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课程信息

凸优化

课程代码：00102906 (研究生），00136660 (本科）

教师信息：文再文，wenzw@pku.edu.cn,微信：wendoublewen

助教信息：杨明瀚，柳伊扬

上课地点：理教410

上课时间：每周周二1∼2节，双周周四1∼2节，8:00am - 9:50am

课程主页:
http:
//bicmr.pku.edu.cn/~wenzw/opt-2020-fall.html

http://bicmr.pku.edu.cn/~wenzw/opt-2020-fall.html
http://bicmr.pku.edu.cn/~wenzw/opt-2020-fall.html
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参考资料

class notes, and reference books or papers
“Convex optimization”, Stephen Boyd and Lieven Vandenberghe

“Numerical Optimization”, Jorge Nocedal and Stephen Wright,
Springer

“Optimization Theory and Methods”, Wenyu Sun, Ya-Xiang Yuan

“Matrix Computations”, Gene H. Golub and Charles F. Van Loan.
The Johns Hopkins University Press

教材：最优化：建模，算法与理论(coming soon)
http://bicmr.pku.edu.cn/~wenzw/optbook.html

http://bicmr.pku.edu.cn/~wenzw/optbook.html
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大致课程计划

凸集，凸函数

数值代数基础

凸优化问题

凸优化模型语言和算法软件

对偶理论

梯度法和线搜索算法,次梯度法

近似点梯度法

Nesterov加速算法

坐标下降算法

primal-dual算法

交替方向乘子法及其变形

内点算法，半光滑牛顿法
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课程信息

教学方式：课堂讲授

成绩评定办法：

6-7次大作业，包括习题和程序：40%

期中闭卷考试: 30%

期末课程项目: 30%

要求：作业要求：i)计算题要求写出必要的推算步骤，证明题要写
出关键推理和论证。数值试验题应该同时提交书面报告和程序，其
中书面报告有详细的推导和数值结果及分析。ii)可以同学间讨论或
者找助教答疑，但不允许在讨论中直接抄袭，应该过后自己独立完
成。iii)严禁从其他学生，从互联网，从往年的答案，其它课程等
等任何途径直接抄袭。iv)如果有讨论或从其它任何途径取得帮
助，请列出来源。

请在书面报告声明：本项目文件的主要内容没有用在其它课程做为
课程项目或作业提交。

如果是两人组队，请明确说明每人负责的部分和内容。
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Mathematical optimization

(mathematical) optimization problem

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m

x = (x1, x2, . . . , xn) : optimization variables

f0 : Rn → R : objective function

fi : Rn → R, i = 1, . . . ,m : constraint functions

optimal solution x∗ has smallest value of f0 among all vectors that
satisfy the constraints
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Solving optimization problems

general optimization problem

very difficult to solve

methods involve some compromise, e.g., very long computation
time, or not always finding the solution

exceptions : certain problem classes can be solved efficiently and reliably

least-squares problems

linear programming problems

convex optimization problems
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Convex optimization problem

min f0(x)

s.t. fi(x) ≤ bi, i = 1, . . . ,m

objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α+ β = 1, α ≥ 0, β ≥ 0

includes least-squares problems and linear programs as special
cases
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solving convex optimization problems

no analytical solution

reliable and efficient algorithms

computation time (roughly) proportional to max{n3, n2m,F},
where F is cost of evaluating fi’s and their first and second
derivatives

almost a technology

using convex optimization

often difficult to recognize

many tricks for transforming problems into convex form

surprisingly many problems can be solved via convex
optimization
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Least squares problems

min ‖Ax− b‖2
2

solving least-squares problems

analytical solution: x∗ = (ATA)−1ATb

reliable and efficient algorithms and software

computation time proportional to n2k (A ∈ Rk×n); less if structured

a mature technology

using least-squares

least-squares problems are easy to recognize

a few standard techniques increase flexibility (e.g., including
weights, adding regularization terms)
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Variants of Least squares

Ridge regression/Tikhonov regularization

min
x

1
2
‖Ax− b‖2

2 + µ‖x‖2
2

sparse regularization

min
x

1
2
‖Ax− b‖2

2 + µ‖x‖1

Lasso/Basis pursuit

min
x

‖x‖1, s.t. ‖Ax− b‖2 ≤ ε

or
min

x
‖Ax− b‖2, s.t. ‖x‖1 ≤ σ

or even under a different norm

min
x

‖Ax− b‖1, s.t. ‖x‖1 ≤ σ
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Linear programming

min cTx

s.t. aT
i x ≤ bi, i = 1, . . . ,m

solving linear programs

no analytical formula for solution

reliable and efficient algorithms and software

computation time proportional to n2m if m ≥ n; less with structure

a mature technology

using linear programming

not as easy to recognize as least-squares problems

a few standard tricks used to convert problems into linear
programs (e.g., problems involving `1- or `∞- norms,
piecewise-linear functions)
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An example of linear programming: 菜鸟
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Optimal transport
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Optimal transport: LP

min
π∈Rm×n

m∑
i=1

n∑
j=1

cijπij

s.t.
n∑

j=1

πij = µi, ∀i = 1, . . . ,m,

m∑
i=1

πij = νi, ∀j = 1, . . . , n

π ≥ 0
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Why Optimization in Machine Learning?

Many problems in ML can be written as

min
x∈W

N∑
i=1

1
2
‖a>i x− bi‖2

2 + µ‖w‖1 linear regression

min
x∈W

1
N

N∑
i=1

log(1 + exp(−bia>i x)) + µ‖x‖1 logistic regression

min
w∈W

N∑
i=1

`(h(x, ai), bi) + µr(x) general formulation

The pairs (ai, bi) are given data, bi is the label of the data point ai

`(·): measures how model fit for data points (avoids under-fitting)
r(x): regularization term (avoids over-fitting)
h(x, a): linear function or models constructed from deep neural
networks
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Loss functions in neural network

Lecture 3 from Fei-Fei Li & Andrej Karpathy & Justin Johnson
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convolution operator
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Loss functions in neural network

Lecture 4 from Fei-Fei Li & Andrej Karpathy & Justin Johnson
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Optimization algorithms in Deep learning

随机梯度类算法

pytorch/caffe2里实现的算法有adadelta, adagrad, adam,
nesterov, rmsprop, YellowFin
https://github.com/pytorch/pytorch/tree/master/
caffe2/sgd

pytorch/torch里有：sgd, asgd, adagrad, rmsprop, adadelta,
adam, adamax
https://github.com/pytorch/pytorch/tree/master/
torch/optim

tensorflow实现的算法有：Adadelta, AdagradDA, Adagrad,
ProximalAdagrad, Ftrl, Momentum, adam, Momentum,
CenteredRMSProp
具体实现:
https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/core/kernels/training_ops.cc

https://github.com/pytorch/pytorch/tree/master/caffe2/sgd
https://github.com/pytorch/pytorch/tree/master/caffe2/sgd
https://github.com/pytorch/pytorch/tree/master/torch/optim 
https://github.com/pytorch/pytorch/tree/master/torch/optim 
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/training_ops.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/training_ops.cc
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Reinforcement Learning

AlphaGo: supervised learning + policy gradients + value
functions + Monte-Carlo tree search
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Definition: MDP

A Markov Decision Process is a tuple (S,A,P, r, γ):
S is a finite set of states, s ∈ S
A is a finite set of actions, a ∈ A
P is the transition probability distribution.
probability from state s with action a to state s′: P(s′|s, a)
also called the model or the dynamics
r is a reward function, r(s, a, s′)
sometimes just r(s) or ra

s
or rt after time step t
γ ∈ [0, 1] is a discount factor
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Optimization model

Maximize the expected total discounted return of an episode

max
π

E[

∞∑
t=0

γtrt|π]

or,max
π

E[R(τ)|τ = {s0, a0, s1, a1, ...} ∼ π]

Policy π(a|s) is a probability
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压缩感知：从解线性方程组谈起

x ∈ Rn,A ∈ Rm×n, b ∈ Rm

m� n linear equations about x

Ax = b

want to recover x

Arises in many fields of science and engineering
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Compressive Sensing

Find the sparest solution
Given n=256, m=128.
A = randn(m,n); u = sprandn(n, 1, 0.1); b = A*u;
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(a) `0-minimization
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(b) `2-minimization
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(c) `1-minimization
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Wavelets and Images (Thanks: Richard Baraniuk)
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Wavelet Approximation (Thanks: Richard Baraniuk)
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Compressive sensing

x is sparsely synthesized by atoms from Ψ, so vector α is sparse
Random measurements can be used for signals sparse in any
basis
Dictionary Ψ: DCT, wavelets, curvelets, gabor, etc., also their
combinations; they have analytic properties, often easy to
compute (for example, multiplying a vector takes O(n log n)
instead of O(n2))
can also be numerically learned from training data or partial
signal
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Compressive sensing

Given (A, b,Ψ), find the sparsest point:

x∗ = arg min{‖Ψx‖0 : Ax = b}

From combinatorial to convex optimization:

x̄ = arg min{‖Ψx‖1 : Ax = b}

1-norm is sparsity promoting
Basis pursuit (Donoho et al 98)
Many variants: ‖Ax− b‖2 ≤ σ for noisy b

Theoretical question: when is ‖ · ‖0 ↔ ‖ · ‖1 ?
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Restricted Isometry Property (RIP)

Definition (Candes and Tao [2005])
Matrix A obeys the restricted isometry property (RIP) with constant δs

if
(1− δs)‖c‖2

2 ≤ ‖Ac‖2
2 ≤ (1 + δs)‖c‖2

2

for all s-sparse vectors c.

Theorem (Candes and Tao [2006])
If x is a k-sparse and A satisfies δ2k + δ3k < 1, then x is the unique `1
minimizer.

RIP essentially requires that every set of columns with cardinality
less than or equal to s behaves like an orthonormal system.
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MRI: Magnetic Resonance Imaging

(a) MRI Scan (b) Fourier Coefficients (c) Image

Is it possible to cut the scan time into half?
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MRI (Thanks: Wotao Yin)

MR images often have sparse sparse representations under
some wavelet transform Φ

Solve
min

u
‖Φu‖1 +

µ

2
‖Ru− b‖2

R: partial discrete Fourier transform
The higher the SNR (signal-noise ratio) is, the better the image
quality is.

(a) full sampling (b) 39% sampling,
SNR=32.2
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MRI: Magnetic Resonance Imaging

(a) full sampling (b) 39% sampling,
SNR=32.2

(c) 22% sampling,
SNR=21.4

(d) 14% sampling,
SNR=15.8
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Phase Retrieval

Phase carries more information than magnitude

Y |F(Y)| phase(F(Y)) iF(|F(Y)|.*phase(F(S)))

S |F(S)| phase(F(S)) iF(|F(S)|.*phase(F(Y)))

Question: recover signal without knowing phase?
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Classical Phase Retrieval

Feasibility problem

find x ∈ S ∩M or find x ∈ S+ ∩M

given Fourier magnitudes:

M := {x(r) | |x̂(ω)| = b(ω)}

where x̂(ω) = F(x(r)), F : Fourier transform
given support estimate:

S := {x(r) | x(r) = 0 for r /∈ D}

or
S+ := {x(r) | x(r) ≥ 0 and x(r) = 0 if r /∈ D}
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Ptychographic Phase Retrieval (Thanks: Chao Yang)

Given bi = |F(Qiψ)| for i = 1, . . . , k, can we recover ψ?

Ptychographic imaging along with advances in detectors and
computing have resulted in X-ray microscopes with increased spatial
resolution without the need for lenses
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Recent Phase Retrieval Model Problems

Given A ∈ Cm×n and b ∈ Rm

find x, s.t. |Ax| = b.

(Candes et al. 2011b, Alexandre d’Aspremont 2013)

SDP Relaxation: |Ax|2 is a linear function of X = xx∗

min
X∈Sn

Tr(X)

s.t. Tr(aia∗i X) = b2
i , i = 1, . . . ,m,

X � 0

Exact recovery conditions
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The Netflix problem

Netflix database: about a million users, 25, 000 movies
People rate movies
Sparsely sampled entries

Challenge: million dollar award
Complete the ”Netflix matrix"

collaborative filtering, Partially filled out surveys...
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Matrix Rank Minimization

Given X ∈ Rm×n, A : Rm×n → Rp, b ∈ Rp, we consider
matrix completion problem:

min rank(X), s.t. Xij = Mij, (i, j) ∈ Ω

the matrix rank minimization problem:

min rank(X), s.t. A(X) = b

nuclear norm minimization:

min ‖X‖∗ s.t. A(X) = b

where ‖X‖∗ =
∑

i σi and σi = ith singular value of matrix X.
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Video separation

Partition the video into moving and static parts
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Sparse and low-rank matrix separation

Given a matrix M, we want to find a low rank matrix W and a
sparse matrix E, so that W + E = M.
Convex approximation:

min
W,E
‖W‖∗ + µ‖E‖1, s.t. W + E = M

Robust PCA
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Portfolio optimization

ri, random variable, the rate of return for stock i

xi, the relative amount invested in stock i

Return: r = r1x1 + r2x2 + . . .+ rnxn

expected return: R = E(r) =
∑

E(ri)xi =
∑
µixi

Risk: V = Var(r) =
∑

i,j σijxixj = x>Σx

min
1
2

x>Σx,

s.t.
∑

µixi ≥ r0∑
xi = 1,

xi ≥ 0

min risk measure,

s.t.
∑

µixi ≥ r0∑
xi = 1,

xi ≥ 0
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Review of Risk Measures

Variance
Value-at-Risk (VaR): Let F(·) be the distribution function of the
random loss X. For a given α ∈ (0, 1), VaR of X at level α is
defined as

VaRα(X) := inf{x | F(x) ≥ α} = F−1(α).

Conditional Value-at-Risk (CVaR): The α-tail distribution function
of X is defined as

Fα,X(x) :=

{
0, for x < VaRα(X),
FX(x)−α

1−α , for x ≥ VaRα(X).

CVaRα(X) := mean of the α-tail distribution of X

=

∫ ∞
−∞

xdFα,X(x).
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Basel 2.5 Accord, July 2009

Financial Crisis of 2007/2008
capital requirements for market risk

ct = max

{
VaRα,t−1,

k
60

60∑
s=1

VaRα,t−s

}

+ max

{
sVaRα,t−1,

`

60

60∑
s=1

sVaRα,t−s

}

sVaRα,t−s is called the stressed VaR on day t − s at confidence
level α = 99%, which is calculated under the scenario that the
financial market is under significant stress such as the one that
happened during the period from 2007 to 2008.
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Basel 3 Accord, May 2012

Uses CVaR (or, equivalently, ES) instead of VaR
The capital requirement for a group of trading desks that share
similar major risk factors, such as equity, credit, interest rate, and
currency, is defined as the CVaR of the loss that may be incurred
by the group of trading desks;
The CVaR should be calculated under stressed scenarios rather
than under current market conditions.
capital requirements for market risk

ct = max

{
sCVaRα,t−1,

`

60

60∑
s=1

sCVaRα,t−s

}
,

sCVaRα,t−s is the stressed CVaR at level α calculated on day
t − s.
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Correlation Matrices

A correlation matrix satisfies

X = X>, Xii = 1, i = 1, . . . , n, X � 0.

Example: (low-rank) nearest correlation matrix estimation

min
1
2
‖X − C‖2

F ,

s.t. X = X>, Xii = 1, i = 1, . . . , n, X � 0

objective fun.: ‖W � (X − C)‖2
F

lower and upper bounds
rank constraints rank(X) ≤ r
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Computational Materials Simulation

Numerical simulation of material on atomic and molecular scale
(Thanks: Chao Yang)
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Computational Materials Simulation
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Electronic Structure Calculation

N particle Schrodinger equation: Physics of material systems —
atomic and molecular properties, almost correct (nonrelativistic)
phyiscs is quantum mechanics
Main goal: Given atomic positions {Rα}M

α=1, compute the ground
state electron energy Ee({Rα}).
Ground state electron wavefunction Ψe(r1, . . . , rN ; {Rα}):

HΨe =

−1
2

N∑
i=1

∆i −
M∑
α=1

N∑
j=1

Zα
|ri − Rα|

+
1
2

N∑
i,j=1,i 6=j

1
|ri − rj|

Ψe

= Ee({Rα})Ψe

Curse of dimensionality: Computational work goes as 103N ,
where N is the number of electrons
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Kohn-Sham Formulation

Replace many-particle wavefunctions, Ψi, with single particle
wavefunction, ψi

Minimize Kohn-Sham total energy

min 1
2
∑ne

i=1

∫
Ω |∇ψi|2 +

∫
Ω Vion(ρ) + 1

2

∫
Ω
ρ(r)ρ(r′)
|r−r′| drdr′ + Exc(ρ)

s.t. ρ(r) =
∑ne

i=1 |ψi(r)|2,
∫

Ω ψiψj = δi,j

Exchange-correlation term: Exc contains quantum mechanical
contribution, plus, part of K.E. not converged by first term when
using single-particle wavefunctions
Discretized Kohn-Sham Formulation

min
X∗X=I

EKS(X)
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Optimization on Manifold

Consider X ∈ Cn×p and

min F(X), subject to X>X = I

Why is the problem interesting?
Stiefel Manifold, Grassmanian Manifold
it is expensive to keep constraints feasible;
non-convex, leading to possibly local minima.
it has many applications;
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Course goals and topics

goals
1 recognize/formulate problems as convex optimization problems

2 develop code for problems of moderate size

3 characterize optimal solution, give limits of performance, etc.

topics
1 convex sets, functions, optimization problems

2 examples and applications

3 algorithms
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Nonlinear optimization

traditional techniques for general nonconvex problems involve
compromises

local optimization methods (nonlinear programming)
find a point that minimizes f0 among feasible points near it

fast, can handle large problems

require initial guess

provide no information about distance to (global) optimum

global optimization methods
find the (global) solution

worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems
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Brief history of convex optimization

theory (convex analysis): ca1900-1970

algorithms
1947: simplex algorithm for linear programming (Dantzig)

1960s: early interior-point methods (Fiacco & McCormick, Dikin, ... )

1970s: ellipsoid method and other subgradient methods

1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications
before 1990: mostly in operations research; few in engineering

since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, ... ); new problem classes
(semidefinite and second-order cone programming, robust
optimization)


