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4. Subgradients

• definition

• subgradient calculus

• duality and optimality conditions

• directional derivative
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Basic inequality

recall basic inequality for convex differentiable f :

f(y) ≥ f(x) +∇f(x)T (y − x)

• the first-order approximation of f at x is a global lower bound

• ∇f(x) defines non-vertical supporting hyperplane to epi f at (x, f(x))

[

∇f(x)
−1

]T ([
y
t

]

−
[

x
f(x)

])

≤ 0 ∀(y, t) ∈ epi f

what if f is not differentiable?
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Subgradient

g is a subgradient of a convex function f at x ∈ dom f if

f(y) ≥ f(x) + gT (y − x) ∀y ∈ dom f

x1 x2

f(x1) + gT
1 (x − x1)

f(x2) + gT
2 (x − x2)

f(x2) + gT
3 (x − x2)

f(x)

g2, g3 are subgradients at x2; g1 is a subgradient at x1
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properties

• f(x) + gT (y − x) is a global lower bound on f(y)

• g defines non-vertical supporting hyperplane to epi f at (x, f(x))

[

g
−1

]T ([
y
t

]

−
[

x
f(x)

])

≤ 0 ∀(y, t) ∈ epi f

• if f is convex and differentiable, then ∇f(x) is a subgradient of f at x

applications

• algorithms for nondifferentiable convex optimization

• unconstrained optimality: x minimizes f(x) if and only if 0 ∈ ∂f(x)

• KKT conditions with nondifferentiable functions
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Example

f(x) = max{f1(x), f2(x)} f1, f2 convex and differentiable

x0

f1(x)

f2(x)

• subgradients at x0 form line segment [∇f1(x0),∇f2(x0)]

• if f1(x̂) > f2(x̂), subgradient of f at x̂ is ∇f1(x̂)

• if f1(x̂) < f2(x̂), subgradient of f at x̂ is ∇f2(x̂)
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Subdifferential

the subdifferential ∂f(x) of f at x is the set of all subgradients:

∂f(x) = {g | gT (y − x) ≤ f(y)− f(x) ∀y ∈ dom f}

properties

• ∂f(x) is a closed convex set (possibly empty)

(follows from the definition: ∂f(x) is an intersection of halfspaces)

• if x ∈ int dom f then ∂f(x) is nonempty and bounded

(proof on next two pages)
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proof: we show that ∂f(x) is nonempty when x ∈ int dom f

• (x, f(x)) is in the boundary of the convex set epi f

• therefore there exists a supporting hyperplane to epi f at (x, f(x)):

∃(a, b) 6= 0,

[

a
b

]T ([
y
t

]

−
[

x
f(x)

])

≤ 0 ∀(y, t) ∈ epi f

• b > 0 gives a contradiction as t → ∞

• b = 0 gives a contradiction for y = x+ ǫa with small ǫ > 0

• therefore b < 0 and g = a/|b| is a subgradient of f at x
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proof: ∂f(x) is bounded when x ∈ int dom f

• for small r > 0, define a set of 2n points

B = {x± rek | k = 1, . . . , n} ⊂ dom f

and define M = max
y∈B

f(y) < ∞

• for every nonzero g ∈ ∂f(x), there is a point y ∈ B with

f(y) ≥ f(x) + gT (y − x) = f(x) + r‖g‖∞

(choose an index k with |gk| = ‖g‖∞, and take y = x+ r sign(gk)ek)

• therefore ∂f(x) is bounded:

sup
g∈∂f(x)

‖g‖∞ ≤ M − f(x)

r
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Examples

absolute value f(x) = |x|

f(x) = |x| ∂f(x)

x

x

1

−1

Euclidean norm f(x) = ‖x‖2

∂f(x) =
1

‖x‖2
x if x 6= 0, ∂f(x) = {g | ‖g‖2 ≤ 1} if x = 0
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Monotonicity

subdifferential of a convex function is a monotone operator:

(u− v)T (x− y) ≥ 0 ∀x, y, u ∈ ∂f(x), v ∈ ∂f(y)

proof: by definition

f(y) ≥ f(x) + uT (y − x), f(x) ≥ f(y) + vT (x− y)

combining the two inequalities shows monotonicity
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Examples of non-subdifferentiable functions

the following functions are not subdifferentiable at x = 0

• f : R → R, dom f = R+

f(x) = 1 if x = 0, f(x) = 0 if x > 0

• f : R → R, dom f = R+

f(x) = −
√
x

the only supporting hyperplane to epi f at (0, f(0)) is vertical
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Subgradients and sublevel sets

if g is a subgradient of f at x, then

f(y) ≤ f(x) =⇒ gT (y − x) ≤ 0

f(y) ≤ f(x)xg

x1

∇f(x1)

nonzero subgradients at x define supporting hyperplanes to sublevel set

{y | f(y) ≤ f(x)}
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Subgradient calculus

weak subgradient calculus: rules for finding one subgradient

• sufficient for most nondifferentiable convex optimization algorithms

• if you can evaluate f(x), you can usually compute a subgradient

strong subgradient calculus: rules for finding ∂f(x) (all subgradients)

• some algorithms, optimality conditions, etc., need entire subdifferential

• can be quite complicated

we will assume that x ∈ int dom f
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Basic rules

differentiable functions: ∂f(x) = {∇f(x)} if f is differentiable at x

nonnegative combination

if h(x) = α1f1(x) + α2f2(x) with α1, α2 ≥ 0, then

∂h(x) = α1∂f1(x) + α2∂f2(x)

(r.h.s. is addition of sets)

affine transformation of variables: if h(x) = f(Ax+ b), then

∂h(x) = AT∂f(Ax+ b)
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Pointwise maximum

f(x) = max{f1(x), . . . , fm(x)}

define I(x) = {i | fi(x) = f(x)}, the ‘active’ functions at x

weak result: to compute a subgradient at x,

choose any k ∈ I(x), and any subgradient of fk at x

strong result

∂f(x) = conv
⋃

i∈I(x)

∂fi(x)

• convex hull of the union of subdifferentials of ‘active’ functions at x

• if fi’s are differentiable, ∂f(x) = conv{∇fi(x) | i ∈ I(x)}
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Example: piecewise-linear function

f(x) = max
i=1,...,m

aTi x+ bi

x

aT
i x + bi

f(x)

the subdifferential at x is a polyhedron

∂f(x) = conv{ai | i ∈ I(x)}

with I(x) = {i | aTi x+ bi = f(x)}
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Example: ℓ1-norm

f(x) = ‖x‖1 = max
s∈{−1,1}n

sTx

the subdifferential is a product of intervals

∂f(x) = J1 × · · · × Jn, Jk =







[−1, 1] xk = 0
{1} xk > 0
{−1} xk < 0

1

1

−1

−1

∂f(0, 0) = [−1, 1] × [−1, 1]

1

1

−1

∂f(1, 0) = {1} × [−1, 1]

(1,1)

∂f(1, 1) = {(1, 1)}
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Pointwise supremum

f(x) = sup
α∈A

fα(x), fα(x) convex in x for every α

weak result: to find a subgradient at x̂,

• find any β for which f(x̂) = fβ(x̂) (assuming maximum is attained)

• choose any g ∈ ∂fβ(x̂)

(partial) strong result: define I(x) = {α ∈ A | fα(x) = f(x)}

conv
⋃

α∈I(x)

∂fα(x) ⊆ ∂f(x)

equality requires extra conditions (e.g., A compact, fα continuous in α)
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Exercise: maximum eigenvalue

problem: explain how to find a subgradient of

f(x) = λmax(A(x)) = sup
‖y‖2=1

yTA(x)y

where A(x) = A0 + x1A1 + · · ·+ xnAn with symmetric coefficients Ai

solution: to find a subgradient at x̂,

• choose any unit eigenvector y with eigenvalue λmax(A(x̂))

• the gradient of yTA(x)y at x̂ is a subgradient of f :

(yTA1y, . . . , y
TAny) ∈ ∂f(x̂)
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Minimization

f(x) = inf
y
h(x, y), h jointly convex in (x, y)

weak result: to find a subgradient at x̂,

• find ŷ that minimizes h(x̂, y) (assuming minimum is attained)

• find subgradient (g, 0) ∈ ∂h(x̂, ŷ)

proof: for all x, y,

h(x, y) ≥ h(x̂, ŷ) + gT (x− x̂) + 0T (y − ŷ)

= f(x̂) + gT (x− x̂)

therefore
f(x) = inf

y
h(x, y) ≥ f(x̂) + gT (x− x̂)
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Exercise: Euclidean distance to convex set

problem: explain how to find a subgradient of

f(x) = inf
y∈C

‖x− y‖2

where C is a closed convex set

solution: to find a subgradient at x̂,

• if f(x̂) = 0 (that is, x̂ ∈ C), take g = 0

• if f(x̂) > 0, find projection ŷ = P (x̂) on C; take

g =
1

‖ŷ − x̂‖2
(x̂− ŷ) =

1

‖x̂− P (x̂)‖2
(x̂− P (x̂))
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Composition

f(x) = h(f1(x), . . . , fk(x)), h convex nondecreasing, fi convex

weak result: to find a subgradient at x̂,

• find z ∈ ∂h(f1(x̂), . . . , fk(x̂)) and gi ∈ ∂fi(x̂)

• then g = z1g1 + · · ·+ zkgk ∈ ∂f(x̂)

reduces to standard formula for differentiable h, fi

proof:

f(x) ≥ h
(

f1(x̂) + gT1 (x− x̂), . . . , fk(x̂) + gTk (x− x̂)
)

≥ h (f1(x̂), . . . , fk(x̂)) + zT
(

gT1 (x− x̂), . . . , gTk (x− x̂)
)

= f(x̂) + gT (x− x̂)
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Optimal value function

define h(u, v) as the optimal value of convex problem

minimize f0(x)
subject to fi(x) ≤ ui i = 1, . . . ,m

Ax = b+ v

(functions fi are convex; optimization variable is x)

weak result: suppose h(û, v̂) is finite, strong duality holds with the dual

maximize inf
x

(

f0(x) +
∑

i

λi(fi(x)− ûi) + νT (Ax− b− v̂)

)

subject to λ � 0

if λ̂, ν̂ are optimal dual variables (for r.h.s. û, v̂) then (−λ̂,−ν̂) ∈ ∂h(û, v̂)
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proof: by weak duality for problem with r.h.s. u, v

h(u, v) ≥ inf
x

(

f0(x) +
∑

i

λ̂i(fi(x)− ui) + ν̂T (Ax− b− v)

)

= inf
x

(

f0(x) +
∑

i

λ̂i(fi(x)− ûi) + ν̂T (Ax− b− v̂)

)

− λ̂T (u− û)− ν̂T (v − v̂)

= h(û, v̂)− λ̂T (u− û)− ν̂T (v − v̂)
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Expectation

f(x) = Eh(x, u) u random, h convex in x for every u

weak result: to find a subgradient at x̂

• choose a function u 7→ g(u) with g(u) ∈ ∂xh(x̂, u)

• then, g = Eu g(u) ∈ ∂f(x̂)

proof: by convexity of h and definition of g(u),

f(x) = Eh(x, u)

≥ E
(

h(x̂, u) + g(u)T (x− x̂)
)

= f(x̂) + gT (x− x̂)
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Optimality conditions — unconstrained

x⋆ minimizes f(x) if and only

0 ∈ ∂f(x⋆)

x

f(x)

x⋆

0 ∈ ∂f(x⋆)

proof: by definition

f(y) ≥ f(x⋆) + 0T (y − x⋆) for all y ⇐⇒ 0 ∈ ∂f(x⋆)
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Example: piecewise linear minimization

f(x) = max
i=1,...,m

(aTi x+ bi)

optimality condition

0 ∈ conv{ai | i ∈ I(x⋆)} (where I(x) = {i | aTi x+ bi = f(x)})

in other words, x⋆ is optimal if and only if there is a λ with

λ � 0, 1Tλ = 1,

m
∑

i=1

λiai = 0, λi = 0 for i 6∈ I(x⋆)

these are the optimality conditions for the equivalent linear program

minimize t
subject to Ax+ b � t1

maximize bTλ
subject to ATλ = 0

λ � 0, 1Tλ = 1

Subgradients 4-27



Optimality conditions — constrained

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

from Lagrange duality

if strong duality holds, then x⋆, λ⋆ are primal, dual optimal if and only if

1. x⋆ is primal feasible

2. λ⋆ � 0

3. λ⋆
i fi(x

⋆) = 0 for i = 1, . . . ,m

4. x⋆ is a minimizer of

L(x, λ⋆) = f0(x) +
m
∑

i=1

λ⋆
i fi(x)
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Karush-Kuhn-Tucker conditions (if dom fi = Rn)

conditions 1, 2, 3 and

0 ∈ ∂Lx(x
⋆, λ⋆) = ∂f0(x

⋆) +
m
∑

i=1

λ⋆
i∂fi(x

⋆)

this generalizes the condition

0 = ∇f0(x
⋆) +

m
∑

i=1

λ⋆
i∇fi(x

⋆)

for differentiable fi
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Directional derivative

definition (general f): directional derivative of f at x in the direction y is

f ′(x; y) = lim
αց0

f(x+ αy)− f(x)

α

= lim
t→∞

(

t(f(x+
1

t
y)− tf(x)

)

(if the limit exists)

• f ′(x; y) is the right derivative of g(α) = f(x+ αy) at α = 0

• f ′(x; y) is homogeneous in y:

f ′(x;λy) = λf ′(x; y) for λ ≥ 0
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Directional derivative of a convex function

equivalent definition (convex f): replace lim with inf

f ′(x; y) = inf
α>0

f(x+ αy)− f(x)

α

= inf
t>0

(

tf(x+
1

t
y)− tf(x)

)

proof

• the function h(y) = f(x+ y)− f(x) is convex in y, with h(0) = 0

• its perspective th(y/t) is nonincreasing in t (EE236B ex. A2.5); hence

f ′(x; y) = lim
t→∞

th(y/t) = inf
t>0

th(y/t)
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Properties

consequences of the expressions (for convex f)

f ′(x; y) = inf
α>0

f(x+ αy)− f(x)

α

= inf
t>0

(

tf(x+
1

t
y)− tf(x)

)

• f ′(x; y) is convex in y (partial minimization of a convex function in y,t)

• f ′(x; y) defines a lower bound on f in the direction y:

f(x+ αy) ≥ f(x) + αf ′(x; y) ∀α ≥ 0
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Directional derivative and subgradients

for convex f and x ∈ int dom f

f ′(x; y) = sup
g∈∂f(x)

gTy

y

∂f(x)

f ′(x; y) is support function of ∂f(x)

• generalizes f ′(x; y) = ∇f(x)Ty for differentiable functions

• implies that f ′(x; y) exists for all x ∈ int dom f , all y (see page 4-6)
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proof: if g ∈ ∂f(x) then from p.4-31

f ′(x; y) ≥ inf
α>0

f(x) + αgTy − f(x)

α
= gTy

it remains to show that f ′(x; y) = ĝTy for at least one ĝ ∈ ∂f(x)

• f ′(x; y) is convex in y with domain Rn, hence subdifferentiable at all y

• let ĝ be a subgradient of f ′(x; y) at y: for all v, λ ≥ 0,

λf ′(x; v) = f ′(x;λv) ≥ f ′(x; y) + ĝT (λv − y)

• taking λ → ∞ shows f ′(x; v) ≥ ĝTv; from the lower bound on p. 4-32

f(x+ v) ≥ f(x) + f ′(x; v) ≥ f(x) + ĝTv ∀v

• hence ĝ ∈ ∂f(x); taking λ = 0 we see that f ′(x; y) ≤ ĝTy
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Descent directions and subgradients

y is a descent direction of f at x if f ′(x; y) < 0

• negative gradient of differentiable f is descent direction (if ∇f(x) 6= 0)

• negative subgradient is not always a descent direction

example: f(x1, x2) = |x1|+ 2|x2|

x1

x2

g

g = (1, 2) ∈ ∂f(1, 0), but y = (−1,−2) is not a descent direction at (1, 0)
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Steepest descent direction

definition: (normalized) steepest descent direction at x ∈ int dom f is

∆xnsd = argmin
‖y‖2≤1

f ′(x; y)

∆xnsd is the primal solution y of the pair of dual problems (BV §8.1.3)

minimize (over y) f ′(x; y)
subject to ‖y‖2 ≤ 1

maximize (over g) −‖g‖2
subject to g ∈ ∂f(x)

• optimal g⋆ is subgradient with least norm

• f ′(x; ∆xnsd) = −‖g⋆‖2
• if 0 6∈ ∂f(x), ∆xnsd = −g⋆/‖g⋆‖2

∂f(x)

∆xnsd
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Subgradients and distance to sublevel sets

if f is convex, f(y) < f(x), g ∈ ∂f(x), then for small t > 0,

‖x− tg − y‖22 = ‖x− y‖22 − 2tgT (x− y) + t2‖g‖22
≤ ‖x− y‖22 − 2t(f(x)− f(y)) + t2‖g‖22
< ‖x− y‖22

• −g is descent direction for ‖x− y‖2, for any y with f(y) < f(x)

• in particular, −g is descent direction for distance to any minimizer of f
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