L. Vandenberghe EE236C (Spring 2013-14)

16. Path-following methods

e central path
e short-step barrier method

e predictor-corrector method
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Introduction

primal-dual pair of conic LPs

minimize L'y maximize  —blz

subjecct to Az < b subjecct to Alz+c¢=0

o Ac R™ "™ with rank(A) =n
e inequalities are with respect to proper cone K and its dual cone K*

e we will assume primal and dual problem are strictly feasible

this lecture

e feasible methods that follow the central path to find the solution

e complexity analysis based on theory of self-concordant functions
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Outline

e central path
e short-step barrier method

e predictor-corrector method



Barrier for the feasible set

definition: as a barrier function for the feasible set we will use

() = ¢(b— Ax)

where ¢ is a #-normal barrier for K
notation (in this lecture): ||[v]|z« = (0T V2 (z) " 1v)1/?
properties

e 1) is self-concordant with domain {x | Az < b}

e Newton decrement of ¢ is bounded by V0, i.e.,
IVe(2)|l7, = V() VZi(x) ' Vi(z) <6 Vo € domy

(proof on next page)
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proof of bound on Newton decrement

e gradient and Hessian of ¢ are (with s = b — Ax)

Vip(z) = —ATVe(s),  Vih(z) = ATV ¢(s)A

e from page 15-24, Vo (s)1'V2¢(s) "1V p(s) = 0; therefore

Vi) V2(2) " Vi(e) = sup (—oV2(a)o + 2Vi(z) o)

v

= sup (—(Av) "' V2p(s)(Av) — 2V¢(s)" Av)

< sup (—wTVQ(b(s)w — 2V¢(S)Tw)

= Vo(s) V2¢(s) " Vo(s)
= 0
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Central path

definition: the set of minimizers x*(¢), for t > 0, of

tcx +(z) =tchz + ¢(b — Az)

optimality conditions

ATV ¢(s) = te, s=b— Ax

e implies that z = —(1/t)V¢(s) is strictly dual feasible
e by weak duality,

T, * « o T T . U

cr*(t)—p-<cr+bz=zs=-

hence, cl'a*(t) — p* ast — o0
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Existence and uniqueness

centering problem

minimize  tclx + ¢(s)
subjectto Ax +s=25>

Lagrange dual (with dual cone barrier ¢, of page 15-27)

maximize —tblz — ¢, (2) +0logt
subject to Alz4+c¢=0

e strictly feasible z for dual conic LP is feasible for dual centering problem
e if dual conic LP is strictly feasible, tc’x + ¢(b — Ax) is bounded below

e from self-concordance theory (p.15-12), x*(¢) exists and is unique
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Dual points in neighborhood of central path

Newton step Az for tc!'z + ¢(z) = tcl'z + ¢(b — Ax)

e satisfies Newton equation
ATV2p(s)AAx = —tc+ ATV ¢(s), s=b— Ax

e Newton decrement is \;(x) = (A$Tv2w(x)Ax) 1/2

dual feasible point: define
1 2
=g (Vo(s) — Vig(s)AAz)

e satisfies ATz + ¢ = 0 by definition

e satisfies z >, 0 if A\;(x) < 1 (see next page)
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proof. z >, 0 follows from Dikin ellipsoid theorem

e Newton decrement is

M(2)? = Az'VZ(x)Ax
= Azt ATV2¢(s)AAx
= vIV3%(s) v

where v = V2¢(s)AAx
e define u = —V¢(s); then V¢, (u) = VZ¢(s)~! (see p.15-28) and

M (2)? = v V20, (u)v

e by Dikin ellipsoid theorem A;(x) < 1 implies

u—+v=—-Ve(s)+ V¢(s)AAz =, 0
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Duality gap in neighborhood of central path

'z —p* < (1 — Ai}?) g if \i(2) <1

e from weak duality, using the dual point z on page 16-7

stz = %(Q—STV%S(S)AA:E)

< (04 19%6(5) 2] | 20(5)/? Al

t

e implies cl'z — p* < 20/t, since § > 1 holds for any #-normal barrier ¢

(¢ is unbounded below, so its Newton decrement Vo> 1 everywhere)
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Outline
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Short-step methods

general idea: keep the iterates in the region of quadratic convergence for
teh x + (),

by limiting the rate at which ¢ is increased (hence, ‘short-step’)

quadratic convergence results (from self-concordance theory)

o if \;(z) < 1/4, a full Newton step gives \;(zT) < 2\ (z)?

e started at a point with \;(z) < 1/4, an accuracy €cent is reached in
logs log,(1/€cent) iterations

for practical purposes this is a constant (4—6 for ecens &~ 107°...10720)
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Short-step method with exact centering

simplifying assumptions:
e 1*(t) is computed exactly

e a central point z*(%() is given

algorithm: define a tolerance € € (0,1) and parameter

,u—l—l-—

44/0

starting at ¢ = tg, repeat until 6/t < e:

e compute x*(ut) by Newton's method started at x*(¢)

o sett:= ut
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Newton iterations for recentering

Newton decrement at x = x*(t) for new value tT = ut is

A+ () [pte + Vip(x)|l,.

[p(te + Vi(z)) — (= V().
(1= DVY(2)]] 2

(u—1)V0

1/4

AL

e line 3 follows because tc + Vy(z) = 0 for x = x*(¢)
e line 4 follows from ||V)(z)||z« < V0 (see page 16-3)

conclusion

#iterations to compute z*(¢T) from x*(¢) is bounded by a small constant
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Iteration complexity

number of outer iterations: t(*) = ;*t; > /¢ when

. log(6/(eto))
— logp

cumulative number of Newton iterations
0
O (\/élog (—))
Et()
(we used log 11 > (log 2)/(4+/0) by concavity of log(1 + u))

e multiply by flops per iteration to get polynomial worst-case complexity

e /0 dependence is lowest known complexity for interior-point methods
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Short-step method with inexact centering

improvements of short-step method with exact centering

e keep iterates in region of quadratic region, but avoid complete centering

e at each iteration: make small increase in t, followed by one Newton step

algorithm: define a tolerance € € (0,1) and parameters

1
1+8v0

f=2 p=1+

e select z and ¢ with \i(x) <

e repeat until 20/t < e:
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Newton decrement after update
we first show that A\;(x) < [ at the end of each iteration

o if \i(x) < B and t™ = ut, then

A+ () [t7e + Vip(2)) [l

lu(te + Vi (z)) — (1 = 1)V(2)]| o

< pllte + V(@) |l + (10 = DIV () ]| 2
< pB+(n—1)ve

1
T g

e from theory of Newton’'s method for s.c. functions (p.15-16)

A (27) < 204 (2)* <

=p

o | —
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Iteration complexity

e from page 16-9, stopping criterion implies ¢!z — p* < €

e stopping criterion is satisified when

(k)

o

_ s 2_6’7 b log(26/(ety))
eto log 1

e taking the logarithm on both sides gives an upper bound of

O (\/glog (i)> iterations
Gto

(using log ;1 > log 2/(1 + 8v/6))
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Predictor-corrector methods

short-step methods

e stay in narrow neighborhood of central path (defined by limit on ;)

e make small, fixed increases tT = ut

as a result, quite slow in practice

predictor-corrector method

e select new t using a linear approximation to central path (‘predictor’)

e recenter with new ¢ (‘corrector’)

allows faster and ‘adaptive’ increases in t
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Global convergence bound for centering problem

minimize fi(x) = tcl'x + ¢(b — Ax)

convergence result (damped Newton algorithm of p.15-11 started at x)

fe(x) —infy, fi(u)
w(1)

Hiterations < + log, logs(1/€cent)

® ccont IS accuracy in centering; n € (0,1/4]; w(n) =n —log(1 4+ n)
e for practical purposes, second term is a small constant

e first term depends on unknown optimal value inf,, f;(u)
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Bound from duality

dual centering problem (see p.16-6)

maximize —tblz — ¢, (2) +0Ologt
subject to Alz4+c¢=0

strictly feasible z provides lower bound on inf,, fi(u):

inf f,(u) > —tb' 2z — ¢, (2) + Ologt

bound on centering cost: f;(x) — inf, f;(u) < Vi(z, s, z) where

Vi(z,s,2) = tlchz+b12)+ ¢(s) + ¢ (2) — Ologt
= tsl 24 ¢(s) + ¢p.(2) — Ologt
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Potential function

definition (for strictly feasible x, s, z)

U(x,s,2) = irtlf%(:v,s,z)

T

= 0log ™"+ 0(s) + 6ul(2) + 0
(optimal t is t = argmin, V;(z, s, 2) = 0/s12)
properties

e homogeneous of degree zero: V(ax,as,az) = V¥(x,s,z) for a > 0
e nonnegative for all strictly feasible z, s, z

e zero only if =, s, z are centered

can be used as a global proximity measure
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Tangent to central path

central path equation

derivatives & = dx*(t)/dt, $ = ds*/dt, Z = dz*(t)/dt satisfy

s L

: * 1 2 * .
i=—2 (t) — ;V d(s*(t))s$

tangent direction: defined as Ax; = tx, Asy = ts, Az, =tz
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Predictor equations

[ (1/t)V2¢(s) 0 I Asy —2
0 0 A7 Axy 0 (1)
i —1 —A 0 i AZt | 0
equivalent equations
T 0 (1/t)V%.(2) | | Asy —5
i -1 —A 0 i AZt i 0

equivalence follows from primal-dual relations on central path

z = —%V¢(S)7 s = —%qu*(z)v %VZQb(S) — tv2¢*(z)_1
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Properties of tangent direction

e from 2nd and 3rd block in (1): As! Az =0
e from first block in (1) and VZ¢(s)s = —V¢(s):

sTAz + 21 Asy = —s2

e hence, gap in tangent direction is

(s + aAs) (z +aAz) = (1 —a)s’ z

e from first block in (1)

[As||? = Asi V3¢ (s)Asy = —tz! As,

e similarly, from first block in (2)

[AZ||? = Azl V2. (2) Az = —ts! Az
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Predictor-corrector method with exact centering

simplifying assumptions: exact centering, a central point z*(¢() is given
algorithm: define tolerance € € (0,1), parameter 5 > 0, and set

ti=ty, (x,8,2) = (x*(to),s*(to), 2*(to))

repeat until 6/t < e:

e compute tangent direction (Axy, Asi, Azy) at (z, s, 2)

o set (x,s,2) := (x,s,2) + a(Axy, Asi, Azy) with o determined from

U(x 4+ aAxi, s + alAsy, 2 + alzy) =

o set t:=0/(s'z) and compute (z, s, z) := (x*(t), s*(t), 2*(¢))
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Iteration complexity

potential function in tangent direction (proof on next page)

(x4 alAxg, s + alsg, 2 + alsy) < w*(aV0)

= —av0—log(l —aVe)

lower bound on predictor step length: since w* is an increasing function

a>~/VO where w*(y) =

reduction in duality gap after one predictor/corrector cycle

t/tt =1—a <1—7/V0 < exp(—y/V0)

cumulative Newton iterations: t*) > (/¢ after

0, (\/glog (0/(1506))) Newton iterations
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proof of upper bound on ¥ (with s7 = s + aAs, 27 = 2 + alAz)

e bounds on ¢(s™) and ¢.(2): from the inequality on page 15-8,

B(s7) —¢(s) < aVe(s) Asy +w'(allAss)
—atzt Asy + w* (]| Asel[s)

O(27) = ¢u(2) < aVe(2)' Az + w(af|Az.)
= —ats? Az + w* (]| Az]|.)

e add the inequalities and use properties on page 16-23

A(sT) — d(s) + du(27) — du(2)

INA

af + w*(a||As||s) + w* (|| Az )
0l +w (o (|| Asi)2 + [Az]2) )
ab + w*(aV0)

IA

e since (sT)1zT = (1 —a)stz,
U(at, s, 27) < flog(l — @) + af + w* (V) < w*(aVh)
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