L. Vandenberghe EE236C (Spring 2013-14)

5. Subgradient method

e subgradient method

e convergence analysis

e optimal step size when f* is known
e alternating projections

e optimality
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Subgradient method

to minimize a nondifferentiable convex function f: choose (%) and repeat
k) = p(k=1) _ tkg(k_l), Ek=1,2,...

¢'*=1) is any subgradient of f at z(F—1)

step size rules

e fixed step: ;. constant

o fixed length: t;]|¢g*~D||5 constant (i.e., ||[x(®) — 2(k=1)]||, constant)

e diminishing: t — 0, Y tr =00
k=1
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Assumptions

e f has finite optimal value f*, minimizer z*

e fis convex, dom f = R"

e f is Lipschitz continuous with constant G > 0:

[f(z) = fW)] < Gllz =yl

this is equivalent to

Vi, y

lgll: <G Vgedf(z), Vo

(see next page)
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proof

e assume ||g|l2 < G for all subgradients; choose g, € f(y), 9. € f(x):

9a (x—y) > f(2) = f(y) > g, (x —y)

by the Cauchy-Schwarz inequality

Gllr —yll2 > f(x) - fly) > =G|z -yl

e assume ||g|l2 > G for some g € Of(x); take y = x + g/||g|2:

fly) = fl@)+g' (y—x)
= f(z)+|lgll2
> f(x)+G
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Analysis

e the subgradient method is not a descent method

e the key quantity in the analysis is the distance to the optimal set

with 2+ =20, . = 201 g =gU=D t =¢,:

o =¥} =l —tg — 2”3
= |lz — "3 - 2tg" (z — 2*) + *]lg]3
<l =23 =2t (f(2) — f) + lgll3
combine inequalities for i = 1,...,k, and define félzgt = min f(z®):

0<i<k

k k
k * * * i—
23t (fish = 1) < 2@ — 23— 0@ - 2|3+ D 19003

i=1 L i=1
2@ — a3+ ) 19" VI3
i=1

IA
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fixed step size t; =t

|z — 2|3 G*
_I_ -

(k) . * <
Im= 2kt 2

best

e does not guarantee convergence of fbeSt

o for large k, fbeSt is approximately G*t/2-suboptimal

fixed step length ¢, = s/Hg(i_l)Hz

Gz — 2|3

(k) _ *<
s 2ks +2

best

e does not guarantee convergence of fbeSt

e for large k, fbe . is approximately G's/2-suboptimal

Subgradient method
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©.@)
diminishing step size t;, — 0, > t; = ¢
i=1

k
|2 — a3+ G* 3 £
i=1

(k) *
best f = k
2>t
i=1
k k 8
can show that (> ¢3)/(> t;) — 0; hence, fi.), converges to f*
i=1 i=1

Subgradient method
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Example: 1-norm minimization

minimize ||Az — bl (A € RPY9*100 ¢ RPYY)

subgradient is given by A’ sign(Ax — b)

fixed steplength t;, = s/|| g~

2, s = 0.1, 0.01, 0.001

coo
oo

1079 20 40 60 80 100 10 o~ 500 1000 1500 2000 2500 3000
k k
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diminishing step size t;, = 0.01/Vk, t;, = 0.01/k

— 0.01/ %

—— 0.01/k

107 g 1000 zdook3doo 4000 5000
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Optimal step size for fixed number of iterations

from page 5-5: if s; = t;]|¢g%* V|2 and ||z(®) — 2*|» < R:

k
R* + Z 57
(k) rx 1=1
best — k
=1

e for given k, bound is minimized by fixed step length s; = s = R/\/E

e resulting bound after k steps is

0 <G8
est \/*

e guarantees accuracy fbeSt f*<eink=0(1/e?) iterations
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Optimal step size when f* is known

right-hand side in first inequality of page 5-5 is minimized by

flati=D) — f*

ti = .
lgt =113

optimized bound is

(f(z=D) — )
1913

< [l =23 — [l — 273

applying recursively (with ||2(?) — z*||; < R and [|g\D||2 < G) gives

() _ pr o GH

best — \/E
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Exercise: find point in intersection of convex sets

to find a point in the intersection of m closed convex sets C', ..., C,,,
minimize f(x) = max{di(x),...,dn(x)}

where d;(z) = iné |z — y||2 is Euclidean distance of = to C,
yel;

e f* =0 if the intersection is nonempty
o (from p. 4-15): g € Of (%) if g € 0d;(z) and C; is farthest set from &

e (from p. 4-21) subgradient g € 9d;(Z) from projection P;(z) on C}:

g=0 (fred;), g= (2 —Pj(z)) (if & &Cj)
note that ||g|lo =1 if 2 & C;
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subgradient method with optimal step size

e optimal step size for f* =0 and ||g"" D]y = 1is t; = f(z—).

e at iteration k, find farthest set C; (with f(z(*=1)) = d,;(z(¥=1))); take

(k—1)
(k) _ (k—1)_f($ ) (k-1 _ p (k=1
= Pi(z"7Y)

e a version of the alternating projections algorithm
e at each step, project the current point onto the farthest set

e for m = 2, projections alternate onto one set, then the other
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Example: Positive semidefinite matrix completion

some entries of X € S™ fixed: find values for others so X > 0

o (1 =S, Cyis (affine) set in S with specified fixed entries

e projection onto C; by eigenvalue decomposition, truncation

P (X) = Z max{0, )\i}qiq? if X = Z )\iqiq;‘;r
i=1 i=1

e projection of X onto U5 by re-setting specified entries to fixed values

100 x 100
matrix missing

71% entries

“X(’Hl) _ x ) .

107g 10 20 30 40 50
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Optimality of the subgradient method

can the fégt — < GR/\/E bound on page 5-10 be improved?

problem class

e f is convex, with a minimizer z*

e we know a starting point (%) with ||2(®) — z*||, < R

e we know the Lipschitz constant G of f on {z | ||z — (9|3 < R}

e f is defined by an oracle: given z, oracle returns f(x) and a subgradient

algorithm class: & iterations of any method that chooses z(¥) in

z® + span{g'®, gM), ... g1}
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test problem and oracle

— 1 2 (0) _
f(x) = max z; + 2H$H27 T 0
solution: z” 1(1 1,0,...,0) and f* = !
e solution: z* = ——(1,... n -
L ) 7{:’717\7 _kaj 2%

e R= |z —2*||s=1/Vkand G=1+1/VEk

e oracle returns subgradient e; + = where j = min{j | z; = maxkxi}
i=1,...,

iteration: for i =0,...,k — 1, entries x,fizl e :z;g) are zero

GR
(1+ Vk)

(B) _ g _ s (D)) _ £* > _ % —
best f IZIl<1]£lf(£IZ ) f - f 9

conclusion: O(1/vk) bound cannot be improved

Subgradient method 5-16



Summary: subgradient method

e handles general nondifferentiable convex problem

e often leads to very simple algorithms

e convergence can be very slow

e no good stopping criterion

e theoretical complexity: O(1/€?) iterations to find e-suboptimal point

e an ‘optimal’ 1st-order method: O(1/e?) bound cannot be improved
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