k)$. Then

$$E(J_{w_{k+1}} - J_{w_k}) < Cp^k$$
, where $p = max(1 - \lambda/(4L), 1/a)$

Algorithm Name	Bound	Algorithm Description
Dynamic Sample Gradient Method		(4.23), (4.24)
Fixed Sample Gradient Method	$O(m^2 \kappa \epsilon^{-1/\bar{\alpha}} \log^2 \frac{1}{\epsilon})$	(4.32)
Stochastic Gradient Method	$O(m\bar{\nu}\kappa^2/\epsilon)$	(4.33)

Where κ is the condition number $\frac{\lambda}{L}$, m is the problem size.