# 5. Subgradient method

- subgradient method
- convergence analysis
- optimal step size when  $f^*$  is known
- alternating projections
- optimality

## Subgradient method

to minimize a nondifferentiable convex function f: choose  $x^{(0)}$  and repeat

$$x^{(k)} = x^{(k-1)} - t_k g^{(k-1)}, \quad k = 1, 2, \dots$$

 $g^{(k-1)}$  is **any** subgradient of f at  $x^{(k-1)}$ 

#### step size rules

- fixed step:  $t_k$  constant
- fixed length:  $t_k \|g^{(k-1)}\|_2$  constant (*i.e.*,  $\|x^{(k)} x^{(k-1)}\|_2$  constant)

• diminishing: 
$$t_k \to 0$$
,  $\sum_{k=1}^{\infty} t_k = \infty$ 

## Assumptions

- f has finite optimal value  $f^*$ , minimizer  $x^*$
- f is convex,  $\operatorname{\mathbf{dom}} f = \mathbf{R}^n$
- f is Lipschitz continuous with constant G > 0:

$$|f(x) - f(y)| \le G ||x - y||_2 \qquad \forall x, y$$

this is equivalent to

$$\|g\|_2 \le G \qquad \forall g \in \partial f(x), \ \forall x$$

(see next page)

proof

• assume  $||g||_2 \leq G$  for all subgradients; choose  $g_y \in \partial f(y)$ ,  $g_x \in \partial f(x)$ :

$$g_x^T(x-y) \ge f(x) - f(y) \ge g_y^T(x-y)$$

by the Cauchy-Schwarz inequality

$$G||x - y||_2 \ge f(x) - f(y) \ge -G||x - y||_2$$

• assume  $||g||_2 > G$  for some  $g \in \partial f(x)$ ; take  $y = x + g/||g||_2$ :

$$f(y) \geq f(x) + g^T(y - x)$$
  
=  $f(x) + ||g||_2$   
>  $f(x) + G$ 

## Analysis

- the subgradient method is not a descent method
- the key quantity in the analysis is the distance to the optimal set

with  $x^+ = x^{(i)}$ ,  $x = x^{(i-1)}$ ,  $g = g^{(i-1)}$ ,  $t = t_i$ :

$$\begin{aligned} \|x^{+} - x^{\star}\|_{2}^{2} &= \|x - tg - x^{\star}\|_{2}^{2} \\ &= \|x - x^{\star}\|_{2}^{2} - 2tg^{T}(x - x^{\star}) + t^{2}\|g\|_{2}^{2} \\ &\leq \|x - x^{\star}\|_{2}^{2} - 2t\left(f(x) - f^{\star}\right) + t^{2}\|g\|_{2}^{2} \end{aligned}$$

combine inequalities for i = 1, ..., k, and define  $f_{\text{best}}^{(k)} = \min_{0 \le i < k} f(x^{(i)})$ :

$$2\left(\sum_{i=1}^{k} t_{i}\right) \left(f_{\text{best}}^{(k)} - f^{\star}\right) \leq \|x^{(0)} - x^{\star}\|_{2}^{2} - \|x^{(k)} - x^{\star}\|_{2}^{2} + \sum_{i=1}^{k} t_{i}^{2} \|g^{(i-1)}\|_{2}^{2}$$
$$\leq \|x^{(0)} - x^{\star}\|_{2}^{2} + \sum_{i=1}^{k} t_{i}^{2} \|g^{(i-1)}\|_{2}^{2}$$

fixed step size  $t_i = t$ 

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{\|x^{(0)} - x^{\star}\|_2^2}{2kt} + \frac{G^2 t}{2}$$

- does not guarantee convergence of  $f_{\text{best}}^{(k)}$
- for large k,  $f_{\text{best}}^{(k)}$  is approximately  $G^2t/2$ -suboptimal

fixed step length  $t_i = s/||g^{(i-1)}||_2$ 

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{G \|x^{(0)} - x^{\star}\|_2^2}{2ks} + \frac{Gs}{2}$$

- does not guarantee convergence of  $f_{\text{best}}^{(k)}$
- for large k,  $f_{\text{best}}^{(k)}$  is approximately Gs/2-suboptimal

diminishing step size  $t_i \to 0$ ,  $\sum_{i=1}^{\infty} t_i = \infty$ 

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{\|x^{(0)} - x^{\star}\|_{2}^{2} + G^{2} \sum_{i=1}^{k} t_{i}^{2}}{2 \sum_{i=1}^{k} t_{i}}$$

can show that 
$$(\sum_{i=1}^{k} t_i^2)/(\sum_{i=1}^{k} t_i) \to 0$$
; hence,  $f_{\text{best}}^{(k)}$  converges to  $f^*$ 

## **Example: 1-norm minimization**

minimize  $||Ax - b||_1$   $(A \in \mathbb{R}^{500 \times 100}, b \in \mathbb{R}^{500})$ subgradient is given by  $A^T \operatorname{sign}(Ax - b)$ 

fixed steplength  $t_k = s/||g^{(k-1)}||_2$ , s = 0.1, 0.01, 0.001



diminishing step size  $t_k = 0.01/\sqrt{k}$ ,  $t_k = 0.01/k$ 



#### Optimal step size for fixed number of iterations

from page 5-5: if  $s_i = t_i \|g^{(i-1)}\|_2$  and  $\|x^{(0)} - x^{\star}\|_2 \le R$ :

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{R^2 + \sum_{i=1}^k s_i^2}{2\sum_{i=1}^k s_i/G}$$

- for given k, bound is minimized by fixed step length  $s_i = s = R/\sqrt{k}$
- resulting bound after k steps is

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{GR}{\sqrt{k}}$$

• guarantees accuracy  $f_{\text{best}}^{(k)} - f^{\star} \leq \epsilon$  in  $k = O(1/\epsilon^2)$  iterations

### **Optimal step size when** $f^{\star}$ **is known**

right-hand side in first inequality of page 5-5 is minimized by

$$t_i = \frac{f(x^{(i-1)}) - f^*}{\|g^{(i-1)}\|_2^2}$$

optimized bound is

$$\frac{\left(f(x^{(i-1)}) - f^{\star}\right)^{2}}{\|g^{(i-1)}\|_{2}^{2}} \le \|x^{(i-1)} - x^{\star}\|_{2}^{2} - \|x^{(i)} - x^{\star}\|_{2}^{2}$$

applying recursively (with  $||x^{(0)} - x^{\star}||_2 \leq R$  and  $||g^{(i)}||_2 \leq G$ ) gives

$$f_{\text{best}}^{(k)} - f^{\star} \le \frac{GR}{\sqrt{k}}$$

#### Exercise: find point in intersection of convex sets

to find a point in the intersection of m closed convex sets  $C_1, \ldots, C_m$ ,

minimize 
$$f(x) = \max\{d_1(x), \dots, d_m(x)\}$$

where  $d_j(x) = \inf_{y \in C_j} \|x - y\|_2$  is Euclidean distance of x to  $C_j$ 

- $f^{\star} = 0$  if the intersection is nonempty
- (from p. 4-15):  $g \in \partial f(\hat{x})$  if  $g \in \partial d_j(\hat{x})$  and  $C_j$  is farthest set from  $\hat{x}$
- (from p. 4-21) subgradient  $g \in \partial d_j(\hat{x})$  from projection  $P_j(\hat{x})$  on  $C_j$ :

$$g = 0$$
 (if  $\hat{x} \in C_j$ ),  $g = \frac{1}{d(\hat{x}, C_j)}(\hat{x} - P_j(\hat{x}))$  (if  $\hat{x} \notin C_j$ )

note that  $||g||_2 = 1$  if  $\hat{x} \notin C_j$ 

subgradient method with optimal step size

- optimal step size for  $f^* = 0$  and  $||g^{(i-1)}||_2 = 1$  is  $t_i = f(x^{(i-1)})$ .
- at iteration k, find farthest set  $C_j$  (with  $f(x^{(k-1)}) = d_j(x^{(k-1)})$ ); take

$$x^{(k)} = x^{(k-1)} - \frac{f(x^{(k-1)})}{d_j(x^{(k-1)})} (x^{(k-1)} - P_j(x^{(k-1)}))$$
  
=  $P_j(x^{(k-1)})$ 

- a version of the *alternating projections* algorithm
- at each step, project the current point onto the farthest set
- for m = 2, projections alternate onto one set, then the other

## **Example: Positive semidefinite matrix completion**

some entries of  $X \in \mathbf{S}^n$  fixed; find values for others so  $X \succeq 0$ 

- $C_1 = \mathbf{S}_+^n$ ,  $C_2$  is (affine) set in  $\mathbf{S}^n$  with specified fixed entries
- projection onto  $C_1$  by eigenvalue decomposition, truncation

$$P_1(X) = \sum_{i=1}^n \max\{0, \lambda_i\} q_i q_i^T \qquad \text{if } X = \sum_{i=1}^n \lambda_i q_i q_i^T$$

• projection of X onto  $C_2$  by re-setting specified entries to fixed values





 $100 \times 100$ matrix missing 71% entries

## Optimality of the subgradient method

can the  $f_{\text{best}}^{(k)} - f^{\star} \leq GR/\sqrt{k}$  bound on page 5-10 be improved?

#### problem class

- f is convex, with a minimizer  $x^{\star}$
- we know a starting point  $x^{(0)}$  with  $||x^{(0)} x^{\star}||_2 \leq R$
- we know the Lipschitz constant G of f on  $\{x \mid ||x x^{(0)}||_2 \le R\}$
- f is defined by an oracle: given x, oracle returns f(x) and a subgradient

algorithm class: k iterations of any method that chooses  $x^{(i)}$  in

$$x^{(0)} + \operatorname{span}\{g^{(0)}, g^{(1)}, \dots, g^{(i-1)}\}\$$

test problem and oracle

$$f(x) = \max_{i=1,\dots,k} x_i + \frac{1}{2} ||x||_2^2, \qquad x^{(0)} = 0$$

• solution: 
$$x^* = -\frac{1}{k}(\underbrace{1,\ldots,1}_k,\underbrace{0,\ldots,0}_{n-k})$$
 and  $f^* = -\frac{1}{2k}$ 

• 
$$R = ||x^{(0)} - x^*||_2 = 1/\sqrt{k}$$
 and  $G = 1 + 1/\sqrt{k}$ 

• oracle returns subgradient  $e_{\hat{j}} + x$  where  $\hat{j} = \min\{j \mid x_j = \max_{i=1,...,k} x_i\}$ 

iteration: for  $i = 0, \ldots, k - 1$ , entries  $x_{i+1}^{(i)}, \ldots, x_k^{(i)}$  are zero

$$f_{\text{best}}^{(k)} - f^* = \min_{i < k} f(x^{(i)}) - f^* \ge -f^* = \frac{GR}{2(1 + \sqrt{k})}$$

**conclusion:**  $O(1/\sqrt{k})$  bound cannot be improved

Subgradient method

# Summary: subgradient method

- handles general nondifferentiable convex problem
- often leads to very simple algorithms
- convergence can be very slow
- no good stopping criterion
- theoretical complexity:  $O(1/\epsilon^2)$  iterations to find  $\epsilon$ -suboptimal point
- an 'optimal' 1st-order method:  $O(1/\epsilon^2)$  bound cannot be improved

## References

- S. Boyd, lecture notes and slides for EE364b, Convex Optimization II
- Yu. Nesterov, Introductory Lectures on Convex Optimization. A Basic Course (2004)

 $\S3.2.1$  with the example on page 5-16 of this lecture