Project 2 for "Convex Optimization"

Zaiwen Wen
Beijing International Center for Mathematical Research
Peking University

November 12, 2015

1 Algorithms for ℓ_{1} minimization

Consider the ℓ_{1}-regularized problem

$$
\begin{equation*}
\min _{x} \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\mu\|x\|_{1}, \tag{1.1}
\end{equation*}
$$

where $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ and $\mu>0$ are given. Test matrices:
$\mathrm{n}=1024$;
$\mathrm{m}=512$;
$\mathrm{A}=\operatorname{randn}(\mathrm{m}, \mathrm{n})$;
$u=\operatorname{sprandn}(n, 1,0.1)$;
$\mathrm{b}=\mathrm{A} * \mathrm{u}$;
$\mathrm{mu}=1 \mathrm{e}-3$;
Seehttp://bicmr.pku.edu.cn/~wenzw/courses/Test_l1_regularized_problems.m

1. Read section 5 in the paper

Kazufumi Ito, and Karl Kunisch, A variational approach to sparsity optimization based on Lagrange multiplier theory, Inverse Problems 30 (2014),
http://iopscience.iop.org/article/10.1088/0266-5611/30/1/015001.
Write down and implement a primal-dual active set method for solving (1.1).
2. Requirement:
(a) The interface of each method should be written in the following format

```
[x, out] = method_name(x0, A, b, mu, opts);
```

Here, x 0 is a given input initial solution, A, b and mu are given data, opts is a struct which stores the options of the algorithm, out is a struct which saves all other output information.
(b) Compare the efficiency (cpu time) and accuracy (checking optimality condition) to what your have implemented in Homework 5 in the format as

[^0](c) Pack all of your codes in one file named as "proj2-name-ID.zip" and send it to both me and TA:
wendouble@gmail.com
pkuopt@163.com
(d) If you get significant help from others on one routine, write down the source of references at the beginning of this routine.

[^0]: http://bicmr.pku.edu.cn/~wenzw/courses/Test_ll_regularized_problems.m

