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16. Path-following methods

• central path

• short-step barrier method

• predictor-corrector method
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Introduction

primal-dual pair of conic LPs

minimize cTx
subjecct to Ax � b

maximize −bTz
subjecct to ATz + c = 0

z �∗ 0

• A ∈ Rm×n with rank(A) = n

• inequalities are with respect to proper cone K and its dual cone K∗

• we will assume primal and dual problem are strictly feasible

this lecture

• feasible methods that follow the central path to find the solution

• complexity analysis based on theory of self-concordant functions
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Outline
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Barrier for the feasible set

definition: as a barrier function for the feasible set we will use

ψ(x) = φ(b−Ax)

where φ is a θ-normal barrier for K

notation (in this lecture): ‖v‖x∗ = (vT∇2ψ(x)−1v)1/2

properties

• ψ is self-concordant with domain {x | Ax ≺ b}
• Newton decrement of ψ is bounded by

√
θ, i.e.,

‖∇ψ(x)‖2x∗ = ∇ψ(x)T∇2ψ(x)−1∇ψ(x) ≤ θ ∀x ∈ domψ

(proof on next page)
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proof of bound on Newton decrement

• gradient and Hessian of ψ are (with s = b−Ax)

∇ψ(x) = −AT∇φ(s), ∇2ψ(x) = AT∇2φ(s)A

• from page 15-24, ∇φ(s)T∇2φ(s)−1∇φ(s) = θ; therefore

∇ψ(x)T∇2ψ(x)−1∇ψ(x) = sup
v

(

−vT∇2ψ(x)v + 2∇ψ(x)Tv
)

= sup
v

(

−(Av)T∇2φ(s)(Av)− 2∇φ(s)TAv
)

≤ sup
w

(

−wT∇2φ(s)w + 2∇φ(s)Tw
)

= ∇φ(s)T∇2φ(s)−1∇φ(s)
= θ
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Central path

definition: the set of minimizers x⋆(t), for t > 0, of

tcTx+ ψ(x) = tcTx+ φ(b−Ax)

optimality conditions

AT∇φ(s) = tc, s = b−Ax

• implies that z = −(1/t)∇φ(s) is strictly dual feasible

• by weak duality,

cTx⋆(t)− p⋆ ≤ cTx+ bTz = zTs =
θ

t

hence, cTx⋆(t) → p⋆ as t→ ∞
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Existence and uniqueness

centering problem

minimize tcTx+ φ(s)
subject to Ax+ s = b

Lagrange dual (with dual cone barrier φ∗ of page 15-27)

maximize −tbTz − φ∗(z) + θ log t
subject to ATz + c = 0

• strictly feasible z for dual conic LP is feasible for dual centering problem

• if dual conic LP is strictly feasible, tcTx+ φ(b−Ax) is bounded below

• from self-concordance theory (p.15-12), x⋆(t) exists and is unique
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Dual points in neighborhood of central path

Newton step ∆x for tcTx+ ψ(x) = tcTx+ φ(b−Ax)

• satisfies Newton equation

AT∇2φ(s)A∆x = −tc+AT∇φ(s), s = b−Ax

• Newton decrement is λt(x) =
(

∆xT∇2ψ(x)∆x
)1/2

dual feasible point: define

z = −1

t

(

∇φ(s)−∇2φ(s)A∆x
)

• satisfies ATz + c = 0 by definition

• satisfies z ≻∗ 0 if λt(x) < 1 (see next page)
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proof. z ≻∗ 0 follows from Dikin ellipsoid theorem

• Newton decrement is

λt(x)
2 = ∆xT∇2ψ(x)∆x

= ∆xTAT∇2φ(s)A∆x

= vT∇2φ(s)−1v

where v = ∇2φ(s)A∆x

• define u = −∇φ(s); then ∇2φ∗(u) = ∇2φ(s)−1 (see p.15-28) and

λt(x)
2 = vT∇2φ∗(u)v

• by Dikin ellipsoid theorem λt(x) < 1 implies

u+ v = −∇φ(s) +∇2φ(s)A∆x ≻∗ 0
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Duality gap in neighborhood of central path

cTx− p⋆ ≤
(

1 +
λt(x)√
θ

)

θ

t
if λt(x) < 1

• from weak duality, using the dual point z on page 16-7

sTz =
1

t

(

θ − sT∇2φ(s)A∆x
)

≤ 1

t

(

θ + ‖∇2φ(s)1/2s‖2 ‖∇2φ(s)1/2A∆x‖2
)

=
θ +

√
θ λt(x)

t

• implies cTx− p⋆ ≤ 2θ/t, since θ ≥ 1 holds for any θ-normal barrier φ

(φ is unbounded below, so its Newton decrement
√
θ ≥ 1 everywhere)
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Short-step methods

general idea: keep the iterates in the region of quadratic convergence for

tcTx+ ψ(x),

by limiting the rate at which t is increased (hence, ‘short-step’)

quadratic convergence results (from self-concordance theory)

• if λt(x) ≤ 1/4, a full Newton step gives λt(x
+) ≤ 2λt(x)

2

• started at a point with λt(x) ≤ 1/4, an accuracy ǫcent is reached in

log2 log2(1/ǫcent) iterations

for practical purposes this is a constant (4–6 for ǫcent ≈ 10−5 . . . 10−20)
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Short-step method with exact centering

simplifying assumptions:

• x⋆(t) is computed exactly

• a central point x⋆(t0) is given

algorithm: define a tolerance ǫ ∈ (0, 1) and parameter

µ = 1 +
1

4
√
θ

starting at t = t0, repeat until θ/t ≤ ǫ:

• compute x⋆(µt) by Newton’s method started at x⋆(t)

• set t := µt
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Newton iterations for recentering

Newton decrement at x = x⋆(t) for new value t+ = µt is

λt+(x) = ‖µtc+∇ψ(x)‖x∗
= ‖µ(tc+∇ψ(x))− (µ− 1)∇ψ(x)‖x∗
= (µ− 1)‖∇ψ(x)‖x∗
≤ (µ− 1)

√
θ

= 1/4

• line 3 follows because tc+∇ψ(x) = 0 for x = x⋆(t)

• line 4 follows from ‖∇ψ(x)‖x∗ ≤
√
θ (see page 16-3)

conclusion

#iterations to compute x⋆(t+) from x⋆(t) is bounded by a small constant
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Iteration complexity

number of outer iterations: t(k) = µkt0 ≥ θ/ǫ when

k ≥ log(θ/(ǫt0))

logµ

cumulative number of Newton iterations

O

(√
θ log

(

θ

ǫt0

))

(we used logµ ≥ (log 2)/(4
√
θ) by concavity of log(1 + u))

• multiply by flops per iteration to get polynomial worst-case complexity

•
√
θ dependence is lowest known complexity for interior-point methods
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Short-step method with inexact centering

improvements of short-step method with exact centering

• keep iterates in region of quadratic region, but avoid complete centering

• at each iteration: make small increase in t, followed by one Newton step

algorithm: define a tolerance ǫ ∈ (0, 1) and parameters

β =
1

8
, µ = 1 +

1

1 + 8
√
θ

• select x and t with λt(x) ≤ β

• repeat until 2θ/t ≤ ǫ:

t := µt, x := x−∇2ψ(x)−1 (tc+∇ψ(x))
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Newton decrement after update

we first show that λt(x) ≤ β at the end of each iteration

• if λt(x) ≤ β and t+ = µt, then

λt+(x) = ‖t+c+∇ψ(x))‖x∗
= ‖µ(tc+∇ψ(x))− (µ− 1)∇ψ(x)‖x∗
≤ µ‖tc+∇ψ(x)‖x∗ + (µ− 1)‖∇ψ(x)‖x∗
≤ µβ + (µ− 1)

√
θ

=
1

4

• from theory of Newton’s method for s.c. functions (p.15-16)

λt+(x
+) ≤ 2λt+(x)

2 ≤ 1

8
= β
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Iteration complexity

• from page 16-9, stopping criterion implies cTx− p⋆ ≤ ǫ

• stopping criterion is satisified when

t(k)

t0
= µk ≥ 2θ

ǫt0
, k ≥ log(2θ/(ǫt0))

logµ

• taking the logarithm on both sides gives an upper bound of

O

(√
θ log

(

θ

ǫt0

))

iterations

(using logµ ≥ log 2/(1 + 8
√
θ))
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Predictor-corrector methods

short-step methods

• stay in narrow neighborhood of central path (defined by limit on λt)

• make small, fixed increases t+ = µt

as a result, quite slow in practice

predictor-corrector method

• select new t using a linear approximation to central path (‘predictor’)

• recenter with new t (‘corrector’)

allows faster and ‘adaptive’ increases in t
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Global convergence bound for centering problem

minimize ft(x) = tcTx+ φ(b−Ax)

convergence result (damped Newton algorithm of p.15-11 started at x)

#iterations ≤ ft(x)− infu ft(u)

ω(η)
+ log2 log2(1/ǫcent)

• ǫcent is accuracy in centering; η ∈ (0, 1/4]; ω(η) = η − log(1 + η)

• for practical purposes, second term is a small constant

• first term depends on unknown optimal value infu ft(u)
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Bound from duality

dual centering problem (see p.16-6)

maximize −tbTz − φ∗(z) + θ log t
subject to ATz + c = 0

strictly feasible z provides lower bound on infu ft(u):

inf
u
ft(u) ≥ −tbTz − φ∗(z) + θ log t

bound on centering cost: ft(x)− infu ft(u) ≤ Vt(x, s, z) where

Vt(x, s, z) = t(cTx+ bTz) + φ(s) + φ∗(z)− θ log t

= tsTz + φ(s) + φ∗(z)− θ log t
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Potential function

definition (for strictly feasible x, s, z)

Ψ(x, s, z) = inf
t
Vt(x, s, z)

= θ log
sTz

θ
+ φ(s) + φ∗(z) + θ

(optimal t is t = argmint Vt(x, s, z) = θ/sTz)

properties

• homogeneous of degree zero: Ψ(αx, αs, αz) = Ψ(x, s, z) for α > 0

• nonnegative for all strictly feasible x, s, z

• zero only if x, s, z are centered

can be used as a global proximity measure
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Tangent to central path

central path equation

[

0
s⋆(t)

]

=

[

0 AT

−A 0

] [

x⋆(t)
z⋆(t)

]

+

[

c
b

]

z⋆(t) = −1

t
∇φ(s⋆(t))

derivatives ẋ = dx⋆(t)/dt, ṡ = ds⋆/dt, ż = dz⋆(t)/dt satisfy

[

0
ṡ

]

=

[

0 AT

−A 0

] [

ẋ
ż

]

ż = −1

t
z⋆(t)− 1

t
∇2φ(s⋆(t))ṡ

tangent direction: defined as ∆xt = tẋ, ∆st = tṡ, ∆zt = tż
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Predictor equations

with x = x⋆(t), s = s⋆(t), z = z⋆(t)





(1/t)∇2φ(s) 0 I
0 0 AT

−I −A 0









∆st
∆xt
∆zt



 =





−z
0
0



 (1)

equivalent equations





I 0 (1/t)∇2φ∗(z)
0 0 AT

−I −A 0









∆st
∆xt
∆zt



 =





−s
0
0



 (2)

equivalence follows from primal-dual relations on central path

z = −1

t
∇φ(s), s = −1

t
∇φ∗(z),

1

t
∇2φ(s) = t∇2φ∗(z)

−1
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Properties of tangent direction

• from 2nd and 3rd block in (1): ∆sTt ∆zt = 0

• from first block in (1) and ∇2φ(s)s = −∇φ(s):

sT∆zt + zT∆st = −sTz

• hence, gap in tangent direction is

(s+ α∆st)
T (z + α∆zt) = (1− α)sTz

• from first block in (1)

‖∆st‖2s = ∆sTt ∇2φ(s)∆st = −tzT∆st

• similarly, from first block in (2)

‖∆zt‖2z = ∆zTt ∇2φ∗(z)∆zt = −tsT∆zt
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Predictor-corrector method with exact centering

simplifying assumptions: exact centering, a central point x⋆(t0) is given

algorithm: define tolerance ǫ ∈ (0, 1), parameter β > 0, and set

t := t0, (x, s, z) := (x⋆(t0), s
⋆(t0), z

⋆(t0))

repeat until θ/t ≤ ǫ:

• compute tangent direction (∆xt,∆st,∆zt) at (x, s, z)

• set (x, s, z) := (x, s, z) + α(∆xt,∆st,∆zt) with α determined from

Ψ(x+ α∆xt, s+ α∆st, z + α∆zt) = β

• set t := θ/(sTz) and compute (x, s, z) := (x⋆(t), s⋆(t), z⋆(t))
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Iteration complexity

potential function in tangent direction (proof on next page)

Ψ(x+ α∆xt, s+ α∆st, z + α∆st) ≤ ω∗(α
√
θ)

= −α
√
θ − log(1− α

√
θ)

lower bound on predictor step length: since ω∗ is an increasing function

α ≥ γ/
√
θ where ω∗(γ) = β

reduction in duality gap after one predictor/corrector cycle

t/t+ = 1− α ≤ 1− γ/
√
θ ≤ exp(−γ/

√
θ)

cumulative Newton iterations: t(k) ≥ θ/ǫ after

O
(√

θ log (θ/(t0ǫ))
)

Newton iterations
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proof of upper bound on Ψ (with s+ = s+ α∆st, z
+ = z + α∆zt)

• bounds on φ(s+) and φ∗(z
+): from the inequality on page 15-8,

φ(s+)− φ(s) ≤ α∇φ(s)T∆st + ω∗(α‖∆st‖s)
= −αtzT∆st + ω∗(α‖∆st‖s)

φ∗(z
+)− φ∗(z) ≤ α∇φ(z)T∆zt + ω∗(α‖∆zt‖z)

= −αtsT∆zt + ω∗(α‖∆zt‖z)

• add the inequalities and use properties on page 16-23

φ(s+)− φ(s) + φ∗(z
+)− φ∗(z) ≤ αθ + ω∗(α‖∆st‖s) + ω∗(α‖∆zt‖z)

≤ αθ + ω∗(α
(

‖∆st‖2s + ‖∆zt‖2z
)1/2

)

= αθ + ω∗(α
√
θ)

• since (s+)Tz+ = (1− α)sTz,

Ψ(x+, s+, z+) ≤ θ log(1− α) + αθ + ω∗(α
√
θ) ≤ ω∗(α

√
θ)
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