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Abstract

Given a collection ofn functions defined onRd , and a polyhedral setQ⊂ R
d , we consider the problem of minimizing the

sum of thek largest functions of the collection overQ. Specifically we focus on collections of linear functions and several
classes of convex, piecewise linear functions which are defined by location models. We present simple linear programming
formulations for these optimization models which give rise to linear time algorithms when the dimensiond is fixed. Our
results improve complexity bounds of several problems reported recently by Tamir [Discrete Appl. Math. 109 (2001) 293–307],
Tokuyama [Proc. 33rd Annual ACM Symp. on Theory of Computing, 2001, pp. 75–84] and Kalcsics, Nickel, Puerto and Tamir
[Oper. Res. Lett. 31 (1984) 114–127].
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a collection{gi(x)}ni=1 of n functions de-
fined onR

d , and a polyhedral setQ⊂ R
d , in this pa-

per we consider the problem of minimizing the sum of
thek largest functions of the collection overQ. Specif-
ically we focus on collections of linear functions and
several classes of convex, piecewise linear functions
which are defined by location models. We present sim-
ple linear programming formulations for these opti-
mization models which give rise to linear time algo-
rithms when the dimensiond is fixed. Tokuyama [22]
has recently discussed the case where all the functions

* Corresponding author.
E-mail addresses: ogryczak@ia.pw.edu.pl (W. Ogryczak),

atamir@post.tau.ac.il (A. Tamir).

in the collection are linear, andQ is the intersection
of p half spaces. Tokuyama presents a very complex
(randomized) algorithm which finds the optimal solu-
tion in O(p + n logn) time whend is fixed. We show
how to use our formulation to improve this bound. We
obtain a deterministic O(p + n) algorithm. In the lo-
cation models that we consider, each functiongi(x)
represents a (weighted) distance ofx from a given
point vi ∈ R

d . The distance function is defined either
by thel1 or l∞ norms. These problems are called the
k-centrum location models. Again, whend is fixed our
linear programming formulations lead to O(p+ n) al-
gorithms which find optimal solutions.

In Section 2 we formally define the optimization
model and present the linear programming formula-
tion, leading to linear time algorithms. In the last sec-
tion we discuss extensions to more general problems.

0020-0190/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(02)00370-8



118 W. Ogryczak, A. Tamir / Information Processing Letters 85 (2003) 117–122

2. A linear programming formulation

To facilitate the discussion we first introduce some
notation. For any real numberz define (z)+ =
max(z,0). Let y = (y1, . . . , ym) be a vector inR

m.
Defineθ(y)= (θ1(y), θ2(y), . . . , θm(y)) to be the vec-
tor in R

m, obtained by sorting them components of
y in nonincreasing order, i.e.,θ1(y) � θ2(y) � · · · �
θm(y). θi(y) will be referred to as theith largest com-
ponent ofy. Finally, fork = 1, . . . ,m, defineΘk(y)=∑k
i=1 θi(y), the sum of thek largest components ofy.

Lemma 1. For any vector y ∈ R
m and k = 1, . . . ,m,

Θk(y) = 1

m

(
k

m∑
i=1

yi + min
t∈R

m∑
i=1

[
k(t − yi)+

+ (m− k)(yi − t)+
])
.

Moreover, t∗ = θk(y) is an optimizer of the above
minimization problem.

Proof. Defineh(t)=∑m
i=1[k(t−yi)++(m−k)(yi−

t)+]. This function is piecewise linear and convex.
It is easy to verify that the one sided derivatives at
t∗ = θk(y) are of opposite signs, and thereforet∗ is
a minimum point ofh(t). Substitutingt∗ = θk(y) in
the expression forh(t) we obtain

h
(
θk(y)

) = k

m∑
i=k+1

(
θk(y)− θi(y)

)

− (m− k)
k∑
i=1

(
θk(y)− θi(y)

)

= m

k∑
i=1

θi(y)− k
m∑
i=1

θi(y).

Hence,h(θk(y))=mΘk(y)−k∑m
i=1 yi , and therefore

Θk(y)= 1

m

(
k

m∑
i=1

yi + min
t∈R

h(t)

)
. ✷

It follows from the above lemma thatΘk(y) can
be represented as the solution value of the following
linear program.

Θk(y)= min
1

m

(
m∑
i=1

[
kd−
i + (m− k)d+

i + kyi
])

subject to

d+
i − d−

i = yi − t, d+
i , d

−
i � 0, i = 1, . . . ,m.

Substitutingd−
i = d+

i − yi + t , we obtain

Θk(y)= min

(
kt +

m∑
i=1

d+
i

)

subject to

d+
i � yi − t, d+

i � 0, i = 1, . . . ,m.

Given the collection of functions,{gi(x)}ni=1, and
the polyhedral setQ⊂ R

d , defined in the introduction,
let g(x) = (g1(x), . . . , gn(x)). The problem of mini-
mizingΘk(g(x)), the sum of thek largest functions of
the collection overQ, can now be formulated as

min

(
kt +

n∑
i=1

d+
i

)

subject to

d+
i � gi(x)− t, d+

i � 0, i = 1, . . . , n,

x = (x1, . . . , xd) ∈Q.

2.1. Minimizing the sum of the k largest linear
functions

Consider the linear case. Fori = 1, . . . , n, gi(x)=
aix + bi , where ai = (ai1, . . . , a

i
d) ∈ R

d , and bi ∈
R

1. With the above notation the problem can be
formulated as the following linear program:

min

(
kt +

n∑
i=1

d+
i

)

subject to

d+
i � aix + bi − t, i = 1, . . . , n,

d+
i � 0, i = 1, . . . , n,

x = (x1, . . . , xd) ∈Q.
Note that this linear program hasn+ d + 1 variables,
d+

1 , . . . , d
+
n , x1, . . . , xd, t , and 2n+p constraints. This

formulation constitutes a special case of the class
of linear programs defined as the duals of linear
multiple-choice knapsack problems. Therefore, using
the results in [24], whend is fixed, an optimal solution
can be obtained in O(p+n) time. (See also [13].) This
bound improves upon the O(p+n logn) bound in [22]
by a factor of O(logn).
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2.2. Solving the rectilinear k-centrum location
problem

For each pair of pointsu = (u1, . . . , ud), v =
(v1, . . . , vd) in R

d let d(u, v) denote the rectilinear
distance betweenu andv,

d(u, v)=
d∑
j=1

|vj − uj |.

Given is a set{v1, . . . , vn} of n points inR
d . Suppose

thatvi, i = 1, . . . , n, is associated with a nonnegative
real weightwi . For each pointx ∈ R

d define the vector
D(x) ∈ R

n byD(x)= (w1d(x, v
1), . . . ,wnd(x, v

n)).
For a givenk = 1, . . . , n, the single facility rectilinear
k-centrum problem inRd is to find a pointx ∈ R

d

minimizing the objectivefk(x)=∑k
i=1 θi(D(x)). (To

the best of our knowledge the concept of ak-centrum
was first defined by Slater [18] and Andreatta and
Mason [1,2].) Note that the casek = 1 coincides with
the classical (weighted) rectilinear 1-center problem
in R

d , while the casek = n defines the classical
(weighted) rectilinear 1-median problem, proposed
by Hakimi [5,6]. It is well known that the last two
problems can be formulated as linear programs. The
center problem (k = 1) is formulated as,

min t

subject to

t �wid(x, vi), i = 1, . . . , n,

x = (x1, . . . , xd) ∈ R
d .

To obtain a linear program we replace each one of
the n nonlinear constraintst � wid(x, vi), by a set
of 2d linear constraints. Fori = 1, . . . , n, let ∆i =
(δi1, . . . , δ

i
d) be a vector all of whose components are

equal to+1 or −1. Consider the set of 2d linear con-
straints,t �

∑d
j=1 δ

i
jwi(xj − vij ), δij ∈ {−1,1}, j =

1, . . . , d . This linear program hasd + 1 variables,
t, x1, . . . , xd , and 2dn constraints. Therefore, whend
is fixed, it can be solved in O(n) time by the algorithm
of Megiddo [12].

Similarly, the median problem (k = n) is formu-
lated as,

min
n∑
i=1

zi

subject to

zi �
d∑
j=1

δijwi
(
xj − vij

)
,

δij ∈ {−1,1}, j = 1, . . . , d, i = 1, . . . , n,

x = (x1, . . . , xd) ∈ R
d .

This linear program hasn+d variables,z1, . . . , zn,
x1, . . . , xd , and 2dn constraints. This formulation is
also a special case of the class of linear programs
discussed by Zemel [24]. Therefore, whend is fixed,
an optimal solution can be obtained in O(n) time.
The above formulation of the median problem can be
replaced by another, where the number of variables is
nd + d and the number of constraints is only 2dn.

min
n∑
i=1

d∑
j=1

yi,j

subject to

yi,j �wi
(
xj − vij

)
, j = 1, . . . , d, i = 1, . . . , n,

yi,j � −wi
(
xj − vij

)
, j = 1, . . . , d, i = 1, . . . , n,

x = (x1, . . . , xd) ∈ R
d .

The latter compact formulation is also solvable in
O(n) time by the procedure of Zemel whend is fixed.
In fact, it is easy to see from this formulation that the
d-dimensional median problem is decomposable into
d 1-dimensional problems. Therefore, it can be solved
in O(dn) time.

We note in passing that whend is fixed even the
1-centdian objective function, defined by Halpern [7–
9] and Handler [10], as a convex combination of the
center objectivef1(x) and the median objectivefn(x)
can be solved in linear time (see [20]).

To the best of our knowledge for a general value
of k, no linear time algorithms are reported in the
literature even ford = 1. In [19] the cased = 1 is
treated as a special case of a tree network. In particular,
this one dimensional problem is solved in O(n) time
when k is fixed, and in O(n logn) time whenk is
variable. Subquadratic algorithms for any fixedd and
variablek are given in [11]. For example, ford = 2 the
algorithm there has O(n log2n) complexity.
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Using the above results we can now formulate the
rectilineark-centrum problem inRd as the following
optimization problem:

min

(
kt +

n∑
i=1

d+
i

)

subject to

d+
i �wid(x, vi)− t, d+

i � 0, i = 1, . . . , n,

x = (x1, . . . , xd) ∈ R
d .

As above, to obtain a linear program we re-
place each one of then nonlinear constraintsd+

i �
wid(x, v

i) − t , by a set of 2d linear constraints. The
rectilineark-centrum problem is now formulated as
the linear programming problem,

min

(
kt +

n∑
i=1

d+
i

)

subject to

d+
i + t �

d∑
j=1

δijwi
(
xj − vij

)
,

δij ∈ {−1,1}, j = 1, . . . , d, i = 1, . . . , n,

d+
i � 0, i = 1, . . . , n.

Note that the linear program hasn+ d + 1 variables,
d+

1 , . . . , d
+
n , x1, . . . , xd, t , and 2dn + n constraints.

This formulation is again a special case of the class
of linear programs defined as the duals of linear
multiple-choice knapsack problems. Therefore, using
the results of Zemel [24], whend is fixed, an optimal
solution can be obtained in O(n) time.

We note in passing that the results for the recti-
linear problem can be extended to other polyhedral
norms. For example, if we use thel∞ norm, and let the
distance betweenu,v ∈ R

d be defined byd(u, v) =
maxj=1,...,d |vj − uj |, we get the following formula-
tion for the respectivek-centrum problem:

min

(
kt +

n∑
i=1

d+
i

)

subject to

d+
i + t �wi

(
xj − vij

)
, j = 1, . . . , d, i = 1, . . . , n,

d+
i + t � −wi

(
xj − vij

)
,

j = 1, . . . , d, i = 1, . . . , n.

3. Related problems and extensions

Recently, a new type of objective function in
location modeling, called ordered median function,
has been introduced and analyzed. See, for example,
[15,17,14,4]. (This criterion was introduced already
in [23] in the context of multi-criteria decision mak-
ing.) In our context this objective function generalizes
thek-centrum objective. We extend the formulation in
Section 2 to the rectilinear ordered median problem.
To define this general model we first need to intro-
duce some notation. Given is a nonnegative vectorλ=
(λ1, . . . , λm) ∈ R

m, satisfyingλ1 � · · · � λm. For con-
venience defineλm+1 = 0. For eachy = (y1, . . . , ym)

define

Λ(y)=
m∑
i=1

λiθi(y).

AlthoughΛ(y) may also be considered for arbitrary
sequences of(λ1, . . . , λm) [23], the monotonicity
assumptionλ1 � · · · � λm is important whitin the
location analysis context since it guarantees the so-
called equitable properties of solutions [16]. (Note that
if λ is the vector whose firstk components are equal to
1 and the others are equal to 0, thenΛ(y)=Θk(y).)

For each vectorλ satisfying the above we have the
following expression,

Λ(y)=
m∑
k=1

(λk − λk+1)Θk(y).

Using the results in Section 2, due to the monotonic-
ity assumption,λ1 � · · · � λm � 0, we can represent
Λ(y) as the solution value of the following linear pro-
gramming:

Λ(y)= min
m∑
k=1

(λk − λk+1)

(
ktk +

m∑
i=1

d+
i,k

)

subject to

d+
i,k � yi − tk, d+

i,k � 0, i = 1, . . . ,m, k = 1, . . . ,m.

The latter formulation can be used to generalize the
results in Sections 2.1 and 2.2. For example, consider
a generalization of the rectilineark-centrum problem,
called therectilinear ordered median problem, defined
as follows:

Find a pointx ∈ R
d minimizing the objective func-

tion Λ(D(x)). (To use the above model setm= n.)
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This problem can now be formulated as a linear pro-
gram.

min
n∑
k=1

(λk − λk+1)

(
ktk +

n∑
i=1

d+
i,k

)

subject to

d+
i,k + tk �

d∑
j=1

δijwi
(
xj − vij

)
,

δij ∈ {−1,1}, j = 1, . . . , d, i = 1, . . . , n,

k = 1, . . . , n,

d+
i,k � 0, i = 1, . . . , n, k = 1, . . . , n.

Note that this linear program hasn2 + d + n vari-
ables,{d+

i,k}, i, k = 1, . . . , n, x1, . . . , xd , t1, . . . , tn, and

2dn2 + n2 constraints.

The best known algorithm to solve the above
rectilinear ordered median in a fixed dimensiond is
the O(n log2d n) procedure described in [11]. This
procedure is actually a direct application of the general
algorithm of Cohen and Megiddo [3]. At this point
in time we do not yet know whether the above
linear programming formulation, which involves a
quadratic number of variables, can be used to improve
the bounds reported in [11]. Nevertheless, for some
special cases of the vectorλ= (λ1, . . . , λn), the above
problem can still be solved in linear time. Specifically,
if the components ofλ can take on a constant, sayq ,
number of distinct values, the above problem reduces
to a linear program withqn + d + n variables and
2dqn + qn constraints. Therefore, it can be solved
in O(n) time when both,d and q are fixed. As an
example, consider the centdian problem mentioned in
Section 2.2. In this caseλ= (1,µ, . . . ,µ), whereµ is
a positive number bounded above by 1.

Finally, we address the solvability of the rectilin-
ear ordered median problem when the dimensiond is
variable. (Note that the formulation given above has
2dn2 + n2 constraints.) Consider the alternative for-
mulation:

min
n∑
k=1

(λk − λk+1)

(
ktk +

n∑
i=1

d+
i,k

)

subject to

d+
i,k + tk �

d∑
j=1

yi,j , i = 1, . . . , n, k = 1, . . . , n,

yi,j �wi
(
xj − vij

)
, j = 1, . . . , d, i = 1, . . . , n,

yi,j � −wi
(
xj − vij

)
, j = 1, . . . , d, i = 1, . . . , n,

d+
i,k � 0, i = 1, . . . , n, k = 1, . . . , n.

This linear program hasn2 + (n+ 1)d + n variables
and 2n2 + 2nd constraints. Therefore, the problem
is polynomially solvable. Moreover, ifwi = w, i =
1, . . . , n, for some positive constantw, it follows
from [21] that the problem can be solved in strongly
polynomial time.
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