Lecture: Proximal Point Method

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes
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0 Proximal point method
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Proximal Point Method

A ‘conceptual’ algorithm for minimizing a closed convex function f:

£ = prox, (x%=1)

1 B (1)
Ellu—x(" D11%)

= argmin(f(u) +
@ can be viewed as proximal gradient method with g(x) =0

@ of interest if prox evaluations are much easier than minimizing f
directly

@ a practical algorithm if inexact prox evaluations are used

@ step size 1, > 0 affects number of iterations, cost of prox
evaluations

basis of the augmented Lagrangian method
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Convergence

assumptions

@ fis closed and convex (hence, prox,(x) is uniquely defined for all x)
@ optimal value f* is finite and attained at x*

result
f(x(k)) *f* < ||x(0) *X*H%

S V= fork > 1
23 it

@ implies convergence if .7 — oo
@ rate is 1/k if #; is fixed or variable but bounded away from zero

@ 1; is arbitrary; however cost of prox evaluations will depend on ¢;
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Convergence

proof: apply analysis of proximal gradient method with g(x) =0
@ since g is zero, inquality (1) in "lect-proxg.pdf" on holds for any ¢ > 0

@ from "lect-proxg.pdf’, f(x()) is nonincreasing and

BFE) =) < 2 (10O — |3 = (16D — x| )

[\

@ combine inequalities fori = 1to i = k to get

k k
(Z i) (F®) 1)) < D alrD) = 1)
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Accelerated proximal point algorithms

FISTA (take g(x) = 0): choose x(¥) = x(=1 and for k > 1

1 — 0k
0 = prox,, (x(kfl) + GkT]il(x(kfl) _ x(k*2)))

Nesterov’s 2nd method : choose x(© = v(9 and for k > 1
v = prox(tk/gk)f(v(kfl)), 0 = (1 = 0 )x* D 4 g

possible choices of parameters
o fixed steps: r =rand 6, =2/(k+ 1)
@ variable steps: choose any ¢, > 0,6; = 1, and for k > 1, solve 6;

from
(1 —O)te _ B
0; 01
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Convergence

assumptions

@ f'is closed and convex (hence, prox,(x) id uniquely defined for all
x)

@ optimal value f* is finite and attained at x*

result 0 )
2 _ *
Hx X HZ k > 1

2VE + Y Vi) a

@ implies convergence if ), \/ti — oo

F& - ) <

e rate is 1/k? if t; is fixed or variable but bounded away from zero
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Convergence
proof: follows from analysis in the "lecture on fast proximal point
method" with g(x) =0

@ therefore the conclusion holds:

2
S I e ARG RN
2t

o for fixed step size ty =1,6r =2/(k+ 1),

0 2
2, (k+1)2t

@ for variable step size, we proved that
2

2T (VI + Y VA
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General augmented Lagrangian framework

Consider
min f(x), st ci(x)=0, i=1,...,m,

where f(x), c;(x) are differentiable functions.
@ Define the Lagrangian function: L(x, X) = f(x) — > | Aici(x)
@ The KKT condition is

Vil(x,\) = Vf(x) =) AVei(x) =0,
i=1

ci(x) = 0.
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General augmented Lagrangian framework

Define the augmented Lagrangian function:

ZAcl *II ()13

At each iteration, the augmented Lagrangian method:
@ for a given A, solves the minimization problem:

xT = argmin L;(x, \),

which implies that
Z)\—tc, NVei(xt) =0
i=1

@ then it updates \™ = \; — r¢;(x™T).
Hope c¢;(x™) — 0?
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Framework for problem with inequality constraints
Consider

min f(x), s.t. ¢i(x)>0,i=1,---,m
An equivalent reformulation is

minf(x)v s.t. Ci(x)_vl'zo, V,'ZO’ 1= 17 ,m.

X,V

At each iteration, the augmented Lagrangian framework solves
(xTvh) = argmmf Z { —vi)+ l(c(x) — v-)z}
9 l 2 l l

s.t. v, >0, l:1,~-,m,

(8)

then updates
M=M= tla(xt) =) (9)

1
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Framework for problem with inequality constraints

In (8), eliminating the variable v gives
vi = max(c;(xT) — \;/t,0).

1

Then (8) becomes:

xT = argmln Li(x, \) x) + ZQ/) ci(x), \iy 1),

—Xici(x) + Lct(x), ifci(x) = A/t <0
—5- otherwise .

The update (9) becomes:

AT = max(\; — t¢;(x),0).

(10)
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Splitting + Augmented Lagrangian

minimize f(x) + g(Ax)

@ f:R" - Randg: R" — R are closed convex functions;
A E Ran

@ equivalent formulation with auxiliary variable y:

minimize f(x) + g(y)
subjectto Ax =y
examples
@ g is indicator function of {b}: minimize f(x) subject to Ax = b
@ g is indicator function of C: minimize f(x) subject to Ax € C
® g(y) = [y — bl| : minimize f(x) + [|Ax - b]|
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Dual problem

Lagrangian (of reformulated problem)
L(x,y,2) = f(x) + g() + 2/ (Ax —y)
dual problem
maximize inf L(x,y,z) = —f*(—-ATz) — g*(z)
X,y
optimality conditions: x, y, z are optimal if
@ x,yare feasible: x € dom f,y € dom g, and Ax =y

@ x and y minimize L(x,y,z) : —ATz € 9f(x) and z € 9g(y)

augmented Lagrangian method: proximal point method applied to
dual
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Proximal mapping of dual function

proximal mapping of i(z) = f*(—A”z) + g*(z) is defined as
pro, (2) = argmin (1" (-ATu) + ') + 5, 213
dual expression: prox,,(z) = z + t(Ax — y) where
(5.5) = argmin (1) + 805 + 7 (4x ) + 5114x 513

X,y minimize augmented Lagrangian (Lagrangian + quadratic penalty)
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proof

@ write augmented Lagrangian minimization as

. . . t
minimizey,, f(x)+ g(y) + EHWH%

subject to Ax—y+z/t=w
@ optimality comditions (« is multiplier for equality):
Ax —y+ %Z =w, —-Alucodf(x), ucogly), tw=u
@ eliminating x,y,w gives u = z + 1(Ax — y) and
0 € —AJf*(—ATu) + 0g*(u) + %(u —2)

this is the optimality condition for problem in definition of
U = proxy, (Z)
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Augmented Lagrangian method

choose initial z(%) and repeat:

@ minimize augmented Lagrangian

(5.9) = anguin (0) + 603) + 5 14x -+ (1/n)z )

x’y

© dual update
W =% D 4 (A% - 9)
@ also known as method of multipliers, Bregman iteration
@ this is the proximal point method applied to the dual problem

@ as variants, can apply the fast proximal point menthods to the
dual

@ usually implemented with inexact minimization in step 1
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Examples

minimize f(x) + g(Ax)

equality constraints (g is indicator of {b} )

t
X = argmin <f(x) + 7T Ax + EHAX — b|§>
X

z = z+t(Ax —b)

set constraint (g indicator of convex set C):

X = arg)rcnin <f(x) + %d(Ax + Z/f)2>

z = z+t(Ax — P(Ax + z/t))

P(u) is projection of u on C, d(u) = |lu — P(u)||» is Euclidean distance
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Moreau-Yosida smoothing

Moreau-Yosida regularization (Moreau envelope) of closed convex f
is

Jiy(x) = igf(f(u) + %Hu —x[|5) (with > O)

1
= f(prox;;(x)) + . [prox,(x) — x[[3

immediate properties

@ f(,) is convex (infimum over u of a convex function of x, u)

@ domain of f(,y is R" (recall that prox,(x) is defined for all x)
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Examples

indicator function: smoothed f is squared Euclidean distance

0= 1), fiyo) = 5.d(0)

1-norm: smoothed function is Huber penalty

f =1l f@) =D éilw)
k=1

lz| —t/2 |z| >t

iy ={ 1), o<

#(2)

S
/)

—t/2 2 t/2
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Conjugate of Moreau envelope

. 1
foo ) = it (£ + 511 =1 )
@ f, infimal convolution of f(u) and ||v|[3/(2¢) :

1
o) = int (700 + 5. Ib1E)

@ conjugate is sum of conjugates of f(u) and ||v|[5/(2¢):

(i () =1 0) + 511

@ hence, conjugate is strongly convex with parameter ¢
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Gradient of Moreau envelope

fio @) = sup(xTy = ()" (3)) = sup(xTy — £*(3) — 21vI1)
y y

@ maximizer in definition is unique and satisfies
x—ty € 0f*(y) &y € dflx—1y)

@ Since x € I(f(,)*(y) <= y € 9f(;)(x), the maximizer y is the
gradient of £y

1
V() = - (x = prox (x)) = prox(, - (x/1)

@ gradient Vf, is Lipschitz continuous with constant 1/¢
(follows from nonexpansiveness of prox;)
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Interpretation of proximal point algorithm

apply gradient method to minimize Moreau envelope

minimize f,)(x) = ir&f(f(u) + %HM - xH%)
this is an exact smooth reformulation of problem of minimizing f(x):
@ solution x is minimizer of f
@ f(, is differentiable with Lipschitz continuous gradient (L = 1/1)
gradient update: with fixed 7, = 1/L =1t
x(B) = k=1 Vi (x%=Dy = prox,f(x(k_l))

. . . the proximal point update with constant step size 1, = ¢
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Interpretation of augmented Lagrangian algorithm

X,y) = argmin| f(x 4 X — 2
(5.5) = aremin(£0) + £00) + 5ll4x -+ (102

z = z+1(A% — )

@ with fixed ¢, dual update is gradient step applied to smoothed
dual

@ if we eliminate y, primal step can be interpreted as smoothing g:
X= arg)rcnin <f(x) + &(1/5)(Ax + (1/t)z))
example: minimize f(x) + ||Ax — b||;
x= arg)rcnin <f(x) + ¢1/:(Ax — b + (1/t)z)>

with ¢, ,, the Huber penalty applied componentwise -
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