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@ Matrix Completion
e Simple Shrinkage based algorithm
e Nesterov’s type approach
e Factorization model

@ Sparse inverse covariance estimation

@ Block Coordinate method
e Nesterov’s smoothing technique
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Matrix Rank Minimization

Given X € R™" A . R™" — RP b € RP, we consider
@ the matrix rank minimization problem:

min rank(X), s.t. A(X)=0»b
@ matrix completion problem:
min rank(X), s.t. Xj = M, (i,j) € Q
@ nuclear norm minimization:
min || X|. s.t. A(X)=0b

where || X||. = >_;0; and o; = ith singular value of matrix
X.



Recoverability results

@ Recht, Fazel and Parrilo, 2007
@ Candés and Recht, 2008
@ (add more)




Quadratic penalty framework

@ Unconstrained Nuclear Norm Minimization:
min F(X) = ul X[l + 5AXX) ~ bl
@ Optimality condition:
0 € pd|| X*|l« + A*(A(X") - b),

where 9| X||, = {UVT + W: UTW =0, WV =0, || W] < 1}.
e Linearization approach (g is the gradient of }|l.A(X) — b||2):

1
k1 i kK y _ yk k|2
X = argmin wl| X1l + <g X=X >+ 2T||X XY=

— i 1 k ky2
= argmin u|IX|. + 51X — (X* — rg")[2



Matrix Shrinkage Operator

For a matrix Y € R™*" consider:

’
min X, + =X = Y2
xmin, V|| X]| +2H 17

The optimal solution is:
X :=38,(Y) = UDiag(s, (o)) V",

@ SVD: Y = UDiag(o) V"
@ Thresholding operator:

Xi—v, ifxi—v>0

Su(x) ==X, with Xx; = { 0 oW



Fixed Point Method

Fixed Point Iterative Scheme

Yk = XK — 7 A*(A(XF) — b)
{ Xk+1 — S-,-#(Yk).

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

1S.(Y1) = Su(Ya)llr < ||Y1 — YelF

Theorem: The sequence {X*} generated by the fixed point
iterations converges to some X* € A, where A* is the optimal
solution set.




SVT

Linearized Bregman method:

VAT = VR s Af(A(XF) - b)
Xk+1 — S’T';,L(Vk+1)

Convergence to

1
min 7/|X|l. + 3 X|%, s:t. AX) = b




Accelerated proximal gradient (APG) method

Complexity of the fixed point method:

L[| X0 — X2

ky ¥\ <
F(X") = F(X*) < ok
APG algorithm (t=1 = 19 = 1):

th=1 — 1 _
i (Xk_Xk 1)

GK = YK ()T A(A(YF) - b)
Xt = s (a, pert = LT

Yk _ Xk+

Complexity:

2L X0 — X*|2

FX —FX) < =




Low-rank factorization model

e Finding a low-rank matrix W so that ||Po(W — M)||% or the
distance between W and {Z € R™*", Z; = Mj;,V(i,]) € Q}
is minimized.

@ Any matrix W € R™*" with rank(W) < K can be expressed
as W = XY where X ¢ R™K and Y ¢ RK*".

New model

E , -
S 3IIXY = Z|F st Zj=M;,v(i,j) € Q

@ Advantage: SVD is no longer needed!

@ Related work: the solver Opt Space based on optimization
on manifold



Nonlinear Gauss-Seideal scheme

First variant of alternating minimization:
Xy « zZYt=zyT(yyHf,

V.« (X)iZ=(XIX)I(X]2)
Z+ <— X_|_ Y+ + PQ(M — X+ Y+)

Let P4 be the orthogonal projection onto the range space R(A)
o X Y, = (X+(X+TX+)TXI) Z="Px2Z
@ One can verify that R(X,) = R(ZY") .
@ X Y, =Py Z=2YT(YZTZYT)(YZ")Z.
@ idea: modify X, or Y. to obtain the same product X, Y.




Nonlinear Gauss-Seideal scheme

Second variant of alternating minimization:

X, « zv
V.« (X)1Z= (X)),
Z+ <— X+ Y+ +PQ(M— X+ Y+)

Third variant of alternating minimization: V = orth(ZY")

X+ — V,
Y, « V'z
Z+ <— X+Y+ +PQ(M—X+Y+)




Nonlinear SOR

@ The nonlinear GS scheme can be slow

@ Linear SOR: applying extrapolation to the GS method to
achieve faster convergence

The first implementation:

Xy
X4 (w)

TTT T

zZY'(yyhr,

wXy + (1 —w)X,

(X (@) "X (@) (X () T 2),
wYy+(1—w)Y,

X (@)Y (W) + Pa(M = X (w) Yy (w),




Nonlinear SOR

@ LetS=Po(M—-XY). ThenZ =XY + S
@ letZ, 2 XY +wS=wZ+(1-w)XY
@ Assume Y has full row rank, then

Z,YT(YYO = wzy"(YYN) + (1 —w)XYYT (YY"l
wXy + (1 —w)X,

Second implementation of our nonlinear SOR:

X, (w) « Z,YTor Z,YT (YY),

Yi(w) < (Xi(w) Xi (@) (Xe(w)'2.),
Pae(Z(w)) « Pae(X(w) Yi(w)),
Pa(Zi(w)) < Pa(M).



Reduction of the residual || S|z — || S, (w)|/2

Assume that rank(Z,) = rank(Z),Vw € [1,w¢] for some wy > 1.
Then there exists some w» > 1 such that

ISI1E = 18+l = p12(w) + pa(w) + pa(w) > 0, Yw € [1,wp].

® pra(w) = [[SPIZ +[|Qw)S(! - P)|IE >0

® p3(w) = [|Pae(SP + Q(w)S(! - P))||z > 0

0 p4(w) £ LIS (w) + (w—1)S)Z — [[Ss(w)3

@ Whenever p3(1) > 0 (Pqe(X:(1)Y4(1) — XY) # 0) and
wq > 1, then ws > 1 can be chosen so that
pa(w) > 0,Vw € (1,wy].




Reduction of the residual |

|SI|E = 1IS+(w)ll

2

F
10 LS — T
5F o 1
5 SRR ag e
%0’3,9’500%)0%009@‘6@60%)%)&5—(;(%(%006ee%)%)%)%)%%
0}’[] \D\D\D\ x § 4
D\
D\R s
_5} - * . 4
=
Y x
N X
-101 By 4
1N X
o x
N
—15f 1« 1
+P12(w) u 5
q
20 797p3((.0) e
\
—o- P40 q
251 2 2 b A
L IISIE-1is, ()2 \
-30 L L L L L L
1 2 3 4 5 6 7 8
[




Reduction of the residual || S|z — || S, (w)|/2
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Nonlinear SOR: convergence guarantee

Problem: how can we select a proper weight w to ensure
convergence for a nonlinear model?

Strategy: Adjust w dynamically according to the change of the
objective function values.

@ Calculate the residual ratio y(w) = ”S‘Téﬁg”'”

@ A small v(w) indicates that the current weight value w
works well so far.

@ If v(w) < 1, accept the new point; otherwise, w is reset to 1
and this procedure is repeated.

@ w is increased only if the calculated point is acceptable but
the residual ratio v(w) is considered “too large”; that is,
v(w) € [y1,1) for some v; € (0, 1).




Nonlinear SOR: complete algorithm

Algorithm 1: A low-rank matrix fitting algorithm (LMaFit)

1 Input index set €2, data Pq(M) and a rank overestimate K > r.
2SetY? 2% w=1,0>1,0>0,7 €(0,1) and k = 0.
3 while not convergent do
4 Compute (X;(w), Yi(w), Zi(w)).
Compute the residual ratio v(w).
if v(w) > 1 then setw = 1 and go to step 4.
Update (Xk+1, Yk+1 Zk+1) and increment k.
if v(w) >~ then
| setd =max(6,0.25(w — 1)) and w = min(w + 4, @).

© 00 N O O




nonlinear GS . nlinear SOR
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Sparse covariance selection (A. d’Aspremont)

We estimate a covariance matrix ¥ from empirical data
@ Infer relationships between variables

@ Given m+1 observatlons X; € R™ on nrandom variables,
compute S := L "M (x — X)(x — X)
@ Choose a symmetric subset / of matrix coefficients and
denote by J the complement
@ Choose a covariance matrix - such that
o 5 =Sjforall (i,j) €/
o 51 =0forall (i,j) € J
@ Benefits: maximum entropy, maximum likelihood, existence
and uniqueness

@ Applications: Gene expression data, speech recoginition
and finance



Maximum likelihood estimation

Consider estimation:

max logdet X — Tr(SX) — p||X|lo
XeSn

Convex relaxations:

max logdet X — Tr(SX) — p|| X ||+,
XeSn

whose dual problem is:

max logdet W s.t. [|[W — S|l < A




Block coordinate method

Given W = 0, we can partition W and S as

£ yT> (53 yT)
W = and S — S 3
(y B ¥s Bs

Fix B and note that logdet W = log(¢ — y " B~'y) det B, then

min y'Bly—¢ st [[6y] - Esiyslllee <A €20.

@ Set ¢ = &g + \. (check first-order optimality)
@ Update y by solving:

y = argmin y'Bly, st |y —yslleo <A

whose dual problem is min, x"Bx — yd x + A||x||1, which is

2
X :=argmin Bzx — 1B_%ys + Allx]|1.
X 2 >

Relationship: y = Bx.
e 4 4444



APG

Zhaosong Lu (smooth optimization approach for sparse
covariance selection) consider

max logdet X — Tr(SX) — p[| X|1

st. X ={XeS8":p8l=X~=al},

which is equivalent to (/ := {U € S§" : |Uj| < 1,Vij})

i — X
Tg; qu'zr){ logdet X — (S + pU, X)

Let f(U) := maxxcy logdet X — (S + pU, X)

@ logdet X is strongly concave on X

@ f(U) is continuous differentiable

@ V{(U) is Lipschitz cont. with L = p?
Therefore, APG can be applied to the dual problem

1V



Extension

Consider

max g(x) := min ¢(x, u)

Assume:

@ ¢(x,u) is a cont. fun. which is strictly concave in x € X for
every fixed u € U, and convex diff. in u € U for every fixed
x € X. Then f(u) := maxxex ¢(x, u) is diff.

@ Vf(u) is Lipschitz cont.
Then

@ the primal and the dual min,c f(u) are both solvable and
have the same optimal value;

@ Nesterov’s smooth minimization approach can be applied
to the dual



Nesterov’s smoothing technique

Consider

max min o(x, u
XeX ueu¢( ’ )

Question: What if the assumptions do not hold?
@ Add a strictly convex function pd(u) to the obj. fun.

g(u) == argmin é(x; u) + pd(u)

@ g(u) is differentiable

@ Apply Nesterov’'s smooth minimization

@ Complexity of finding a e-suboptimal point: O(%) iterations
@ Other smooth technique?



