Subgradient Method

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes
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Subgradient method

to minimize a nondifferentiable convex function f: choose x(*) and
repeat

K0 = =) oD =12,

g%~V is any subgradient of f at x*~1)

step size rules
o fixed step: # constant
e fixed length: #||g*~ 1|, constant (i.e., |x*) — x*~1)|, constant)

@ diminishing: 7y — 0, > "2t = 00
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Assumptions

@ f has finite optimal value f*, minimizer x*
@ fisconvex,domf = R"
@ fis Lipschitz continuous with constant G > 0:

f(x) =fOI < Gllx=ylla vx,y
this is equivalent to
g2 < G Vg € Of(x),Vx

(see next page)
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proof

@ assume ||g|» < G for all subgradients; choose
8y € 9f(y), 8x € Of (x):

gl (x—y) = f(x) —f(y) > & (x—)
by the Cauchy-Schwarz inequality
Gllx = yll2 = f(x) = f(y) = =Gllx = yll2

@ assume ||g|l» > G for some g € 9f(x); take y = x + g/||g|l.:

fO)=fx) +g (y—x)
=f(x) + llgll2
>f(x)+G
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Analysis

@ the subgradient method is not a descent method
@ the key quantity in the analysis is the distance to the optimal set
with xt = x(0), x = x(=1) g = g(i=1) s —
e =13 = [|x — 1g —x*[13
=[x = "3 = 2t " (x = x*) + £lgl3
< e =213 = 21(F (x) —f*) + 21813

combine inequalities fori = 1,- - - | k, and define
k) _ s (i)~
Jest = min f(x):

k
230 (R~ 1) < WO =B~ 6 = w3+ 30 2g¢ B
X i=1

i=1

k
el R A
i=1
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fixed step size

=t

0) _ |2 2
X X t
[ I3, G

k) X
hea =17 < 2kt 2

@ does not guarantee convergence of £*:

e for large k, flffs)t is approximately G*¢/2-suboptimal

fixed step length ; = 5/g~ V||,

GIx® — |3 Gs
- & + -

(k) __f* <
Toew =1 = 2ks 2

@ does not guarantee convergence of f,th
o for large k,fb(é‘s)t is approximately Gs/2-suboptimal
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diminishing step size ;, — 0, >~°, 1, =
* k
K0 —x 3+ P37
235

can show that (35, 2)/ % 1, — 0; hence, £ converges to f*

i=1"

k *
o<
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Example: 1-norm minimization

min  [|Ax —b[|; (A € R0} ¢ RO

subgradient is given by A "sign(Ax — b)

fixed length 7, = s/||g%*~V||»,s = 0.1,0.01,0.001
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diminishing step size #, = 0.01/v/k,# = 0.01/k
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Optimal step size for fixed number of iterations

from page 6: if 5; = 1;||g" "], and ||x(¥ — x*|, < R:

(k) _f* < R2 + Zf'{:l si2
best ) Zf:] S,'/G

e for given k, bound is minimized by fixed step length s; = s = R/Vk
@ resulting bound after k steps is

(k .  GR
< N

@ guarantees accuracyfb(fs)t —f* < eink = 0(1/€*) iterations
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Optimal step size when f* is known

right-hand side in first inequality of page 6 is minimized by

f( i— l)) f*

t; =
l ||g Hz

optimized bound is

(f(x(iil)) _f*)z < Hx(i—l)

=113

applying recursively (with ||x(©) — x*||, < Rand ||g?|], < G) gives

=23 = I =3

best f—\[
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Exercise: find point in intersection of convex sets

to find a point in the intersection of m closed convex sets Cy, ..., Cy,

min  f(x) = max{d;(x), - ,dn(x)}
where d;(x) = infyec; [[x — y||2 is Euclidean distance of x to C;

@ f/* = 0 if the intersection is nonempty
@ g € Of(x) if g € Od;(x) and C; is farthest set from x
@ subgradient g € dd;j(x) from projection P;(x) on C;:

g=0(fxeC), g=

S (= Pi(x)) (ifx ¢ C))

note that ||g|. = 1ifx ¢ C;
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subgradient method with optimal step size
@ optimal step size for f* = 0 and ||g= V|, = 1 is ; = f(x(~ 1),

@ at iteration k, find farthest set C; (with f(x*~1) = d;(x(*=1))); take

K (k-1 f(x(k_l)) k—1 k—1
RO >_dj(x(k_l))(x< ) P (kD))

= P;(x*7Y)

@ a version of the alternating projections algorithm
@ at each step, project the current point onto the farthest set

@ for m = 2, projections alternate onto one set, then the other
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min - f(x) = 2 [|Ax = b[* + plx]1, (1)
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Example: Positive semidefinite matrix completion

some entries of X € S" fixed; find values for others so X = 0

@ C =84, ;is (affine) set in " with specified fixed entries
@ projection onto C; by eigenvalue decomposition, truncation

Pi(X) = ZmaX{O, NiYgig]
i=1

n
if X = Z )\iqiq;r

i=1

@ projection of X onto C, by re-setting specified entries to fixed

values

100 x 100
matrix missing
71% entries
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Optimality of the subgradient method

can thefb(fs)t —fr < % bound on page 11 be improved?

problem class
@ 1 is convex, with a minimizer x*
@ we know a starting point x(© with [|x©® — x*||l, <R
@ we know the Lipschitz constant G of f on {x|||x — x(V||, < R}

@ f is defined by an oracle: given x, oracle returns f(x) and a
subgradient

algorithm class: & iterations of any method that chooses x(*) in
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test problem and oracle

_ Loz L0
flx) = max xi+ lxfz, 2 =0

) 5

@ solution: x* = —1(1,---,1,0,--- ,0) and f* = — L
——— ——
k n—k
o RZHX(O)_X*HZZﬁandG:l—I—ﬁ

@ oracle returns subgradient e; + x where
J = min{jly; = maxi—, .k x}

iteration: fori = 0,--- ,k — 1, entries nggl, “e ,x,(ci) are zero
(k) % . (@) * * GR
=minf(x")—f" =2 —f = —F7
fbest f i<kf( ) fr=z-f 2(1_'_\/];)

conclusion: O(1/v/k) bound cannot be improved
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Summary: subgradient method

@ handles general nondifferentiable convex problem
@ often leads to very simple algorithms

@ convergence can be very slow

@ no good stopping criterion

@ theoretical complexity: O(1/¢?) iterations to find e-suboptimal
point

@ an 'optimal’ 1st-order method: O(1/€?) bound cannot be
improved
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