
Semi-smooth Newton Type Methods for
Composite Convex Programs

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

wenzw@pku.edu.cn

1/62



2/62

Outline

1 composite convex programs

2 Semi-smoothness of proximal mapping

3 semi-smooth Newton methods based on the primal
Approach
Numerical Results

4 Semi-smooth Newton method based on the dual (SDPNAL)



3/62

Composite convex program

Consider the following composite convex program

min
x∈Rn

f (x) + h(x),

where f and h are convex, f is differentiable but h may not

Many applications:
Sparse and low rank optimization: h(x) = ‖x‖1 or ‖X‖∗ and many
other forms.

Regularized risk minimization: f (x) =
∑

i fi(x) is a loss function of
some misfit and h is a regularization term.

Constrained program: h is an indicator function of a convex set.
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A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs.

key observations:
Many popular first-order methods can be equivalent to some
fixed-point iterations: xk+1 = T(xk);

Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

Disadvantages: slow tail convergence.

The original problem is equivalent to the system
F(x) := (I − T)(x) = 0.

Newton-type method since F(x) is semi-smooth in many cases

Computational costs can be controlled reasonably well
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An SDP From Electronic Structure Calculation

system: BeO
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6/62

Operator splitting and fixed-point algorithm

Examples:
forward-backward splitting(FBS).

Douglas-Rachford splitting(DRS).

Peaceman-Rachford splitting(PRS).

alternating direction method of multipliers(ADMM).

Advantages:
easy to implement;

converge fast to a solution with moderate accuracy.
Disadvantages:

slow tail convergence.



7/62

Forward-backward splitting (FBS)

Consider min
x∈Rn

f (x) + h(x)

the proximal mapping of f is defined by

proxtf (x) := argmin
u∈Rn

{f (u) +
1
2t
‖u− x‖2

2}.

Proximal gradient method or the FBS is the iteration

xk+1 = proxtf (xk − t∇h(xk)), k = 0, 1, · · · ,

Equivalent to a fixed-point iteration

xk+1 = TFBS(xk).

where
TFBS := proxtf ◦ (I − t∇h).
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Douglas-Rachford splitting (DRS)

DRS is the following update:

xk+1 = proxth(zk),

yk+1 = proxtf (2xk+1 − zk),

zk+1 = zk + yk+1 − xk+1.

Equivalent to a fixed-point iteration

zk+1 = TDRS(zk),

where
TDRS := I + proxtf ◦ (2proxth − I)− proxth.
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Alternating direction method of multipliers (ADMM)

Consider a linear constrained program

min
x1∈Rn1 ,x2∈Rn2

f1(x1) + f2(x2)

s.t. A1x1 + A2x2 = b,

The dual problem is

min
w∈Rm

d1(w) + d2(w),

where d1(w) := f ∗1 (AT
1 w), d2(w) := f ∗2 (AT

2 w)− bTw.

The ADMM to the primal is equivalent to the DRS to the dual
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Semi-smooth Newton-type method

Solving the system
F(z) = 0,

where F(z) = T(z)− z and T(z) is a fixed-point mapping.

Fixed-point algorithms suffer from slow tail convergence and may
not be suitable for high accuracy applications.

F(z) fails to be differentiable in many interesting applications.

but F(z) is (strongly) semi-smooth and monotone.

semi-smooth Newton type method
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Semi-smoothness

F : O → Rm be locally Lipschitz continuous.
The B-subdifferential of F at x is defined by

∂BF(x) :=

{
lim

k→∞
F′(xk)|xk ∈ DF, xk → x

}
.

The set
∂F(x) = co(∂BF(x))

is called Clarke’s generalized Jacobian
We say that F is semismooth at x ∈ O if

F is directionally differentiable at x;
for any d ∈ O and J ∈ ∂F(x + d),

‖F(x + d)− F(x)− J(d)‖ = o(‖d‖) as d → 0.

F is said to be strongly semi-smooth at x ∈ O if F is semi-smooth
and for any d ∈ O and J ∈ ∂F(x + d),

‖F(x + d)− F(x)− J(d)‖ = O(‖d‖2) as d → 0.
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Semi-smoothness

(Strongly) semi-smoothness is closed under scalar multiplication,
summation and composition.

A vector-valued function is (strongly) semi-smooth if and only if
each of its component functions is (strongly) semi-smooth.

Examples:
semi-smooth

the smooth functions
all convex functions (thus norm)
the piecewise differentiable functions

strongly semi-smooth
Differentiable functions with Lipschitz gradients
For every p ∈ [1,∞], the norm ‖ · ‖p

Piecewise affine functions
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Semi-smoothness of proximal mappings

Many commonly seen proximal mappings are semi-smooth

Examples:
The proximal mapping of `1-norm ‖x‖1 (or `∞-norm ‖x‖∞) is
strongly semi-smooth.

The projection1 over a polyhedral set is piecewise linear and
hence strongly semi-smooth.

The projections over symmetric cones are proved to be strongly
semi-smooth.

In many applications, the proximal mapping is shown to be
piecewise C1 and hence semi-smooth.

1The proximal mapping of an indicator function onto a closed set is the metric
projection over this set.
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Some concepts on monotonicity

A mapping F : Rn → Rn is said to be monotone, if

〈x− y,F(x)− F(y)〉 ≥ 0, for all x, y ∈ Rn.

A mapping F : Rn → Rn is called strongly monotone with
modulus c > 0 if

〈x− y,F(x)− F(y)〉 ≥ c‖x− y‖2
2, for all x, y ∈ Rn.

It is said that F is cocoercive with modulus β > 0 if

〈x− y,F(x)− F(y)〉 ≥ β‖F(x)− F(y)‖2
2, for all x, y ∈ Rn.
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Monotone mapping

monotone properties of FFBS = I − TFBS and FDRS = I − TDRS:

(i) Suppose that ∇h is cocoercive with β > 0, then FFBS is
monotone if 0 < t ≤ 2β.

(ii) Suppose that ∇h is strongly monotone with c > 0 and Lipschitz
with L > 0, then FFBS is strongly monotone if 0 < t < 2c/L2.

(iii) Suppose that h ∈ C2, H(x) := ∇2h(x) is positive semidefinite for
any x ∈ Rn and λ̄ = maxx λmax(H(x)) <∞. Then, FFBS is
monotone if 0 < t ≤ 2/λ̄.

(iv) The fixed-point mapping FDRS is monotone.

(v) For a monotone and Lipschitz continuous mapping F : Rn → Rn

and any x ∈ Rn, each element of ∂BF(x) is positive semidefinite.
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Semi-smooth Newton system

Jk ∈ ∂BF(zk): positively semidefinite.
regularized Newton’s method

(Jk + µkI)d = −Fk,

where Fk = F(zk), µk = λk‖Fk‖ and λk > 0 is a regularization
parameter.
solve the linear system inexactly.

rk := (Jk + µkI)dk + Fk.

seek to step dk by solving the system approximately such that

‖rk‖ ≤ τ min{1, λk‖Fk‖ · ‖dk‖},

where 0 < τ < 1 is some positive constant.
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Semi-smooth Newton method

Select 0 < v < 1, 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2. λ > 0

A trial point uk = zk + dk

Define a ratio

ρk =
−
〈
F(uk), dk

〉
‖dk‖2

F
.

Update the point

zk+1 =

{
uk, if ‖F(uk)‖F ≤ ν max

max(1,k−ζ+1)≤j≤k
‖F(zj)‖F, [Newton]

zk, otherwise. [failed]

Update the regularization prameter

λk+1 ∈


(λ, λk), if ρk ≥ η2,
[λk, γ1λk], if η1 ≤ ρk < η2,
(γ1λk, γ2λk], otherwise,.
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Ensuring global convergence I

If the residual F is not reduced sufficiently or certain other
conditions are not met, switching to first order methods. Note
that F itself is a first order methods

construct another point from the Newton step?

X. Xiao, Y. Li, Z. Wen, L, Zhang, A Regularized Semi-Smooth
Newton Method with Projection Steps for Composite Convex
Programs, Journal of Scientfic Computing, 2018, Vol 76, No. 1,
pp 364-389

Y. Li, Z. Wen, C. Yang, Y. Yuan, A Semi-smooth Newton Method
For semidefinite programs and its applications in electronic
structure calculations, SIAM Journal on Scientific Computing, Vol
40, No. 6, 2018, A4131A4157
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Ensuring global convergence II: projection step

dk = 0, then xk is the optimal solution.
A trial point

uk = zk + dk.

dk is small enough,〈
F(uk), zk − uk〉 = −

〈
F(uk), dk〉 > 0.

By monotonicity of F, for any optimal solution z∗〈
F(uk), z∗ − uk〉 ≤ 0.

Therefore the hyperplane

Hk := {z ∈ Rn|
〈
F(uk), z− uk〉 = 0}

strictly separates zk from the solution set Z∗.
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Ensuring global convergence II: projection step

Define a ratio

ρk =
−
〈
F(uk), dk

〉
‖dk‖2 .

If ρk is big enough,

zk+1 = zk −
〈
F(uk), zk − uk

〉
‖F(uk)‖2 F(uk),

which is the projection onto the hyperplane Hk.
If ρk is too small, zk+1 = zk and increase the parameter.
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Ensuring global convergence II: projection step

Select some parameters 0 < η1 ≤ η2 < 1 and 1 < γ1 ≤ γ2. λ > 0
is a small positive constant.
Update the point

zk+1 =

{
zk − 〈F(uk),zk−uk〉

‖F(uk)‖2 F(uk), if ρk ≥ η1,

zk, otherwise.

Update the regularization prameter

λk+1 ∈


(λ, λk), if ρk ≥ η2,
[λk, γ1λk], if η1 ≤ ρk < η2,
(γ1λk, γ2λk], otherwise,.

For any z∗ ∈ Z∗ and any successful iteration

‖zk+1 − z∗‖2 ≤ ‖zk − z∗‖2 − ‖zk+1 − zk‖2.
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Global convergence

Assumption:
Assume that F : Rn → Rn is strongly semi-smooth and
monotone.

Suppose that there exists a constant c1 > 0 such that ‖Jk‖ ≤ c1
for any k ≥ 0 and any Jk ∈ ∂BF(zk).

Global Convergence
The sequence {zk} generated by our algorithm converges to some
point z̄ such that F(z̄) = 0 from any initial point.
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Local Quadratic convergence

Assumption:
The mapping F is BD-regular at z∗, that is, all elements in ∂BF(z∗)
are nonsingular.

Local Quadratic convergence
For any Newton step and zk ∈ N(z∗, ε1) with some ε1 > 0, we have

‖zk+1 − z∗‖2 ≤ c2‖zk − z∗‖2
2,

where c2 is some positive constant.

If zk is close enough to z∗, the condition ‖F(uk)‖2 ≤ ν‖F(zk)‖2 is
always satisfied.

Our algorithm turns to a second-order Newton method in a
neighborhood of z∗.
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l1-regularized optimization problems

Applications to the FBS Method
Consider the `1-regularized optimization problem of the form

min µ‖x‖1 + h(x), h(x) =
1
2
‖Ax− b‖2

2

Let f (x) = µ‖x‖1. The system of nonlinear equations is

F(x) = x− proxtf (x− t∇h(x)) = 0.

The generalized Jacobian matrix of F(x) is

J(x) = I −M(x)(I − t∂2h(x)),

where M(x) ∈ ∂proxtf (x− t∇h(x)) and ∂2h(x) is the generalized
Hessian matrix of h(x).
M(z) is diagonal matrix whose diagonal entries are

(M(z))ii =

{
1, if |zi| > µt,
0, otherwise.
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l1-regularized optimization problems

introduce the index sets

I(x) := {i : |(x− t∇h(x))i| > tµ} = {i : (M(x))ii = 1},
O(x) := {i : |(x− t∇h(x))i| ≤ tµ} = {i : (M(x))ii = 0}.

The Jacobian matrix can be represented by

J(x) =

(
t(∂2h(x))I(x)I(x) t(∂2h(x))I(x)O(x)

0 I

)
.

Let I = I(xk) and O = O(xk). Then one can reduce the Newton
system to a small system.

sk
O = − 1

1 + µk
Fk,O,

(t(∂2h(x))II + µI)sk
I = −Fk,I − t(∂2h(x))IOsk

O.
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l1-regularized optimization problems

Table: Total number of A- and AT - calls NA and CPU time (in seconds)
averaged over 10 independent runs with dynamic range 20 dB

method ε : 10−0 ε : 10−2 ε : 10−4 ε : 10−6

time NA time NA time NA time NA

SNF 1.12 84.6 3.19 254.2 3.87 307 4.5 351
SNF(aCG) 1.11 84.6 3.19 254.2 4.19 331.2 4.3 351.2

ASSN 1.15 89.8 2.2 173 3.15 246.4 3.76 298.2
SSNP 2.52 199 8.05 649.4 20.7 1679.8 29.2 2369.6

ASLB(2) 0.803 57 1.66 121 2.79 202.4 3.63 264.6
ASLB(1) 0.586 42.2 1.29 92 2.54 181.4 3.85 275
FPC-AS 1.45 109.8 7.08 510.4 10 719.8 10.3 743.6
SpaRSA 5.46 517.2 5.9 539.8 6.75 627 9.05 844.4
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l1-regularized optimization problems
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l1-regularized optimization problems

iteration
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Numerical results

Applications to the FBS Method

The fixed-point mapping

F(x) = proxtf (x− t∇h(x))− x.

The generalized Jacobian matrix of F(x) is

J(x) = M(x)(I − t∂2h(x))− I,

where M(x) ∈ ∂proxtf (x− t∇h(x)) and ∂2h(x) is the generalized
Hessian matrix of h(x).
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LASSO Regression

The Lasso regression problem

min
1
2
‖Ax− b‖2

2 s.t. ‖x‖1 ≤ λ,

where A ∈ Rm×n, b ∈ Rm and λ ≥ 0 are given.
h(x) = 1

2‖Ax− b‖2
2 and f (x) = 1Ω(x), where Ω = {x | ‖x‖1 ≤ λ}.

For a given z ∈ Rn, let |z[1]| ≥ |z[2]| ≥ . . . ≥ |z[n]|, the Jacobian
matrix M(z)

M(z)ij =

{
1 if α < 0, j = i
1− αsign(zi)sign(zj)/p, if |zi| ≥ α and α > 0, j = [1], . . . , [p].

where α be the largest value of
(∑k

i=1 |z[i]| − λ
)
/k, k = 1, . . . , n,

and p be the corresponding k of α.
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LASSO Regression
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Logistic Regression

Sparse logistic regression problem

min µ‖x‖1 + h(x),

where
∑m

i=1 log(eAix + 1)− bT
i Aix.

The proximal mapping corresponding to f (x) = µ‖x‖1(
proxtf (z)

)
i
= sign(zi) max(|zi| − µt, 0).

the Jacobian matrix M(z) is diagonal matrix whose diagonal
entries are

(M(z))ii =

{
1, if |zi| > µt,
0, otherwise.
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Logistic Regression

iteration

0 50 100 150 200 250 300

‖
F
(z
)
−

z
‖
2

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

FBS
Adaptive FBS
Accelated FBS
FBS-LM
FBS-Newton

(a) k = 200

iteration

0 50 100 150 200 250 300

‖
F
(z
)
−

z
‖
2

10
-10

10
-5

10
0

FBS
Adaptive FBS
Accelated FBS
FBS-LM
FBS-Newton

(b) k = 600

Figure: residual history of the logistic regression problem on n = 2000,
m = 1000 and µ = 1



36/62

General Quadratic Programming

The general quadratic programming

min
x∈Rn

1
2

xTQx + cTx, s.t. Ax ≤ b,

where Q ∈ Rn×n is symmetric positive definite, A ∈ Rm×n and
b ∈ Rm.
The dual problem is

max
y≥0

min
x∈Rn

1
2

xTQx + cTx + yT(Ax− b),

which is equivalent to

min
y≥0

1
2

yT(AQ−1AT)y + (AQ−1c + b)Ty.



37/62

General Quadratic Programming

iteration
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Applications to the DRS Method

Optimization problems

min f (x), s.t. Ax = b,

where A ∈ Rm×n is of full row rank and b ∈ Rm.

h(x) = 1Ω(x), where Ω = {x | Ax = b}.

The proximal mapping with respect to h(x) is

proxth(x) = PΩ(x) = (I − PAT )x + (AT(AAT)−1)b,

where PAT = AT(AAT)−1A.
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Applications to the DRS Method

The DRS fixed-point mapping reduces to

F(z) = proxtf ((2D− I)z + 2β)− Dz− β,

where
D = I − PAT and β = (AT(AAT)−1)b.

The generalized Jacobian matrix of F(z) is in the form of

J(z) = M(z)(2D− I)− D = Ψ(z)− Φ(z)PAT ,

where M(z) ∈ ∂proxtf ((2D− I)z + 2β), Ψ(z) = M(z)− I and
Φ(z) = 2M(z)− I.
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Basis Pursuit

Applications to the DRS Method

The `1 minimization problem:

min
x∈Rn

‖x‖1, s.t. Ax = b.

Let f (x) = 1Ω(Ax− b) and h(x) = ‖x‖1, where the set Ω = {0}.
The system of nonlinear equations is

F(z) = proxth(z)− proxtf (2proxth(z)− z) = 0.

Hence, a generalized Jacobian matrix of F(z) is in the form of

J(z) = M(z) + D(I − 2M(z)).

A generalized Jacobian matrix M(z) ∈ ∂proxth(z) is a diagonal
matrix with diagonal entries

Mii(z) =

{
1, |(z)i| > t,
0, otherwise.
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Basis Pursuit

Make the assumption that AA> = I. Then we can obtain

proxtf (z) = z− A>(Az− b).

A generalized Jacobian matrix D ∈ ∂proxtf ((2proxth(z)− z)) is
taken as follows

D = I − A>A.

Let W = (I − 2M(z)) and H = W + M(z) + µI. The diagonal
entries of matrix W and H are

Wii(z) =

{
−1, |(z)i| > t,
1, otherwise

and Hii(z) =

{
µ, |(z)i| > t,
1 + µ, otherwise.

Using the binomial inverse theorem, we obtain the inverse matrix

(J(z) + µI)−1 = (H − A>AW)−1

= H−1 + H−1A>(I − AWH−1A>)−1AWH−1.
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Basis Pursuit

Then WH−1 = 1
1+µ I − S, where S is a diagonal matrix with

diagonal entries

Sii(z) =

{ 1
µ + 1

1+µ , |(z)i| > t,
0, otherwise.

Hence, I − AWH−1A> = (1− 1
1+µ)I + ASA>.

Define the index sets

I(x) := {i : |(z)i| > t} = {i : Mii(x) = 1},
O(x) := {i : |(z)i| ≤ t} = {i : Mii(x) = 0}

AI(x) denote the matrix containing the column I(x) of A, then we
have

ASA> = (
1
µ

+
1

1 + µ
)AI(x)A

>
I(x).
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Basis Pursuit

Table: Total number of A- and AT - calls NA, CPU time (in seconds) and
relative error with dynamic ranges 60dB and 80dB

method ε : 10−2 ε : 10−4 ε : 10−6

time NA rerr time NA rerr time NA rerr
ADMM 7.44 599 1.90e-03 13.5 980 2.50e-06 18.7 1403 2.91e-08
ASSN 5.48 449 1.32e-03 9.17 740 1.92e-06 10.2 802 1.93e-08
SPGL1 55.3 2367 5.02e-03 70.7 2978 5.02e-03 89.4 3711 5.02e-03
method ε : 10−2 ε : 10−4 ε : 10−6

time NA rerr time NA rerr time NA rerr
ADMM 7.8 592 5.38e-04 13.8 1040 2.48e-06 17.7 1405 2.35e-08
ASSN 4.15 344 5.19e-04 7.92 618 1.21e-06 8.74 702 5.62e-09
SPGL1 32.2 1368 4.86e-04 56.1 2396 4.86e-04 67.4 2840 4.86e-04
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Basis Pursuit
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Basis Pursuit

iteration
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SDP

Consider the semi-definite programming(SDP)

min 〈C,X〉
s.t. AX = b,

X � 0

f (X) = 〈C,X〉+ 1{AX=b}(X).

h(X) = 1K(X), where K = {X : X � 0}.

Proximal Operator:

proxth(Z) = arg min
X

1
2
‖X − Z‖2

F + th(X)

Let Z = QΣQT be the spectral decomposition

proxtf (Y) = (Y + tC)−A∗(AY + tAC − b),

proxth(Z) = QαΣαQT
α,
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Semi-smooth Newton System

assumption: AA∗ = I

The binomial inverse theorem yields the inverse matrix

(Jk + µkI)−1 = (H − ATAW)−1

= H−1 + H−1AT(I − AWH−1AT)−1AWH−1.

computational cost O(n2 min{r, |n− r|}), where r is the rank of
primal variable.

computational cost O(
∑

i n2
i min{ri, |ni − ri|}), if there is a block

diagonal structure.
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Semi-smooth Newton method

Define T = Q̃LQ̃T , where L is a diagonal matrix with diagonal entries

Lii(z) =


1, (Λ)ii = 1,
ωµ

µ+1−ω , (Λ)ii = ω,

0, (Λ)ii = 0.

Then H−1 = 1
µ+1 I + 1

µ(µ+1) T and WH−1 = 1
1+µ I − ( 1

µ + 1
µ+1 )T.

Hence,

(J(Z) + µI)−1

=
1

µ(µ+ 1)
(µI + T)(I + A>(

µ2

2µ+ 1
I + ATA>)−1A(

µ

2µ+ 1
I − T)).

ATA>d = AQ(Ω0 ◦ (QT(D)Q))QT , where D = A∗d,

Ω0 =

[
Eαα lαᾱ
lTαᾱ 0

]
,

and Eαα is a matrix of ones and lij =
µkij

µ+1−kij

computational cost O(|α|n2)
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Switching between the ADMM and Newton steps

the reduced ratios of primal and dual infeasibilities

ωk
ηp

=
meank−5≤j≤kη

j
p

meank−25≤j≤k−20η
j
p

and ωk
ηq

=
meank−5≤j≤kη

j
q

meank−25≤j≤k−20η
j
q
.

Repeat:
Semi-smooth Newton steps (doSSN == 1)
Select Jk ∈ ∂BF(Zk) and solve the Newton system approximately.
Compute Uk = Zk + Sk. Then update Zk+1 and λk+1.
If Newton step is failed, set Nf = Nf + 1.
If Nf ≥ N̄f or the Newton step performs bad

Set doSSN = 0 and parameters for the ADMM steps

ADMM steps (doSSN == 0)
Perform an ADMM step. Equivalently, it defines
Zk+1 = Zk − F(Zk).
If the ADMM step performs bad

Set doSSN = 1, Nf = 0 and parameters of the Newton steps
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Comparison on electronic structure calculation

The data set are used in the paper of Nakata, et al. Thanks Prof.
Nakata Maho and Prof. Mituhiro Fukuta for sharing all data sets on
2RDM

solver:

SDPNAL: Newton-CG Augmented Lagrangian Method proposed
by Zhao, Sun and Toh
SDPNAL+: Enhanced version of SDPNAL by Yang, Sun and Toh
SSNSDP: the semi-smooth Newton method using stop rules
ηp < 3× 10−6 and ηd < 3× 10−7.

all experiments were performed on a computing cluster with an Intel
Xeon 2.40GHz CPU that processes 28 cores and 256GB RAM.

main criteria:

ηp =
‖A(X)− b‖2

max(1, ‖b‖2)
ηd =

‖A∗y− C − S‖F

max(1, ‖C‖F)

ηg =
|bTy− tr(CTX)|
max(1, tr(CTX))

err = bTy− energyfullCI
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Comparison on electronic structure calculation
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Figure: SSNSDP: Relative gap, primal infeasibility and dual infeasibility
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Comparison on electronic structure calculation

Figure: Comparison between ADMM and SSNSDP
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Comparison on electronic structure calculation
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Comparison on electronic structure calculation
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Comparison on electronic structure calculation

0 0.2 0.4 0.6 0.8 1

not more than 2 x times worse than the best

0

0.2

0.4

0.6

0.8

1

ra
ti
o
 o

f 
p
ro

b
le

m
s

error

SDPNAL

SDPNAL+

SSNSDP

(c) error

0 1 2 3 4

not more than 2 x times worse than the best

0

0.2

0.4

0.6

0.8

1

ra
ti
o
 o

f 
p
ro

b
le

m
s

cpu

SDPNAL

SDPNAL+

SSNSDP

(d) cpu time



56/62

Comparison on electronic structure calculation

success: max{ηp, ηd} ≤ 10−6

Figure: Comparison between SDPNAL, SDPNAL+ and SSNSDP
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Linear Programming

The classic linear programming problem

min
x∈Rn

cTx, s.t. Ax = b, x ≥ 0.

Let f (x) = cTx + 1K(x) where K := {x | x ≥ 0}.
Every element of the generalized Jacobian ∂PK at (2D− I)z + β
is a diagonal matrix with diagonal entries

Mii(z)


= 1, ((2D− I)z + β)i > 0,
= 0, ((2D− I)z + β)i < 0,
∈ [0, 1], ((2D− I)z + β)i = 0.

Choose M(z) such that Mii(z) = 1 when ((2D− I)z + β)i = 0.
we have{

Ψii(z) = 0, Φii(z) = 1, ((2D− I)z + β)i ≥ 0,
Ψii(z) = −1, Φii(z) = −1, ((2D− I)z + β)i < 0.
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Linear Programming

iteration
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Figure: residual history of the LP problem on n = 1000
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Outline

1 composite convex programs

2 Semi-smoothness of proximal mapping

3 semi-smooth Newton methods based on the primal
Approach
Numerical Results

4 Semi-smooth Newton method based on the dual (SDPNAL)
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SDP

A reference is: Zhao, Xin-Yuan, Defeng Sun, and Kim-Chuan Toh. “A
Newton-CG augmented Lagrangian method for semidefinite
programming." SIAM Journal on Optimization 20.4 (2010):
1737-1765.
http://epubs.siam.org/doi/abs/10.1137/080718206.

Consider the semi-definite programming (P)

min 〈C,X〉
s.t. AX = b,

X � 0

The dual problem (D) is

max b>y

s.t. A∗y + S = C,

S � 0

http://epubs.siam.org/doi/abs/10.1137/080718206
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SDPNAL

the augmented Lagrangian function:

Lσ(y, S,Xk) = −b>y + 〈X, S−A∗y + C〉+
σ

2
‖S−A∗y + C‖2

F

Starting from X0, the augmented Lagrangian method solves the
dual problem (D) by

(yk+1, Sk+1) = arg min
S�0,y∈Rm

Lσ(y, S,Xk),

Xk+1 = Xk + σ(Sk+1 −A∗yk+1 + C),

The variable S is eliminated as Sk+1 = ΠSn
+

(A∗yk+1 − C − Xk/σ),
where ΠSn

+
is the projection on semidefinite matrix cone.

Consequently, SDPNAL solves an equivalent form

yk+1 = arg min L̃σk(y,Xk) (1)
Xk+1 = ΠSn

+
(Xk − σ(A∗yk+1 − C)), (2)

where L̃σ(y,X) = bTy + 1
2σ (||ΠSn

+
(X − σ(A∗y− C))||2F − ||X||2F).
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SDPNAL

Then the subproblem (1) is minimized by using a semismooth
Newton method to certain accuracy. The gradient and an
alternative element of the generalized Hessian of L̃σ(y,X) with
respect to y is

∇yL̃σ(y,X) = b−AΠSn
+

(X − σ(A∗y− C)), (3)
V ∈ σA∂ΠSn

+
(X − σ(A∗y− C))A∗. (4)

For fixed y and X, the corresponding semi-smooth Newton step is

(V + εI)d = ∇yLσ(y,X), (5)

where ε is a small constant.
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