Sparse Optimization, Lecture 6

Zaiwen Wen (文再文)

Department of Mathematics and Institute of Natural Sciences Shanghai Jiaotong University July 20-21, 2011

Outline

- Matrix Completion
 - Simple Shrinkage based algorithm
 - Nesterov's type approach
 - Factorization model
- Sparse inverse covariance estimation
 - Block Coordinate method
 - Nesterov's smoothing technique

References

- Jianfeng Cai, Emmanuel Candes, Zuowei Shen, Singular value thresholding algorithm for matrix completion
- Shiqian Ma, Donald Goldfarb, Lifeng Chen, Fixed point and Bregman iterative methods for matrix rank minimization
- Zaiwen Wen, Wotao Yin, Yin Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
- Onureena Banerjee, Laurent El Ghaoui, Alexandre d'Aspremont, Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
- Zhaosong Lu, Smooth optimization approach for sparse covariance selection

Matrix Rank Minimization

Given $X \in \mathbb{R}^{m \times n}$, $A : \mathbb{R}^{m \times n} \to \mathbb{R}^p$, $b \in \mathbb{R}^p$, we consider

• the matrix rank minimization problem:

min rank(
$$X$$
), s.t. $A(X) = b$

matrix completion problem:

min rank(
$$X$$
), s.t. $X_{ij} = M_{ij}$, $(i, j) \in \Omega$

nuclear norm minimization:

$$\min \|X\|_* \text{ s.t. } \mathcal{A}(X) = b$$

where $||X||_* = \sum_i \sigma_i$ and $\sigma_i = i$ th singular value of matrix X.

Recoverability results

- Recht, Fazel and Parrilo, 2007
- Candès and Recht, 2008
- (add more)

Quadratic penalty framework

Unconstrained Nuclear Norm Minimization:

min
$$F(X) := \mu ||X||_* + \frac{1}{2} ||A(X) - b||_2^2$$
.

Optimality condition:

$$\mathbf{0} \in \mu \partial \|X^*\|_* + \mathcal{A}^* (\mathcal{A}(X^*) - b),$$

where
$$\partial \|X\|_* = \{UV^\top + W : U^\top W = 0, WV = 0, \|W\|_2 \le 1\}.$$

• Linearization approach (g is the gradient of $\frac{1}{2} \|\mathcal{A}(X) - b\|_2^2$):

$$X^{k+1} := \arg\min_{X} \mu \|X\|_* + \left\langle g^k, X - X^k \right\rangle + \frac{1}{2\tau} \|X - X^k\|_F^2$$
$$= \arg\min_{X} \mu \|X\|_* + \frac{1}{2\tau} \|X - (X^k - \tau g^k)\|_F^2$$

Matrix Shrinkage Operator

For a matrix $Y \in \mathbb{R}^{m \times n}$, consider:

$$\min_{X \in \mathbb{R}^{m \times n}} \ \nu \|X\|_* + \frac{1}{2} \|X - Y\|_F^2.$$

The optimal solution is:

$$X := S_{\nu}(Y) = U \operatorname{Diag}(s_{\nu}(\sigma)) V^{\top},$$

- SVD: $Y = U \text{Diag}(\sigma) V^{\top}$
- Thresholding operator:

$$s_{\nu}(x) := \bar{x}, \text{ with } \bar{x}_i = \left\{ egin{array}{ll} x_i - \nu, & \text{if } x_i - \nu > 0 \\ 0, & \text{o.w.} \end{array} \right.$$

Fixed Point Method

Fixed Point Iterative Scheme

$$\left\{ \begin{array}{l} Y^k = X^k - \tau \mathcal{A}^* (\mathcal{A}(X^k) - b) \\ X^{k+1} = \mathcal{S}_{\tau \mu} (Y^k). \end{array} \right.$$

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

$$||S_{\nu}(Y_1) - S_{\nu}(Y_2)||_F \le ||Y_1 - Y_2||_F.$$

Theorem: The sequence $\{X^k\}$ generated by the fixed point iterations converges to some $X^* \in \mathcal{X}^*$, where \mathcal{X}^* is the optimal solution set.

SVT

Linearized Bregman method:

$$V^{k+1} := V^k - \tau A^* (A(X^k) - b)$$

 $X^{k+1} := S_{\tau\mu}(V^{k+1})$

Convergence to

min
$$\tau ||X||_* + \frac{1}{2}||X||_F^2$$
, s.t. $A(X) = b$

Accelerated proximal gradient (APG) method

Complexity of the fixed point method:

$$F(X^k) - F(X^*) \le \frac{L_f ||X^0 - X^*||^2}{2k}$$

APG algorithm ($t^{-1} = t^0 = 1$):

$$Y^{k} = X^{k} + \frac{t^{k-1} - 1}{t^{k}} (X^{k} - X^{k-1})$$

$$G^{k} = Y^{k} - (\tau^{k})^{-1} \mathcal{A}^{*} (\mathcal{A}(Y^{k}) - b)$$

$$X^{k+1} = S_{\tau^{k}}(G^{k}), \quad t^{k+1} = \frac{1 + \sqrt{1 + 4(t^{k})^{2}}}{2}$$

Complexity:

$$F(X^k) - F(X^*) \le \frac{2L_f||X^0 - X^*||^2}{(k+1)^2}$$

Low-rank factorization model

- Finding a low-rank matrix W so that $\|\mathcal{P}_{\Omega}(W-M)\|_F^2$ or the distance between W and $\{Z \in \mathbb{R}^{m \times n}, Z_{ij} = M_{ij}, \forall (i,j) \in \Omega\}$ is minimized.
- Any matrix $W \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(W) \leq K$ can be expressed as W = XY where $X \in \mathbb{R}^{m \times K}$ and $Y \in \mathbb{R}^{K \times n}$.

New model

$$\min_{X,Y,Z} \frac{1}{2} ||XY - Z||_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

- Advantage: SVD is no longer needed!
- Related work: the solver OptSpace based on optimization on manifold

Nonlinear Gauss-Seideal scheme

First variant of alternating minimization:

$$\begin{array}{lcl} X_{+} & \leftarrow & ZY^{\dagger} \equiv ZY^{\top}(YY^{\top})^{\dagger}, \\ Y_{+} & \leftarrow & (X_{+})^{\dagger}Z \equiv (X_{+}^{\top}X_{+})^{\dagger}(X_{+}^{\top}Z), \\ Z_{+} & \leftarrow & X_{+}Y_{+} + \mathcal{P}_{\Omega}(M - X_{+}Y_{+}). \end{array}$$

Let \mathcal{P}_A be the orthogonal projection onto the range space $\mathcal{R}(A)$

- $X_+ Y_+ = (X_+ (X_+^\top X_+)^\dagger X_+^\top) Z = \mathcal{P}_{X_+} Z$
- One can verify that $\mathcal{R}(X_+) = \mathcal{R}(ZY^\top)$.
- $X_+ Y_+ = \mathcal{P}_{ZY^\top} Z = ZY^\top (YZ^\top ZY^\top)^\dagger (YZ^\top) Z$.
- idea: modify X_+ or Y_+ to obtain the same product $X_+ Y_+$

Nonlinear Gauss-Seideal scheme

Second variant of alternating minimization:

$$\begin{array}{lcl} \textbf{\textit{X}}_{+} & \leftarrow & \textbf{\textit{ZY}}^{\top}, \\ \textbf{\textit{Y}}_{+} & \leftarrow & (\textbf{\textit{X}}_{+})^{\dagger}\textbf{\textit{Z}} \equiv (\textbf{\textit{X}}_{+}^{\top}\textbf{\textit{X}}_{+})^{\dagger}(\textbf{\textit{X}}_{+}^{\top}\textbf{\textit{Z}}), \\ \textbf{\textit{Z}}_{+} & \leftarrow & \textbf{\textit{X}}_{+}\textbf{\textit{Y}}_{+} + \mathcal{P}_{\Omega}(\textbf{\textit{M}} - \textbf{\textit{X}}_{+}\textbf{\textit{Y}}_{+}). \end{array}$$

Third variant of alternating minimization: $V = orth(ZY^T)$

$$\begin{array}{lcl} \textbf{\textit{X}}_{+} & \leftarrow & \textbf{\textit{V}}, \\ \textbf{\textit{Y}}_{+} & \leftarrow & \textbf{\textit{V}}^{\top}\textbf{\textit{Z}}, \\ \textbf{\textit{Z}}_{+} & \leftarrow & \textbf{\textit{X}}_{+}\textbf{\textit{Y}}_{+} + \mathcal{P}_{\Omega}(\textbf{\textit{M}} - \textbf{\textit{X}}_{+}\textbf{\textit{Y}}_{+}). \end{array}$$

Nonlinear SOR

- The nonlinear GS scheme can be slow
- Linear SOR: applying extrapolation to the GS method to achieve faster convergence

The first implementation:

$$\begin{array}{lcl} X_{+} & \leftarrow & ZY^{\top}(YY^{\top})^{\dagger}, \\ X_{+}(\omega) & \leftarrow & \omega X_{+} + (1-\omega)X, \\ Y_{+} & \leftarrow & (X_{+}(\omega)^{\top}X_{+}(\omega))^{\dagger}(X_{+}(\omega)^{\top}Z), \\ Y_{+}(\omega) & \leftarrow & \omega Y_{+} + (1-\omega)Y, \\ Z_{+}(\omega) & \leftarrow & X_{+}(\omega)Y_{+}(\omega) + \mathcal{P}_{\Omega}(M-X_{+}(\omega)Y_{+}(\omega)), \end{array}$$

Nonlinear SOR

- Let $S = \mathcal{P}_{\Omega}(M XY)$. Then Z = XY + S
- Let $Z_{\omega} \triangleq XY + \omega S = \omega Z + (1 \omega)XY$
- Assume Y has full row rank, then

$$Z_{\omega} Y^{\top} (YY^{\top})^{\dagger} = \omega ZY^{\top} (YY^{\top})^{\dagger} + (1 - \omega) XYY^{\top} (YY^{\top})^{\dagger}$$
$$= \omega X_{+} + (1 - \omega) X,$$

Second implementation of our nonlinear SOR:

$$\begin{array}{ccccc} X_{+}(\omega) & \leftarrow & Z_{\omega}Y^{\top} \text{ or } Z_{\omega}Y^{\top}(YY^{\top})^{\dagger}, \\ Y_{+}(\omega) & \leftarrow & (X_{+}(\omega)^{\top}X_{+}(\omega))^{\dagger}(X_{+}(\omega)^{\top}Z_{\omega}), \\ \mathcal{P}_{\Omega^{c}}(Z_{+}(\omega)) & \leftarrow & \mathcal{P}_{\Omega^{c}}(X_{+}(\omega)Y_{+}(\omega)), \\ \mathcal{P}_{\Omega}(Z_{+}(\omega)) & \leftarrow & \mathcal{P}_{\Omega}(M). \end{array}$$

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Assume that $\operatorname{rank}(Z_{\omega}) = \operatorname{rank}(Z), \forall \omega \in [1, \omega_1]$ for some $\omega_1 \geq 1$. Then there exists some $\omega_2 \geq 1$ such that

$$\|S\|_F^2 - \|S_+(\omega)\|_F^2 = \rho_{12}(\omega) + \rho_3(\omega) + \rho_4(\omega) > 0, \ \forall \, \omega \in [1, \omega_2].$$

- $\rho_{12}(\omega) \triangleq ||SP||_F^2 + ||Q(\omega)S(I-P)||_F^2 \geq 0$
- $\rho_3(\omega) \triangleq \|\mathcal{P}_{\Omega^c}(SP + Q(\omega)S(I-P))\|_F^2 \geq 0$
- $\rho_4(\omega) \triangleq \frac{1}{\omega^2} \|S_+(\omega) + (\omega 1)S\|_F^2 \|S_+(\omega)\|_F^2$
- Whenever $\rho_3(1) > 0$ ($\mathcal{P}_{\Omega^c}(X_+(1)Y_+(1) XY) \neq 0$) and $\omega_1 > 1$, then $\omega_2 > 1$ can be chosen so that $\rho_4(\omega) > 0, \forall \omega \in (1, \omega_2]$.

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Nonlinear SOR: convergence guarantee

Problem: how can we select a proper weight ω to ensure convergence for a nonlinear model?

Strategy: Adjust ω dynamically according to the change of the objective function values.

- Calculate the residual ratio $\gamma(\omega) = \frac{\|S_+(\omega)\|_F}{\|S\|_F}$
- A small $\gamma(\omega)$ indicates that the current weight value ω works well so far.
- If $\gamma(\omega)$ < 1, accept the new point; otherwise, ω is reset to 1 and this procedure is repeated.
- ω is increased only if the calculated point is acceptable but the residual ratio $\gamma(\omega)$ is considered "too large"; that is, $\gamma(\omega) \in [\gamma_1, 1)$ for some $\gamma_1 \in (0, 1)$.

Nonlinear SOR: complete algorithm

Algorithm 1: A low-rank matrix fitting algorithm (LMaFit)

- 1 Input index set Ω, data $\mathcal{P}_{\Omega}(M)$ and a rank overestimate $K \geq r$.
- **2** Set Y^0 , Z^0 , $\omega = 1$, $\tilde{\omega} > 1$, $\delta > 0$, $\gamma_1 \in (0,1)$ and k = 0.
- 3 while not convergent do
- 4 Compute $(X_+(\omega), Y_+(\omega), Z_+(\omega))$.
- 5 Compute the residual ratio $\gamma(\omega)$.
 - if $\gamma(\omega) \ge 1$ then set $\omega = 1$ and go to step 4.
 - 7 Update $(X^{k+1}, Y^{k+1}, Z^{k+1})$ and increment k.
 - 8 if $\gamma(\omega) \geq \gamma_1$ then
 - 9 set $\delta = \max(\delta, 0.25(\omega 1))$ and $\omega = \min(\omega + \delta, \tilde{\omega})$.

nonlinear GS .vs. nonlinear SOR

Sparse covariance selection (A. d'Aspremont)

We estimate a covariance matrix Σ from empirical data

- Infer independence relationships between variables
- Given m+1 observations $x_i \in \mathbb{R}^n$ on n random variables, compute $S := \frac{1}{m} \sum_{i=1}^{m+1} (x_i \bar{x})(x_i \bar{x})$
- Choose a symmetric subset I of matrix coefficients and denote by J the complement
- Choose a covariance matrix $\hat{\Sigma}$ such that
 - $\hat{\Sigma}_{ij} = S_{ij}$ for all $(i,j) \in I$
 - $\hat{\Sigma}_{ij}^{-1} = 0$ for all $(i,j) \in J$
- Benefits: maximum entropy, maximum likelihood, existence and uniqueness
- Applications: Gene expression data, speech recognition and finance

Maximum likelihood estimation

Consider estimation:

$$\max_{X \in S^n} \log \det X - \text{Tr}(SX) - \rho ||X||_0$$

Convex relaxations:

$$\max_{X \in \mathcal{S}^n} \log \det X - \text{Tr}(\mathcal{S}X) - \rho \|X\|_1,$$

whose dual problem is:

max log det
$$W$$
 s.t. $||W - S||_{\infty} \le \lambda$

Block coordinate method

Given $W \succ 0$, we can partition W and S as

$$W = \begin{pmatrix} \xi & y^{\top} \\ y & B \end{pmatrix}$$
 and $S = \begin{pmatrix} \xi_S & y_S^{\top} \\ y_S & B_S \end{pmatrix}$,

Fix B and note that log det $W = \log(\xi - y^{\top}B^{-1}y)$ det B, then

$$\min_{[\xi;y]} y^\top B^{-1} y - \xi, \quad \text{ s.t. } \quad \|[\xi;y] - [\xi_S;y_S]\|_\infty \le \lambda, \ \xi \ge 0.$$

- Set $\xi = \xi_S + \lambda$. (check first-order optimality)
- Update y by solving:

$$y := \arg\min_{y} \ y^{\top} B^{-1} y, \quad \text{s.t.} \quad \|y - y_{S}\|_{\infty} \le \lambda,$$

whose dual problem is $\min_{x} x^{\top} Bx - y_{S}^{\top} x + \lambda ||x||_{1}$, which is

$$x := \arg\min_{x} \left\| B^{\frac{1}{2}}x - \frac{1}{2}B^{-\frac{1}{2}}y_{S} \right\|_{2}^{2} + \lambda \|x\|_{1}.$$

Relationship: y = Bx.

APG

Zhaosong Lu (*smooth optimization approach for sparse covariance selection*) consider

max
$$\log \det X - \text{Tr}(SX) - \rho ||X||_1$$

s.t. $\mathcal{X} := \{X \in S^n : \beta I \succeq X \succeq \alpha I\},$

which is equivalent to $(\mathcal{U} := \{U \in \mathcal{S}^n : |U_{ij}| \leq 1, \forall ij\})$

$$\max_{\textit{X} \in \mathcal{X}} \ \min_{\textit{U} \in \mathcal{U}} \ \log \det \textit{X} - \langle \textit{S} + \rho \textit{U}, \textit{X} \rangle$$

Let
$$f(U) := \max_{X \in \mathcal{X}} \log \det X - \langle S + \rho U, X \rangle$$

- log det X is strongly concave on X
- f(U) is continuous differentiable
- $\nabla f(U)$ is Lipschitz cont. with $L = \rho \beta^2$

Therefore, APG can be applied to the dual problem

$$\min_{U\in\mathcal{U}} f(U)$$

Extension

Consider

$$\max_{\mathbf{x}\in\mathcal{X}} g(\mathbf{x}) := \min_{\mathbf{u}\in\mathcal{U}} \phi(\mathbf{x}, \mathbf{u})$$

Assume:

- $\phi(x, u)$ is a cont. fun. which is strictly concave in $x \in \mathcal{X}$ for every fixed $u \in \mathcal{U}$, and convex diff. in $u \in \mathcal{U}$ for every fixed $x \in \mathcal{X}$. Then $f(u) := \max_{x \in \mathcal{X}} \phi(x, u)$ is diff.
- $\nabla f(u)$ is Lipschitz cont.

Then

- the primal and the dual $\min_{u \in U} f(u)$ are both solvable and have the same optimal value;
- Nesterov's smooth minimization approach can be applied to the dual

Nesterov's smoothing technique

Consider

$$\max_{\mathbf{x} \in \mathcal{X}} \min_{\mathbf{u} \in \mathcal{U}} \phi(\mathbf{x}, \mathbf{u})$$

Question: What if the assumptions do not hold?

• Add a strictly convex function $\mu d(u)$ to the obj. fun.

$$g(u) := \arg\min_{u \in \mathcal{U}} \phi(x, u) + \mu d(u)$$

- g(u) is differentiable
- Apply Nesterov's smooth minimization
- Complexity of finding a ϵ -suboptimal point: $O(\frac{1}{\epsilon})$ iterations
- Other smooth technique?