5. Subgradient method

- subgradient method
- convergence analysis
- optimal step size when f^{\star} is known
- alternating projections
- optimality

Subgradient method

to minimize a nondifferentiable convex function f : choose $x^{(0)}$ and repeat

$$
x^{(k)}=x^{(k-1)}-t_{k} g^{(k-1)}, \quad k=1,2, \ldots
$$

$g^{(k-1)}$ is any subgradient of f at $x^{(k-1)}$

step size rules

- fixed step: t_{k} constant
- fixed length: $t_{k}\left\|g^{(k-1)}\right\|_{2}$ constant (i.e., $\left\|x^{(k)}-x^{(k-1)}\right\|_{2}$ constant)
- diminishing: $t_{k} \rightarrow 0, \sum_{k=1}^{\infty} t_{k}=\infty$

Assumptions

- f has finite optimal value f^{\star}, minimizer x^{\star}
- f is convex, $\operatorname{dom} f=\mathbf{R}^{n}$
- f is Lipschitz continuous with constant $G>0$:

$$
|f(x)-f(y)| \leq G\|x-y\|_{2} \quad \forall x, y
$$

this is equivalent to

$$
\|g\|_{2} \leq G \quad \forall g \in \partial f(x), \forall x
$$

(see next page)
proof

- assume $\|g\|_{2} \leq G$ for all subgradients; choose $g_{y} \in \partial f(y), g_{x} \in \partial f(x)$:

$$
g_{x}^{T}(x-y) \geq f(x)-f(y) \geq g_{y}^{T}(x-y)
$$

by the Cauchy-Schwarz inequality

$$
G\|x-y\|_{2} \geq f(x)-f(y) \geq-G\|x-y\|_{2}
$$

- assume $\|g\|_{2}>G$ for some $g \in \partial f(x)$; take $y=x+g /\|g\|_{2}$:

$$
\begin{aligned}
f(y) & \geq f(x)+g^{T}(y-x) \\
& =f(x)+\|g\|_{2} \\
& >f(x)+G
\end{aligned}
$$

Analysis

- the subgradient method is not a descent method
- the key quantity in the analysis is the distance to the optimal set with $x^{+}=x^{(i)}, x=x^{(i-1)}, g=g^{(i-1)}, t=t_{i}$:

$$
\begin{aligned}
\left\|x^{+}-x^{\star}\right\|_{2}^{2} & =\left\|x-t g-x^{\star}\right\|_{2}^{2} \\
& =\left\|x-x^{\star}\right\|_{2}^{2}-2 t g^{T}\left(x-x^{\star}\right)+t^{2}\|g\|_{2}^{2} \\
& \leq\left\|x-x^{\star}\right\|_{2}^{2}-2 t\left(f(x)-f^{\star}\right)+t^{2}\|g\|_{2}^{2}
\end{aligned}
$$

combine inequalities for $i=1, \ldots, k$, and define $f_{\text {best }}^{(k)}=\min _{0 \leq i<k} f\left(x^{(i)}\right)$:

$$
\begin{aligned}
2\left(\sum_{i=1}^{k} t_{i}\right)\left(f_{\text {best }}^{(k)}-f^{\star}\right) & \leq\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(k)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i-1)}\right\|_{2}^{2} \\
& \leq\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}+\sum_{i=1}^{k} t_{i}^{2}\left\|g^{(i-1)}\right\|_{2}^{2}
\end{aligned}
$$

fixed step size $t_{i}=t$

$$
f_{\text {best }}^{(k)}-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 k t}+\frac{G^{2} t}{2}
$$

- does not guarantee convergence of $f_{\text {best }}^{(k)}$
- for large $k, f_{\text {best }}^{(k)}$ is approximately $G^{2} t / 2$-suboptimal fixed step length $t_{i}=s /\left\|g^{(i-1)}\right\|_{2}$

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{G\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}}{2 k s}+\frac{G s}{2}
$$

- does not guarantee convergence of $f_{\text {best }}^{(k)}$
- for large $k, f_{\text {best }}^{(k)}$ is approximately $G s / 2$-suboptimal
diminishing step size $t_{i} \rightarrow 0, \sum_{i=1}^{\infty} t_{i}=\infty$

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{\left\|x^{(0)}-x^{\star}\right\|_{2}^{2}+G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}
$$

can show that $\left(\sum_{i=1}^{k} t_{i}^{2}\right) /\left(\sum_{i=1}^{k} t_{i}\right) \rightarrow 0$; hence, $f_{\text {best }}^{(k)}$ converges to f^{\star}

Example: 1-norm minimization

$$
\text { minimize }\|A x-b\|_{1} \quad\left(A \in \mathbf{R}^{500 \times 100}, b \in \mathbf{R}^{500}\right)
$$

subgradient is given by $A^{T} \boldsymbol{\operatorname { s i g n }}(A x-b)$
fixed steplength $t_{k}=s /\left\|g^{(k-1)}\right\|_{2}, s=0.1,0.01,0.001$

diminishing step size $t_{k}=0.01 / \sqrt{k}, t_{k}=0.01 / k$

Optimal step size for fixed number of iterations

from page 5-5: if $s_{i}=t_{i}\left\|g^{(i-1)}\right\|_{2}$ and $\left\|x^{(0)}-x^{\star}\right\|_{2} \leq R$:

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{R^{2}+\sum_{i=1}^{k} s_{i}^{2}}{2 \sum_{i=1}^{k} s_{i} / G}
$$

- for given k, bound is minimized by fixed step length $s_{i}=s=R / \sqrt{k}$
- resulting bound after k steps is

$$
f_{\text {best }}^{(k)}-f^{\star} \leq \frac{G R}{\sqrt{k}}
$$

- guarantees accuracy $f_{\text {best }}^{(k)}-f^{\star} \leq \epsilon$ in $k=O\left(1 / \epsilon^{2}\right)$ iterations

Optimal step size when f^{\star} is known

right-hand side in first inequality of page 5-5 is minimized by

$$
t_{i}=\frac{f\left(x^{(i-1)}\right)-f^{\star}}{\left\|g^{(i-1)}\right\|_{2}^{2}}
$$

optimized bound is

$$
\frac{\left(f\left(x^{(i-1)}\right)-f^{\star}\right)^{2}}{\left\|g^{(i-1)}\right\|_{2}^{2}} \leq\left\|x^{(i-1)}-x^{\star}\right\|_{2}^{2}-\left\|x^{(i)}-x^{\star}\right\|_{2}^{2}
$$

applying recursively (with $\left\|x^{(0)}-x^{\star}\right\|_{2} \leq R$ and $\left\|g^{(i)}\right\|_{2} \leq G$) gives

$$
f_{\mathrm{best}}^{(k)}-f^{\star} \leq \frac{G R}{\sqrt{k}}
$$

Exercise: find point in intersection of convex sets

to find a point in the intersection of m closed convex sets C_{1}, \ldots, C_{m},

$$
\text { minimize } f(x)=\max \left\{d_{1}(x), \ldots, d_{m}(x)\right\}
$$

where $d_{j}(x)=\inf _{y \in C_{j}}\|x-y\|_{2}$ is Euclidean distance of x to C_{j}

- $f^{\star}=0$ if the intersection is nonempty
- (from p. 4-15): $g \in \partial f(\hat{x})$ if $g \in \partial d_{j}(\hat{x})$ and C_{j} is farthest set from \hat{x}
- (from p. 4-21) subgradient $g \in \partial d_{j}(\hat{x})$ from projection $P_{j}(\hat{x})$ on C_{j} :

$$
\left.g=0 \quad\left(\text { if } \hat{x} \in C_{j}\right), \quad g=\frac{1}{d\left(\hat{x}, C_{j}\right)}\left(\hat{x}-P_{j}(\hat{x})\right) \quad \text { (if } \hat{x} \notin C_{j}\right)
$$

note that $\|g\|_{2}=1$ if $\hat{x} \notin C_{j}$
subgradient method with optimal step size

- optimal step size for $f^{\star}=0$ and $\left\|g^{(i-1)}\right\|_{2}=1$ is $t_{i}=f\left(x^{(i-1)}\right)$.
- at iteration k, find farthest set C_{j} (with $\left.f\left(x^{(k-1)}\right)=d_{j}\left(x^{(k-1)}\right)\right)$; take

$$
\begin{aligned}
x^{(k)} & =x^{(k-1)}-\frac{f\left(x^{(k-1)}\right)}{d_{j}\left(x^{(k-1)}\right)}\left(x^{(k-1)}-P_{j}\left(x^{(k-1)}\right)\right) \\
& =P_{j}\left(x^{(k-1)}\right)
\end{aligned}
$$

- a version of the alternating projections algorithm
- at each step, project the current point onto the farthest set
- for $m=2$, projections alternate onto one set, then the other

Example: Positive semidefinite matrix completion

some entries of $X \in \mathbf{S}^{n}$ fixed; find values for others so $X \succeq 0$

- $C_{1}=\mathbf{S}_{+}^{n}, C_{2}$ is (affine) set in \mathbf{S}^{n} with specified fixed entries
- projection onto C_{1} by eigenvalue decomposition, truncation

$$
P_{1}(X)=\sum_{i=1}^{n} \max \left\{0, \lambda_{i}\right\} q_{i} q_{i}^{T} \quad \text { if } X=\sum_{i=1}^{n} \lambda_{i} q_{i} q_{i}^{T}
$$

- projection of X onto C_{2} by re-setting specified entries to fixed values

$$
100 \times 100
$$

matrix missing 71% entries

Optimality of the subgradient method

can the $f_{\text {best }}^{(k)}-f^{\star} \leq G R / \sqrt{k}$ bound on page 5-10 be improved?

problem class

- f is convex, with a minimizer x^{\star}
- we know a starting point $x^{(0)}$ with $\left\|x^{(0)}-x^{\star}\right\|_{2} \leq R$
- we know the Lipschitz constant G of f on $\left\{x \mid\left\|x-x^{(0)}\right\|_{2} \leq R\right\}$
- f is defined by an oracle: given x, oracle returns $f(x)$ and a subgradient
algorithm class: k iterations of any method that chooses $x^{(i)}$ in

$$
x^{(0)}+\operatorname{span}\left\{g^{(0)}, g^{(1)}, \ldots, g^{(i-1)}\right\}
$$

test problem and oracle

$$
f(x)=\max _{i=1, \ldots, k} x_{i}+\frac{1}{2}\|x\|_{2}^{2}, \quad x^{(0)}=0
$$

- solution: $x^{\star}=-\frac{1}{k}(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k})$ and $f^{\star}=-\frac{1}{2 k}$
- $R=\left\|x^{(0)}-x^{\star}\right\|_{2}=1 / \sqrt{k}$ and $G=1+1 / \sqrt{k}$
- oracle returns subgradient $e_{\hat{\jmath}}+x$ where $\hat{\jmath}=\min \left\{j \mid x_{j}=\max _{i=1, \ldots, k} x_{i}\right\}$
iteration: for $i=0, \ldots, k-1$, entries $x_{i+1}^{(i)}, \ldots, x_{k}^{(i)}$ are zero

$$
f_{\text {best }}^{(k)}-f^{\star}=\min _{i<k} f\left(x^{(i)}\right)-f^{\star} \geq-f^{\star}=\frac{G R}{2(1+\sqrt{k})}
$$

conclusion: $O(1 / \sqrt{k})$ bound cannot be improved

Summary: subgradient method

- handles general nondifferentiable convex problem
- often leads to very simple algorithms
- convergence can be very slow
- no good stopping criterion
- theoretical complexity: $O\left(1 / \epsilon^{2}\right)$ iterations to find ϵ-suboptimal point
- an 'optimal' 1st-order method: $O\left(1 / \epsilon^{2}\right)$ bound cannot be improved

References

- S. Boyd, lecture notes and slides for EE364b, Convex Optimization II
- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004)
§3.2.1 with the example on page 5-16 of this lecture

