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class notes, and reference books or papers
@ “Convex optimization”, Stephen Boyd and Lieven Vandenberghe

@ “Numerical Optimization”, Jorge Nocedal and Stephen Wright,
Springer

@ “Optimization Theory and Methods”, Wenyu Sun, Ya-Xiang Yuan

@ “Matrix Computations”, Gene H. Golub and Charles F. Van Loan.
The Johns Hopkins University Press

A kAL #AR, H k58 (coming soon)
http://bicmr.pku.edu.cn/~wenzw/optbook.html
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Mathematical optimization

(mathematical) optimization problem
min  fo(x)

S.t. fi(x)gb,‘, i=1,....m

@ x = (x1,x2,...,X,) : optimization variables
@ fy : R" — R : objective function
@ /i :R" - R,i=1,...,m: constraint functions

optimal solution x* has smallest value of f, among all vectors that
satisfy the constraints
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Solving optimization problems

general optimization problem

@ very difficult to solve
@ methods involve some compromise, e.g., very long computation
time, or not always finding the solution

exceptions : certain problem classes can be solved efficiently and reliably

@ least-squares problems
@ linear programming problems

@ convex optimization problems
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Convex optimization problem

min  fy(x)
st filx)<b, i=1,...,m

@ objective and constraint functions are convex:

filax + By) < afi(x) + Bfi(y)
fa+B8=1,a>0,6>0

@ includes least-squares problems and linear programs as special
cases
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solving convex optimization problems

@ no analytical solution
@ reliable and efficient algorithms

@ computation time (roughly) proportional to max{n®, n?m, F},
where F is cost of evaluating f;’s and their first and second
derivatives

@ almost a technology

using convex optimization

@ often difficult to recognize
@ many tricks for transforming problems into convex form

@ surprisingly many problems can be solved via convex
optimization
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Least squares problems

min  |JAx — b||3
solving least-squares problems
@ analytical solution: x* = (ATA)~!'ATb
@ reliable and efficient algorithms and software

@ computation time proportional to n’k (A € R¥*"); less if structured

@ a mature technology

using least-squares

@ least-squares problems are easy to recognize

@ a few standard techniques increase flexibility (e.g., including
weights, adding regularization terms)
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Variants of Least squares

@ Ridge regression/Tikhonov regularization

. 1
min —lx — bl + 3
X

@ sparse regularization
. 1 )
min 5 [|Ax = bl + ullxlh
X
@ Lasso/Basis pursuit

min  ||x||1, s.t. [[Ax —b[2 <€

X
or
min  ||[Ax — b2, s.t. ||x][1 <o
X

@ or even under a different norm

min  [|[Ax — b1, s.t. x| <o
X
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Linear programming

min  ¢’x
s.t. aiTbei, i=1,....m
solving linear programs

@ no analytical formula for solution

@ reliable and efficient algorithms and software

@ computation time proportional to n’m if m > n; less with structure
@ a mature technology

using linear programming

@ not as easy to recognize as least-squares problems

@ a few standard tricks used to convert problems into linear
programs (e.g., problems involving ¢;- or {.- norms,
piecewise-linear functions)
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An example of linear programming: >k &
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* Online assignment problem

« Control based method

* Online linear programming
Ref: Agrawal, Shipra, Zizhuo Wang. and Yinyu Ye.
“A dynamic near-optimal algorithm for online
linear programming.” Operations Research 62.4
(2014): 876-890.




Optimal transport

— images, vision, graphics and machine learning, ...
E

Monge Kantorovich Koopmans ~Dantzig ~ Brenier Otto McCann  Villani Figall
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Optimal transport: LP
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Why Optimization in Machine Learning?

Many problems in ML can be written as

N

. - . .
min Zi|yaix—b,-|\§+u|lwll1 linear regression

i=1

min Zlog + exp(—bja; x)) + p|lx|; logistic regression
xXEW

i L(h eneral formulation
Inin Z (x,a;),bi) + pr(x) g

@ The pairs (a;, b;) are given data, b; is the label of the data point ;
@ /(-): measures how model fit for data points (avoids under-fitting)
@ r(x): regularization term (avoids over-fitting)

@ h(x,a): linear function or models constructed from deep neural
networks
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Loss functions in neural network

Lecture 3 from Fei-Fei Li & Andrej Karpathy & Justin Johnson

- We have some dataset of (x,y)

eg.
- We have a score function: s = f(z; W) =Wz
- We have a loss function:

, | o Softmax
=leEa)
Li =), max(0,s -8, +1)

regularization loss

[———
score function l )

f(zi)W) data loss :IZ
L= l,v EL Li + R(W) Fullloss .
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convolution operator

Input
Kernel
a b e d
w
e s g h
Yy
' / | r | | ! |
v Output
-]
aw -+ bx bw -+ cx cw -+ dx
ey + fz fyv + gz gy +  hz
ew - fx fw -+ gx gw -+ hx
Yy == jz Jy + k= ky -+ lz
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Loss functions in neural network
Lecture 4 from Fei-Fei Li & Andrej Karpathy & Justin Johnson

Convolutional Network
(AlexNet)

input image/ g
Welghts o —— ::;"*-"» =1

loss
g— -;;F
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Optimization algorithms in Deep learning

AR K

@ pytorch/caffe2 2 523189 K % A adadelta, adagrad, adam,
nesterov, rmsprop, YellowFin
https://github.com/pytorch/pytorch/tree/master/
caffe2/sgd

@ pytorch/torch 4 : sgd, asgd, adagrad, rmsprop, adadelta,
adam, adamax
https://github.com/pytorch/pytorch/tree/master/
torch/optim

@ tensorflow % #49 A % 4 . Adadelta, AdagradDA, Adagrad,
ProximalAdagrad, Ftrl, Momentum, adam, Momentum,
CenteredRMSProp
BRI
https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/core/kernels/training_ops.cc
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Reinforcement Learning

@ AlphaGo: supervised learning + policy gradients + value
functions + Monte-Carlo tree search

. ALPHAGO

00:10:29
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Definition: MDP

A Markov Decision Process is a tuple (S, A, P, r,v):
@ Sis afinite set of states, s € S
@ Ais afinite set of actions, a € A
@ P is the transition probability distribution.

probability from state s with action a to state s': P(s'|s, a)
also called the model or the dynamics

@ ris areward function, r(s,a,s)

sometimes just r(s) or r¢
or r, after time step t

@ v € [0, 1] is a discount factor
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Optimization model

@ Maximize the expected total discounted return of an episode

oo
max E[Z Y1l
=0

or,max E[R(T)|T = {so,a0,51,a1,...} ~ 7]
™

@ Policy w(als) is a probability
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J& 46 B . AR A NE 5 A2 2R K AL

@ xeR"A e R"™" peR"

@ m < n linear equations about x
Ax=b

@ want to recover x

@ Arises in many fields of science and engineering
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Compressive Sensing

Find the sparest solution
@ Given n=256, m=128.
@ A =randn(m,n); u = sprandn(n, 1, 0.1); b = A*u;

i il
IR IR

v

E)

min [|xo min || min [|x]
X X X
st Ax=b»b st. Ax=5»b st Ax=b»b
(a) o-minimization (b) £,-minimization (€) #4,-minimization
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Wavelets and Images (Thanks: Richard Baraniuk)

wavelet coeffs (sorted)

. B § B BEEE
P8 e BB e

r

0.5

1 megapixel image

zoom in (log,, sorted)
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Wavelet Approximation (Thanks: Richard Baraniuk)

2 4 6 8 10

1 megapixel image 25k term approx B-term approx error

o Within 2 digits (in MSE) with = 2.5% of coeffs

¢ Original image = f, K-term approximation = fx

IIf — fxllz2 = .01 f|2
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Compressive sensing

@ x is sparsely synthesized by atoms from ¥, so vector « is sparse

@ Random measurements can be used for signals sparse in any
basis

@ Dictionary ¥: DCT, wavelets, curvelets, gabor, etc., also their
combinations; they have analytic properties, often easy to
compute (for example, multiplying a vector takes O(n log n)
instead of O(n2))

@ can also be numerically learned from training data or partial
signal

y = Pbxr = PV«
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Compressive sensing

Given (A, b, V), find the sparsest point:

x* = argmin{||Wx|p : Ax = b}
From combinatorial to convex optimization:

x = arg min{||Wx||; : Ax = b}

1-norm is sparsity promoting
@ Basis pursuit (Donoho et al 98)
@ Many variants: ||Ax — b||» < o for noisy b
@ Theoretical question: wheniis || - [jo <> || - |[1 ?
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Restricted Isometry Property (RIP)

Definition (Candes and Tao [2005])

Matrix A obeys the restricted isometry property (RIP) with constant d;
if
(1= d9)llel3 < llAcl3 < (1 + 65)llell3

for all s-sparse vectors c.

Theorem (Candes and Tao [2006])

If x is a k-sparse and A satisfies dyx + d3x < 1, then x is the unique ¢;
minimizer.

@ RIP essentially requires that every set of columns with cardinality
less than or equal to s behaves like an orthonormal system.
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MRI: Magnetic Resonance Imaging

(a) MRI Scan (b) Fourier Coefficients

Is it possible to cut the scan time into half?

31/54



MRI (Thanks: Wotao Yin)

@ MR images often have sparse sparse representations under
some wavelet transform &
@ Solve
min [ Gul|, + 5| Ru — |

R: partial discrete Fourier transform
@ The higher the SNR (signal-noise ratio) is, the better the image
quality is.

(a) full sampling (b) 39% sampling,
SNR=32.2

32/54



MRI: Magnetic Resonance Imaging

(a) full sampling (b) 39% sampling,
SNR=32.2

(c) 22% sampling, (d) 14% sampling,
SNR=21.4 SNR=15.8
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Phase Retrieval

Phase carries more information than magnitude

Y IFOY)I phase(F(Y)) iF(IF(Y)|-"phase(F(S)))

s IFS) phase(F(S)) iF(IF(S)|-"phase(F(Y)))

Question: recover signal without knowing phase?
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Classical Phase Retrieval

Feasibility problem

findxe SN Mor findxe Sy N M

@ given Fourier magnitudes:
M= {x(r) | |x(w)| = b(w)}

where x(w) = F(x(r)), F: Fourier transform
@ given support estimate:

S:={x(r) | x(r) =0 for r ¢ D}
or

St :={x(r) | x(r) > 0and x(r) =0if r ¢ D}

35/54



Ptychographic Phase Retrieval (Thanks: Chao Yang)

Given b; = | F(Qi)| fori =1, ...k, can we recover ¢?

| Transmission image

Zone-plate lens ‘F?

Scanned specimen

Diffraction pattern

Ptychographic imaging along with advances in detectors and
computing have resulted in X-ray microscopes with increased spatial
resolution without the need for lenses
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Recent Phase Retrieval Model Problems

@ GivenA € C""and b € R"
find x, s.t. |Ax| = b.
(Candes et al. 2011b, Alexandre d’Aspremont 2013)
@ SDP Relaxation: |Ax|? is a linear function of X = xx*
min Tr(X)

st. Tr(aaiX)=b2i=1,...,m,
X>0

@ Exact recovery conditions
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The Netflix problem

e i it ST Movies
NETFLIX " go S
4
1o rent movies AL 4 X X
. 7 Users ” "

@ Netflix database: about a million users, 25,000 movies
@ People rate movies
@ Sparsely sampled entries

Challenge: million dollar award

Complete the "Netflix matrix"

collaborative filtering, Partially filled out surveys...
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Matrix Rank Minimization

Given X € R™", A : R™" — RP, b € R?, we consider
@ matrix completion problem:

min rank(X), s.t. X;; = My, (i,j) € Q
@ the matrix rank minimization problem:
min rank(X), s.t. A(X)=0>
@ nuclear norm minimization:
min || X|. s.t. AX) =5

where || X||. = ", 0; and o; = ith singular value of matrix X.
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Video separation

@ Partition the video into moving and static parts
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Sparse and low-rank matrix separation

@ Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.

@ Convex approximation:

min [[Wil. + plEfr, st. W+E=M

@ Robust PCA

41/54



Portfolio optimization

@ r;, random variable, the rate of return for stock i
@ x;, the relative amount invested in stock i

@ Return: r = rix; +raxp + ... + rux,

@ expected return: R = E(r) = Y E(ri)xi = >, fiXi
@ Risk: V = Var(r) = >, oyxix; = x Xx

1
min— x Ex min risk measure,

s.t. Zlu,xlz;’o s.t. Z,letzro
inzl, ZX,—I,

xi >0 % 20
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Review of Risk Measures

@ Variance

@ Value-at-Risk (VaR): Let F(-) be the distribution function of the
random loss X. For a given « € (0, 1), VaR of X at level a is
defined as

VaR,(X) := inf{x | F(x) > a} = F'(a).

@ Conditional Value-at-Risk (CVaR): The a-tail distribution function
of X is defined as

Fox(x) = 0, for x < VaR,(X),
@XT ] B=a - for 1 > VaR, (X).

I—a
CVaR, (X) := mean of the a-tail distribution of X

- / " dFox(x).

—00
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Basel 2.5 Accord, July 2009

Financial Crisis of 2007/2008
@ capital requirements for market risk

60
k
¢, = max {VaRa,,l, ) ; VaRa,ts}

60
14
+ max {sVaRaJ_l 50 Zl sVaRW_S}

@ sVaR,,_, is called the stressed VaR on day ¢ — s at confidence
level oo = 99%, which is calculated under the scenario that the
financial market is under significant stress such as the one that
happened during the period from 2007 to 2008.
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Basel 3 Accord, May 2012

@ Uses CVaR (or, equivalently, ES) instead of VaR

@ The capital requirement for a group of trading desks that share
similar major risk factors, such as equity, credit, interest rate, and
currency, is defined as the CVaR of the loss that may be incurred
by the group of trading desks;

@ The CVaR should be calculated under stressed scenarios rather
than under current market conditions.

@ capital requirements for market risk

60
14
¢; = max {SCVaRa,,l, 0 ; sCVaRaJS} ,

@ sCVaR,,_, is the stressed CVaR at level a calculated on day
t—s.
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Correlation Matrices

A correlation matrix satisfies
X=X"X;=1,i=1,...,n, X = 0.
Example: (low-rank) nearest correlation matrix estimation
min% X — CH%,
st. X=X",Xs=1,i=1,...,n, X>=0
@ objective fun.: [W o (X — CO)|;

@ lower and upper bounds
@ rank constraints rank(X) < r
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Computational Materials Simulation

Numerical simulation of material on atomic and molecular scale
(Thanks: Chao Yang)

w  Periodic Tabie of the Elements
e, |
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Computational Materials Simulation

What to simulate

- Energy A%

- Ground state vs excited states e LA i

- Binding energy (cohesive, adsorptionetc.) & & & xw ¢

- Band structure =
- Geometry S

+ Most stable configuration “o*, ,
+ Dynamics o
- Reaction rates
- Charge transfer and electron transport
- Mechanical properties (e.g. elasticity)
- Optical properties
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Electronic Structure Calculation

@ N particle Schrodinger equation: Physics of material systems —
atomic and molecular properties, almost correct (nonrelativistic)
phyiscs is quantum mechanics

@ Main goal: Given atomic positions {R,}*._,, compute the ground
state electron energy E.({R.}).

@ Ground state electron wavefunction W, (ry,...,ry; {Ra}):
1 N M N 7 1 N 1
o= (-5 a-Y Y B s Y
2= — = |ri — Ry| 2. = ri =1l
i= a=lj= ij=L,i7j
= E.({Ra}) ¥,

@ Curse of dimensionality: Computational work goes as 10°",
where N is the number of electrons
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Kohn-Sham Formulation

@ Replace many-particle wavefunctions, ¥;, with single particle
wavefunction, ;

@ Minimize Kohn-Sham total energy
min 5 377, Jo IVUil2 + o Vien(p) + 5 fQ pﬁ:)pr,‘ drdr’ + Ex.(p)
s.t. p(r) =327, |¢i N2, [q vt = 6

Exchange-correlation term: E,. contains quantum mechanical
contribution, plus, part of K.E. not converged by first term when
using single-particle wavefunctions

@ Discretized Kohn-Sham Formulation

in Egs(X
2, Exs(X)
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Optimization on Manifold

Consider X ¢ C"*? and

min F(X), subjectto X'X =1

Why is the problem interesting?
@ Stiefel Manifold, Grassmanian Manifold
@ it is expensive to keep constraints feasible;
@ non-convex, leading to possibly local minima.
@ it has many applications;
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Course goals and topics

goals
@ recognize/formulate problems as convex optimization problems

© develop code for problems of moderate size

© characterize optimal solution, give limits of performance, etc.
topics

@ convex sets, functions, optimization problems

© examples and applications

© algorithms
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Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)
@ find a point that minimizes f, among feasible points near it
@ fast, can handle large problems
@ require initial guess

@ provide no information about distance to (global) optimum

global optimization methods
@ find the (global) solution

@ worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms
@ 1947: simplex algorithm for linear programming (Dantzig)
@ 1960s: early interior-point methods (Fiacco & McCormick, Dikin, ... )
@ 1970s: ellipsoid method and other subgradient methods

@ 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

@ late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
@ before 1990: mostly in operations research; few in engineering

@ since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, ... ); new problem classes
(semidefinite and second-order cone programming, robust

optimization)
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