Sparse Optimization，Lecture 6

Zaiwen Wen（文再文）

Department of Mathematics and Institute of Natural Sciences
Shanghai Jiaotong University
July 20－21， 2011

Outline

- Matrix Completion
- Simple Shrinkage based algorithm
- Nesterov's type approach
- Factorization model
- Sparse inverse covariance estimation
- Block Coordinate method
- Nesterov's smoothing technique

References

- Jianfeng Cai, Emmanuel Candes, Zuowei Shen, Singular value thresholding algorithm for matrix completion
- Shiqian Ma, Donald Goldfarb, Lifeng Chen, Fixed point and Bregman iterative methods for matrix rank minimization
- Zaiwen Wen, Wotao Yin, Yin Zhang, Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm
- Onureena Banerjee, Laurent El Ghaoui, Alexandre d'Aspremont, Model Selection Through Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data
- Zhaosong Lu, Smooth optimization approach for sparse covariance selection

Matrix Rank Minimization

Given $X \in \mathbb{R}^{m \times n}, \mathcal{A}: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{p}, b \in \mathbb{R}^{p}$, we consider

- the matrix rank minimization problem:

$$
\min \operatorname{rank}(X) \text {, s.t. } \mathcal{A}(X)=b
$$

- matrix completion problem:

$$
\min \operatorname{rank}(X), \text { s.t. } X_{i j}=M_{i j},(i, j) \in \Omega
$$

- nuclear norm minimization:

$$
\min \|X\|_{*} \text { s.t. } \mathcal{A}(X)=b
$$

where $\|X\|_{*}=\sum_{i} \sigma_{i}$ and $\sigma_{i}=i$ th singular value of matrix X.

Recoverability results

- Recht, Fazel and Parrilo, 2007
- Candès and Recht, 2008
- (add more)

Quadratic penalty framework

- Unconstrained Nuclear Norm Minimization:

$$
\min F(X):=\mu\|X\|_{*}+\frac{1}{2}\|\mathcal{A}(X)-b\|_{2}^{2}
$$

- Optimality condition:

$$
\mathbf{0} \in \mu \partial\left\|X^{*}\right\|_{*}+\mathcal{A}^{*}\left(\mathcal{A}\left(X^{*}\right)-b\right)
$$

where $\partial\|X\|_{*}=\left\{U V^{\top}+W: U^{\top} W=0, W V=0,\|W\|_{2} \leq 1\right\}$.

- Linearization approach (g is the gradient of $\frac{1}{2}\|\mathcal{A}(X)-b\|_{2}^{2}$):

$$
\begin{aligned}
X^{k+1} & :=\arg \min _{X} \mu\|X\|_{*}+\left\langle g^{k}, X-X^{k}\right\rangle+\frac{1}{2 \tau}\left\|X-X^{k}\right\|_{F}^{2} \\
& =\arg \min _{X} \mu\|X\|_{*}+\frac{1}{2 \tau}\left\|X-\left(X^{k}-\tau g^{k}\right)\right\|_{F}^{2}
\end{aligned}
$$

Matrix Shrinkage Operator

For a matrix $Y \in \mathbb{R}^{m \times n}$, consider:

$$
\min _{X \in \mathbb{R}^{m \times n}} \nu\|X\|_{*}+\frac{1}{2}\|X-Y\|_{F}^{2} .
$$

The optimal solution is:

$$
X:=S_{\nu}(Y)=U \operatorname{Diag}\left(S_{\nu}(\sigma)\right) V^{\top},
$$

- SVD: $Y=U \operatorname{Diag}(\sigma) V^{\top}$
- Thresholding operator:

$$
s_{\nu}(x):=\bar{x}, \text { with } \bar{x}_{i}= \begin{cases}x_{i}-\nu, & \text { if } x_{i}-\nu>0 \\ 0, & \text { o.w. }\end{cases}
$$

Fixed Point Iterative Scheme

$$
\left\{\begin{array}{l}
Y^{k}=X^{k}-\tau \mathcal{A}^{*}\left(\mathcal{A}\left(X^{k}\right)-b\right) \\
X^{k+1}=S_{\tau \mu}\left(Y^{k}\right) .
\end{array}\right.
$$

Lemma: Matrix shrinkage operator is non-expansive. i.e.,

$$
\left\|S_{\nu}\left(Y_{1}\right)-S_{\nu}\left(Y_{2}\right)\right\|_{F} \leq\left\|Y_{1}-Y_{2}\right\|_{F} .
$$

Theorem: The sequence $\left\{X^{k}\right\}$ generated by the fixed point iterations converges to some $X^{*} \in \mathcal{X}^{*}$, where \mathcal{X}^{*} is the optimal solution set.

Linearized Bregman method:

$$
\begin{aligned}
V^{k+1} & :=V^{k}-\tau \mathcal{A}^{*}\left(\mathcal{A}\left(X^{k}\right)-b\right) \\
X^{k+1} & :=S_{\tau \mu}\left(V^{k+1}\right)
\end{aligned}
$$

Convergence to

$$
\min \tau\|X\|_{*}+\frac{1}{2}\|X\|_{F}^{2}, \text { s.t. } \mathcal{A}(X)=b
$$

Accelerated proximal gradient (APG) method

Complexity of the fixed point method:

$$
F\left(X^{k}\right)-F\left(X^{*}\right) \leq \frac{L_{f}\left\|X^{0}-X^{*}\right\|^{2}}{2 k}
$$

APG algorithm $\left(t^{-1}=t^{0}=1\right)$:

$$
\begin{aligned}
Y^{k} & =X^{k}+\frac{t^{k-1}-1}{t^{k}}\left(X^{k}-X^{k-1}\right) \\
G^{k} & =Y^{k}-\left(\tau^{k}\right)^{-1} \mathcal{A}^{*}\left(\mathcal{A}\left(Y^{k}\right)-b\right) \\
X^{k+1} & =S_{\tau^{k}}\left(G^{k}\right), \quad t^{k+1}=\frac{1+\sqrt{1+4\left(t^{k}\right)^{2}}}{2}
\end{aligned}
$$

Complexity:

$$
F\left(X^{k}\right)-F\left(X^{*}\right) \leq \frac{2 L_{f}\left\|X^{0}-X^{*}\right\|^{2}}{(k+1)^{2}}
$$

Low-rank factorization model

- Finding a low-rank matrix W so that $\left\|\mathcal{P}_{\Omega}(W-M)\right\|_{F}^{2}$ or the distance between W and $\left\{Z \in \mathbb{R}^{m \times n}, Z_{i j}=M_{i j}, \forall(i, j) \in \Omega\right\}$ is minimized.
- Any matrix $W \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(W) \leq K$ can be expressed as $W=X Y$ where $X \in \mathbb{R}^{m \times K}$ and $Y \in \mathbb{R}^{K \times n}$.

New model

$$
\min _{X, Y, Z} \frac{1}{2}\|X Y-Z\|_{F}^{2} \quad \text { s.t. } \quad Z_{i j}=M_{i j}, \forall(i, j) \in \Omega
$$

- Advantage: SVD is no longer needed!
- Related work: the solver Opt Space based on optimization on manifold

Nonlinear Gauss-Seideal scheme

First variant of alternating minimization:

$$
\begin{aligned}
& X_{+} \leftarrow Z Y^{\dagger} \equiv Z Y^{\top}\left(Y Y^{\top}\right)^{\dagger}, \\
& Y_{+} \leftarrow\left(X_{+}\right)^{\dagger} Z \equiv\left(X_{+}^{\top} X_{+}\right)^{\dagger}\left(X_{+}^{\top} Z\right), \\
& Z_{+} \leftarrow X_{+} Y_{+}+\mathcal{P}_{\Omega}\left(M-X_{+} Y_{+}\right) .
\end{aligned}
$$

Let \mathcal{P}_{A} be the orthogonal projection onto the range space $\mathcal{R}(A)$

- $X_{+} Y_{+}=\left(X_{+}\left(X_{+}^{\top} X_{+}\right)^{\dagger} X_{+}^{\top}\right) Z=\mathcal{P}_{X_{+}} Z$
- One can verify that $\mathcal{R}\left(X_{+}\right)=\mathcal{R}\left(Z Y^{\top}\right)$.
- $X_{+} Y_{+}=\mathcal{P}_{Z Y^{\top}} Z=Z Y^{\top}\left(Y Z^{\top} Z Y^{\top}\right)^{\dagger}\left(Y Z^{\top}\right) Z$.
- idea: modify X_{+}or Y_{+}to obtain the same product $X_{+} Y_{+}$

Nonlinear Gauss-Seideal scheme

Second variant of alternating minimization:

$$
\begin{aligned}
& X_{+} \leftarrow Z Y^{\top}, \\
& Y_{+} \leftarrow\left(X_{+}\right)^{\dagger} Z \equiv\left(X_{+}^{\top} X_{+}\right)^{\dagger}\left(X_{+}^{\top} Z\right), \\
& Z_{+} \leftarrow X_{+} Y_{+}+\mathcal{P}_{\Omega}\left(M-X_{+} Y_{+}\right) .
\end{aligned}
$$

Third variant of alternating minimization: $V=\operatorname{orth}\left(Z Y^{\top}\right)$

$$
\begin{aligned}
& X_{+} \leftarrow V \\
& Y_{+} \leftarrow V^{\top} Z, \\
& Z_{+} \leftarrow X_{+} Y_{+}+\mathcal{P}_{\Omega}\left(M-X_{+} Y_{+}\right)
\end{aligned}
$$

Nonlinear SOR

- The nonlinear GS scheme can be slow
- Linear SOR: applying extrapolation to the GS method to achieve faster convergence

The first implementation:

$$
\begin{aligned}
X_{+} & \leftarrow Z Y^{\top}\left(Y Y^{\top}\right)^{\dagger}, \\
X_{+}(\omega) & \leftarrow \omega X_{+}+(1-\omega) X, \\
Y_{+} & \leftarrow\left(X_{+}(\omega)^{\top} X_{+}(\omega)\right)^{\dagger}\left(X_{+}(\omega)^{\top} Z\right), \\
Y_{+}(\omega) & \leftarrow \omega Y_{+}+(1-\omega) Y, \\
Z_{+}(\omega) & \leftarrow X_{+}(\omega) Y_{+}(\omega)+\mathcal{P}_{\Omega}\left(M-X_{+}(\omega) Y_{+}(\omega)\right),
\end{aligned}
$$

- Let $S=\mathcal{P}_{\Omega}(M-X Y)$. Then $Z=X Y+S$
- Let $Z_{\omega} \triangleq X Y+\omega S=\omega Z+(1-\omega) X Y$
- Assume Y has full row rank, then

$$
\begin{aligned}
Z_{\omega} Y^{\top}\left(Y Y^{\top}\right)^{\dagger} & =\omega Z Y^{\top}\left(Y Y^{\top}\right)^{\dagger}+(1-\omega) X Y Y^{\top}\left(Y Y^{\top}\right)^{\dagger} \\
& =\omega X_{+}+(1-\omega) X
\end{aligned}
$$

Second implementation of our nonlinear SOR:

$$
\begin{aligned}
X_{+}(\omega) & \leftarrow Z_{\omega} Y^{\top} \text { or } Z_{\omega} Y^{\top}\left(Y Y^{\top}\right)^{\dagger} \\
Y_{+}(\omega) & \leftarrow\left(X_{+}(\omega)^{\top} X_{+}(\omega)\right)^{\dagger}\left(X_{+}(\omega)^{\top} Z_{\omega}\right) \\
\mathcal{P}_{\Omega^{c}}\left(Z_{+}(\omega)\right) & \leftarrow \mathcal{P}_{\Omega^{c}}\left(X_{+}(\omega) Y_{+}(\omega)\right) \\
\mathcal{P}_{\Omega}\left(Z_{+}(\omega)\right) & \leftarrow \mathcal{P}_{\Omega}(M)
\end{aligned}
$$

Reduction of the residual $\|S\|_{F}^{2}-\left\|S_{+}(\omega)\right\|_{F}^{2}$

Assume that $\operatorname{rank}\left(Z_{\omega}\right)=\operatorname{rank}(Z), \forall \omega \in\left[1, \omega_{1}\right]$ for some $\omega_{1} \geq 1$. Then there exists some $\omega_{2} \geq 1$ such that
$\|S\|_{F}^{2}-\left\|S_{+}(\omega)\right\|_{F}^{2}=\rho_{12}(\omega)+\rho_{3}(\omega)+\rho_{4}(\omega)>0, \quad \forall \omega \in\left[1, \omega_{2}\right]$.

- $\rho_{12}(\omega) \triangleq\|S P\|_{F}^{2}+\|Q(\omega) S(I-P)\|_{F}^{2} \geq 0$
- $\rho_{3}(\omega) \triangleq\left\|\mathcal{P}_{\Omega^{c}}(S P+Q(\omega) S(I-P))\right\|_{F}^{2} \geq 0$
- $\rho_{4}(\omega) \triangleq \frac{1}{\omega^{2}}\left\|S_{+}(\omega)+(\omega-1) S\right\|_{F}^{2}-\left\|S_{+}(\omega)\right\|_{F}^{2}$
- Whenever $\rho_{3}(1)>0\left(\mathcal{P}_{\Omega^{c}}\left(X_{+}(1) Y_{+}(1)-X Y\right) \neq 0\right)$ and
$\omega_{1}>1$, then $\omega_{2}>1$ can be chosen so that $\rho_{4}(\omega)>0, \forall \omega \in\left(1, \omega_{2}\right]$.

Reduction of the residual $\|S\|_{F}^{2}-\left\|S_{+}(\omega)\right\|_{F}^{2}$

(a)

Reduction of the residual $\|S\|_{F}^{2}-\left\|S_{+}(\omega)\right\|_{F}^{2}$

Nonlinear SOR: convergence guarantee

Problem: how can we select a proper weight ω to ensure convergence for a nonlinear model?
Strategy: Adjust ω dynamically according to the change of the objective function values.

- Calculate the residual ratio $\gamma(\omega)=\frac{\left\|S_{+}(\omega)\right\|_{F}}{\|S\|_{F}}$
- A small $\gamma(\omega)$ indicates that the current weight value ω works well so far.
- If $\gamma(\omega)<1$, accept the new point; otherwise, ω is reset to 1 and this procedure is repeated.
- ω is increased only if the calculated point is acceptable but the residual ratio $\gamma(\omega)$ is considered "too large"; that is, $\gamma(\omega) \in\left[\gamma_{1}, 1\right)$ for some $\gamma_{1} \in(0,1)$.

Nonlinear SOR: complete algorithm

Algorithm 1: A low-rank matrix fitting algorithm (LMaFit)

1 Input index set Ω, data $\mathcal{P}_{\Omega}(M)$ and a rank overestimate $K \geq r$.
2 Set $Y^{0}, Z^{0}, \omega=1, \tilde{\omega}>1, \delta>0, \gamma_{1} \in(0,1)$ and $k=0$.
3 while not convergent do
4 Compute $\left(X_{+}(\omega), Y_{+}(\omega), Z_{+}(\omega)\right)$.
$5 \quad$ Compute the residual ratio $\gamma(\omega)$.
6
7
8
9 if $\gamma(\omega) \geq 1$ then set $\omega=1$ and go to step 4.
Update $\left(X^{k+1}, Y^{k+1}, Z^{k+1}\right)$ and increment k. if $\gamma(\omega) \geq \gamma_{1}$ then

$$
\text { set } \delta=\max (\delta, 0.25(\omega-1)) \text { and } \omega=\min (\omega+\delta, \tilde{\omega}) \text {. }
$$

nonlinear GS .vs. nonlinear SOR

(a) $n=1000, r=10, S R=0.08$

(b) $\mathrm{n}=1000, \mathrm{r}=10, \mathrm{SR}=0.15$

Sparse covariance selection (A. d'Aspremont)

We estimate a covariance matrix Σ from empirical data

- Infer independence relationships between variables
- Given $m+1$ observations $x_{i} \in \mathbb{R}^{n}$ on n random variables, compute $S:=\frac{1}{m} \sum_{i=1}^{m+1}\left(x_{i}-\bar{x}\right)\left(x_{i}-\bar{x}\right)$
- Choose a symmetric subset $/$ of matrix coefficients and denote by J the complement
- Choose a covariance matrix $\hat{\Sigma}$ such that
- $\hat{\Sigma}_{i j}=S_{i j}$ for all $(i, j) \in I$
- $\hat{\Sigma}_{i j}^{-1}=0$ for all $(i, j) \in J$
- Benefits: maximum entropy, maximum likelihood, existence and uniqueness
- Applications: Gene expression data, speech recoginition and finance

Maximum likelihood estimation

Consider estimation:

$$
\max _{X \in S^{n}} \log \operatorname{det} X-\operatorname{Tr}(S X)-\rho\|X\|_{0}
$$

Convex relaxations:

$$
\max _{X \in S^{n}} \log \operatorname{det} X-\operatorname{Tr}(S X)-\rho\|X\|_{1},
$$

whose dual problem is:

$$
\max \log \operatorname{det} W \text { s.t. }\|W-S\|_{\infty} \leq \lambda
$$

Block coordinate method

Given $W \succ 0$, we can partition W and S as

$$
W=\left(\begin{array}{cc}
\xi & y^{\top} \\
y & B
\end{array}\right) \text { and } S=\left(\begin{array}{cc}
\xi_{S} & y_{S}^{\top} \\
y_{S} & B_{S}
\end{array}\right)
$$

Fix B and note that $\log \operatorname{det} W=\log \left(\xi-y^{\top} B^{-1} y\right) \operatorname{det} B$, then

$$
\min _{[\xi ; y]} y^{\top} B^{-1} y-\xi, \quad \text { s.t. } \quad\left\|[\xi ; y]-\left[\xi_{S} ; y_{S}\right]\right\|_{\infty} \leq \lambda, \xi \geq 0 .
$$

- Set $\xi=\xi_{S}+\lambda$. (check first-order optimality)
- Update y by solving:

$$
y:=\arg \min _{y} y^{\top} B^{-1} y, \quad \text { s.t. } \quad\left\|y-y_{S}\right\|_{\infty} \leq \lambda
$$

whose dual problem is $\min _{x} x^{\top} B x-y_{S}^{\top} x+\lambda\|x\|_{1}$, which is

$$
x:=\arg \min _{x}\left\|B^{\frac{1}{2}} x-\frac{1}{2} B^{-\frac{1}{2}} y_{S}\right\|_{2}^{2}+\lambda\|x\|_{1} .
$$

Relationship: $y=B x$.

APG

Zhaosong Lu (smooth optimization approach for sparse covariance selection) consider

$$
\begin{aligned}
& \max \log \operatorname{det} X-\operatorname{Tr}(S X)-\rho\|X\|_{1} \\
& \text { s.t. } \mathcal{X}:=\left\{X \in S^{n}: \beta I \succeq X \succeq \alpha /\right\},
\end{aligned}
$$

which is equivalent to $\left(\mathcal{U}:=\left\{U \in S^{n}:\left|U_{i j}\right| \leq 1, \forall i j\right\}\right)$

$$
\max _{X \in \mathcal{X}} \min _{U \in \mathcal{U}} \log \operatorname{det} X-\langle S+\rho U, X\rangle
$$

Let $f(U):=\max _{X \in \mathcal{X}} \log \operatorname{det} X-\langle S+\rho U, X\rangle$

- $\log \operatorname{det} X$ is strongly concave on \mathcal{X}
- $f(U)$ is continuous differentiable
- $\nabla f(U)$ is Lipschitz cont. with $L=\rho \beta^{2}$

Therefore, APG can be applied to the dual problem

$$
\min _{U \in \mathcal{U}} f(U)
$$

Consider

$$
\max _{x \in \mathcal{X}} g(x):=\min _{u \in \mathcal{U}} \phi(x, u)
$$

Assume:

- $\phi(x, u)$ is a cont. fun. which is strictly concave in $x \in \mathcal{X}$ for every fixed $u \in \mathcal{U}$, and convex diff. in $u \in \mathcal{U}$ for every fixed $x \in \mathcal{X}$. Then $f(u):=\max _{x \in \mathcal{X}} \phi(x, u)$ is diff.
- $\nabla f(u)$ is Lipschitz cont.

Then

- the primal and the dual $\min _{u \in U} f(u)$ are both solvable and have the same optimal value;
- Nesterov's smooth minimization approach can be applied to the dual

Nesterov's smoothing technique

Consider

$$
\max _{x \in \mathcal{X}} \min _{u \in \mathcal{U}} \phi(x, u)
$$

Question: What if the assumptions do not hold?

- Add a strictly convex function $\mu d(u)$ to the obj. fun.

$$
g(u):=\arg \min _{u \in \mathcal{U}} \phi(x, u)+\mu d(u)
$$

- $g(u)$ is differentiable
- Apply Nesterov's smooth minimization
- Complexity of finding a ϵ-suboptimal point: $O\left(\frac{1}{\epsilon}\right)$ iterations
- Other smooth technique?

