Lecture: Dual decomposition

http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html

Acknowledgement: this slides is based on Prof. Lieven Vandenberghe’s lecture notes

1/21


http://bicmr.pku.edu.cn/~wenzw/opt-2017-fall.html 

outline

@ introduction: dual methods

@ gradient and subgradient of conjugate
@ dual decomposition

@ network utility maximization

@ network flow optimization

2/31



Duality and conjugates

primal problem (A € R™*", f and g convex)
min  f(x) + g(Ax)
Lagrangian (after introducing new variable y = Ax)
f(x) +g(y) + 2 (Ax —)
dual function
inf (f(x) +2"Ax) +inf (g() = 2'y) = ~"(-A"2) = ¢"(2)
dual problem

max —f*(—A"z) — g*(2)
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Examples

equality constraints: g is indicator for {b}

min  f(x) max —bTz —f*(—AT7)

st. Ax=b
linear inequality constraints: g is indicator for {y [y < b}

min  f(x) max —blz —f*(—ATz)
st. Ax<b st. z>0

norm regularization:g(y) = ||y — b||

min f(x) + |[Ax —b|| max —bTz—f*(—ATz)
st fzll« £1
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Dual methods

apply first-order method to dual problem
max —f*(~A"z) - ¢"(2)
reasons why dual problem may be easier for first-order method:
@ dual problem is unconstrained or has simple constraints

@ dual objective is differentiable or has a simple nondifferentiable
term

@ decomposition: exploit separable structure
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(Sub-)gradients of conjugate function

assume f : R" — R is closed and convex with conjugate
f*(y) = sup(y"x — £ (x))
X

subgradient
@ f* is subdifferentiable on (at least) int dom f* (page 4-6)

@ maximizers in the definition of f*(y) are subgradients at y (page
8-13)

yeIflx) & yx—flx)=f(v) & x€df*(y)

gradient: for strictly convex f , maximizer in definition is unique if it
exists

Vf*(y) = argmax(y'x — f(x)) (if maximum is attained)
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Conjugate of strongly convex function

assume f is closed and strongly convex, with parameter i > 0
@ f* is defined for all y (i.e.,dom f* = R")
@ f* is differentiable everywhere, with gradient

VI (y) = arginaX(yTx —f(x))

@ Vf*is Lipschitz continuous with constant 1/

£ £ 1
V() = V)2 < ;Hy—y’\lz Vy,y'
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proof: if f is strongly convex and closed
@ y'x — f(x) has a unique maximizer x for every y
@ x maximizes y'x — f(x) if and only if y € 9f(x); from page 8-13

yeoflx) & xedf*(y) ={Vf ()}

hence Vf*(y) = argmax,(y x — f(x))
@ from convexity of f(x) — (u/2)x"x :

=) =x) 2 ullx = X[[3 ify € 9f(x),) € Of ()

@ this is co-coercivity of Vf* (which implies Lipschitz continuity)

b =)V ) = V) = plIVE ) = V)5
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Equality constraints

min  f(x) min f*(—-ATz) + b7z
st. Ax=b

dual gradient ascent (assuming dom f* = R"):

% = argmin(f(x) + z' Ax), zT =z + (A% — b)
X

@ i is a subgradient of f* at —A”z (i.e.,x € Of*(—ATz))

@ b — Ax is a subgradient of f*(—A”z) + bz at 7
of interest if calculation of x is inexpensive (for example, f is
separable)
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Alternating minimization framework
The Lagrangian function is
L(x,2) = f(x) + 2" (Ax — b).
The problem is equivalent to
max min L(x,z).

The dual gradient ascent method is equivalent to the following
alternating minimization scheme:

T = argmin L(x, Z)

X

= arg}r{nin(f (x) + ()7 Ax)

1
& = argmax L(karl,Z) — *HZ - Zk”%
. 2t
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Dual decomposition

convex problem with separable objective

min  fi(x1) + £(x2)
st. Aixi+Ax <b

constraint is complicating or coupling constraint
dual problem

max —f;(—Alz) —f5(-Alz) — b7
st. z>0

can be solved by (sub-)gradient projection if z > 0 is the only
constraint
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Dual subgradient projection

subproblems: to calculate ﬁ*(—Asz) and a (sub-) gradient for it,
min (over x;) fi(x;) + 2" Apx;

optimal value is f;*(—A/ z); minimizer %; is in 9f*(—A[z)

dual subgradient projection method

X = argmin(}j-(xj) +7'A), j=1,2

Xj

7 = (z+ 1Ak +Axiy — b))y

@ minimization problems over x;, x, are independent

@ z-update is projected subgradient step (x4 = max{u,0}
elementwise)
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Interpretation as price coordination

@ p =2 units in a system; unit j chooses decision variable x;
@ constraints are limits on shared resources; z; is price of resource
i

@ dual update z;” = (z; — ts;)+ depends on slacks
s=b —Alxl —A2x2
- increases price z; if resource is over-utilized (s; < 0)

- decreases price z; if resource is under-utilized (s; > 0)
- never lets prices get negative

distributed architecture

@ central node sets
prices z

@ peripheral node j sets
Xj
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Quadratic programming example

min 30 (5] P + g x;)
s.t. Bijde,jZ],...,r
DA < b

@ r =10, variables x; € R'% , 10 coupling constraints (4, € R!0x190)
@ P; > 0; implies dual function has Lipschitz continuous gradient

subproblems: each iteration requires solving 10 decoupled QPs

min (overx;)  x{ P+ (¢ + Al 2)"x
s.t. Bjx; < d;
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gradient projection and fast gradient projection
@ fixed step size (equal in the two methods)
@ plot shows dual objective gap
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Network utility maximization

network flows
@ n flows, with fixed routes, in a network with m links
@ variable x; > 0 denotes the rate of flow j
o flow utility is U; : R — R, concave, increasing
capacity constraints
@ traffic y; on link i is sum of flows passing through it
@ y = Rx, where R is the routing matrix

1 flow j passes over link i
ij= .
0  otherwise

@ link capacity constraint: y < ¢
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Dual network utility maximization problem

max Z;:l Uj(x;)
s.t. Rx<c

a convex problem; dual decomposition gives decentralized method
dual problem
min T2+ S (~U)*(r]2)

J
s.t. z>0

@ z; is price (per unit flow) for using link i
° roz is the sum of prices along routej (r; is jth column of R)
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(Sub-)gradients of dual function

dual objective
fx) = T+ ) (U)*(r]2)
j=1
= 24 ) sup(Uj(x) — (1] 2)x;)
=1 Y

subgradient

¢ — Rx € 9f (z) where % = argmax(Uj(x;) — (r] 2)x})

J
X

@ if U; is strictly concave, this is a gradient

° roz is the sum of link prices along route j

@ ¢ — Rx is vector of link capacity margins for flow x
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Dual decomposition algorithm

given initial link price vector z = 0 (e.g.,z = 1), repeat:
1 sum link prices along each route: calculate \; = roz for
j=1,....n
2 optimize flows (separately) using flow prices
% = argmax(Uj(xj) — A\ixj), j=1,...,n
X
3 calculate link capacity margins s = ¢ — Rx
4 update link prices using projected (sub-)gradient step with step ¢

7= (Z — lS)+

decentralized:
@ to find )\;, X source j only needs to know the prices on its route

@ to update s;,z; , link i only needs to know the flows that pass
through it
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Single commodity network flow

network
@ connected, directed graph with n links/arcs, m nodes
@ node-arc incidence matrix A € R™*" is

1 arc j enters node i
Aj=4 —1 arc j leaves node i
0 otherwise

flow vector and external sources
@ variable x; denotes flow (traffic) on arc j
@ b; is external demand (or supply) of flow at node i (satisfies
17p = 0)
@ flow conservation: Ax = b
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Network flow optimization problem
min - ¢(x) = 3L, i(x)
s.t. Ax=1>

@ ¢ is a separable sum of convex functions
@ dual decomposition yields decentralized solution method

dual problem ( g; is jth column of A)

n
max —b'z— Z (b;‘(—afz)

j=1

@ dual variable z; can be interpreted as potential at node i

°y = —asz is the potential difference across arc j
(potential at start node minus potential at end node)
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(Sub-)gradients of dual function

negative dual objective
f@) =b"z+) ¢i(~al2)
j=1
subgradient

b — Ax € 0f(z) where X; = argmin(¢;(x;) + (ajTZ)xj)

@ this is a gradient if the functions ¢; are strictly convex
e if ¢; is differentiable, (%) = —a z
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Dual decomposition network flow algorithm

given initial potential vector z, repeat
1 determine link flows from potential differences y = —A”z

X = argflin(gbj(xj)\ijj),j =1,...,n
]

2 compute flow residual at each node: s := b — Ax
3 update node potentials using (sub-)gradient step with step size ¢

Z2:=z—15

decentralized
@ flow is calculated from potential difference across arc
@ node potential is updated from its own flow surplus
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Electrical network interpretation

network flow optimality conditions (with differentiable ¢; )
Ax=b, y+ATz=0, yj=¢i(x), j=1,....,n

network with node incidence matrix A, nonlinear resistors in branches
Kirchhoff current law (KCL): Ax = b

x; is the current flow in branch j; b; is external current extracted at
node i

Kirchhoff voltage law (KVL): y + ATz =0

z; is node potential; y; = —asz is jth branch voltage

current-voltage characterics: y; = ¢(x;)

for example, ¢;(x;) = R;x7 /2 for linear resistor R;

current and potentials in circuit are optimal flows and dual variables
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Example: minimum queueing delay

flow cost function and conjugate (c; > 0 are link capacities):

&) = —2 ¢;<yj>:{<m—1>2 i > 1/¢

=% 0 i <1/

(With dom ¢j = [0, Cj))
@ ¢, is differentiable except atx; = 0

0¢;(0) = (—00,0], ¢i(x) = —2L—
@ ¢; is differentiable

0 yj < 1/¢

& (y;) =
707 { G —eily  y>1/¢
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flow cost function and conjugate (c; = 1)
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