
ALTERNATING DIRECTION AUGMENTED LAGRANGIAN METHODS FOR

SEMIDEFINITE PROGRAMMING

ZAIWEN WEN† , DONALD GOLDFARB† , AND WOTAO YIN ‡

August 10, 2009

Abstract. We present an alternating direction method based on an augmented Lagrangian framework for solving semidef-

inite programming (SDP) problems in standard form. At each iteration, the algorithm, also known as a two-splitting scheme,

minimizes the dual augmented Lagrangian function sequentially with respect to the Lagrange multipliers corresponding to

the linear constraints, then the dual slack variables and finally the primal variables, while in each minimization keeping the

other variables fixed. Convergence is proved by using a fixed-point argument. A multiple-splitting algorithm is then proposed

to handle SDPs with inequality constraints and positivity constraints directly without transforming them to the equality con-

straints in standard form. Finally, numerical results for frequency assignment, maximum stable set and binary integer quadratic

programming problems are presented to demonstrate the robustness and efficiency of our algorithm.

Key words. semidefinite programming, alternating direction method, augmented Lagrangian method

AMS subject classifications. 90C06, 90C22, 90C30, 90C35

1. Introduction. In this paper we present an alternating direction method based on an augmented

Lagrangian framework for solving semidefinite programming (SDP) problems. These convex optimization

problems are solvable in polynomial time by interior point methods [24, 27, 31]. However, if the number of

constraints m in an SDP is of order O(n2) when the unknown positive semidefinite matrix is n× n, interior

point methods become impractical both in terms of the time (O(n6)) and the amount of memory (O(m2))

required at each iteration to form the m×m positive definite Schur complement matrix M and compute the

search direction by finding the Cholesky factorization of M . In comparison, the computational cost of each

iteration of our method is much cheaper, particularly, if any sparsity in the SDP constraints is exploited.

This enables it to solve very large SDPs efficiently.

First-order augmented Lagrangian approaches have been proposed for both the primal and dual formula-

tions of SDPs, and different ways have been used to minimize the augmented Lagrangian function depending

on how the positive semidefinite constraints are handled. In [3, 4], the positive definite variable X is replaced

by RR⊤ in the primal augmented Lagrangian function, where R is a low rank matrix, and then nonlinear

programming approaches are used. In [2, 6], a coordinate descent method and eigenvalue decomposition

are used to minimize the primal augmented Lagrangian function. In [29], by fixing any (n − 1)-dimensional

principal submatrix of X and using its Schur complement, the positive semidefinite constraint is reduced

to a simple second-order cone constraint and then a sequence of second-order cone programming problems

constructed from the primal augmented Lagrangian function are minimized. In [35], the positive semidefinite

constraint is represented implicitly by using a projection operator and a semismooth Newton approach com-

bined with the conjugate gradient method is proposed to minimize the dual augmented Lagrangian function.

The regularization methods [20] (and the related boundary point method [22]) are also based on a dual

augmented Lagrangian approach and they use an eigenvalue decomposition to maintain complementarity.

In fact, one variant of these methods is the same as our basic alternating direction method.

†Department of Industrial Engineering and Operations Research, Columbia University, New York, 10027, U.S.A.
(zw2109@columbia.edu, goldfarb@columbia.edu). Research supported in part by NSF Grant DMS 06-06712, ONR Grant
N00014-08-1-1118 and DOE Grant DE-FG02-08ER58562.

‡Department of Computational and Applied Mathematics, Rice University, Texas, 77005, U.S.A. (wotao.yin@rice.edu).
Research supported in part by NSF CAREER Award DMS-07-48839 and ONR Grant N00014-08-1-1101.

1

2

Alternating direction methods have been extensively studied to minimize the augmented Lagrangian

function for optimization problems arising from partial differential equations (PDEs) [11, 12]. In these

methods, the variables are partitioned into several blocks according to their roles, and then the augmented

Lagrangian function is minimized with respect to each block by fixing all other blocks at each inner iteration.

This simple idea has been applied to many other problem classes, such as, variational inequality problems [14,

15], linear programming [9], nonlinear convex optimization [1, 19, 7, 18, 26], maximal monotone operators [10]

and nonsmooth ℓ1 minimization arising from compressive sensing [28, 32, 34]. In [33], an alternating direction

method for SDP is presented by reformulating the complementary condition as a projection equation.

Our algorithm applies the alternating direction method within a dual augmented Lagrangian frame-

work. When our method is applied to an SDP in standard form, at each iteration it first minimizes the

dual augmented Lagrangian function with respect to the Lagrange multipliers corresponding to the linear

constraints, and then with respect to the dual slack variables while keeping the other variables fixed, after

which it updates the primal variables. This algorithm is very closely related to the regularization method in

[20]. While the theoretical algorithm in [20] updates the primal variable X only after a certain condition is

satisfied, the actual algorithm implemented in [20] (i.e., Algorithm 5.1 in [20]) updates the primal variable

X immediately after all other blocks are updated at each iteration, which is exactly our alternating direc-

tion method. The algorithms in [20] cannot be applied directly to SDPs with inequality constraints, and

in particular, with positivity constraints, i.e., every component of X is nonnegative. In order to preserve

the structure of these inequality constraints, like sparsity and orthogonality, we do not transform them to

equality constraints but add some extra steps to our alternating direction method to minimize the dual

augmented Lagrangian function with respect to the Lagrange multipliers corresponding to the inequality

constraints. This gives us a multiple-splitting alternating direction method. Numerical experiments on, for

example, frequency assignment problems show that the performance of our method is significantly better

than those in [20, 35].

Our contributions are as follows. Although the techniques for analyzing the alternating direction methods

for variational inequalities in [15] and a class of nonlinear optimization problems in [1] can be applied to

analyze our algorithm for SDPs in standard form, we present a different and simple convergence proof

by formulating our algorithm as a fixed point method. We note that the convergence properties of the

actual implementation of the regularization method in [20] has not been studied. Moreover, we present a

multiple-splitting alternating direction method to solve SDPs with inequality constraints directly without

transforming them into SDPs in standard form by introducing a lot of auxiliary variables and constraints.

The rest of this paper is organized as follows. We present an alternating direction augmented Lagrangian

method for SDP in standard form in subsection 2.1 and analyze its convergence in subsection 2.2, and then

extend this method to an expanded problem with inequality and positivity constraints in subsection 2.3. We

discuss practical issues related to the eigenvalue decomposition performed at each iteration, strategies for

adjusting the penalty parameter, the use of a step size for updating the primal variable X, termination rules

and how to detect stagnation to enhance the performance of our methods in section 3. Finally, numerical

results for frequency assignment, maximum stable set and binary integer quadratic programming problems

are presented in section 4 to demonstrate the robustness and efficiency of our algorithm.

1.1. Preliminaries. The set of n × n symmetric matrices is denoted by Sn and the set of n × n

symmetric positive semidefinite (positive definite) matrices is denoted by Sn
+ (Sn

++). The notation X � 0

(X ≻ 0) means that the matrix X ∈ Sn is positive semidefinite (positive definite). The notation X ≥ 0

(X > 0) means that every component of the matrix X is nonnegative (positive). The trace of X, i.e., the sum

Alternating Direction Augmented Lagrangian Methods for SDP 3

of the diagonal elements of X, is denoted by Tr(X). The inner product between two matrices A ∈ R
m×n and

B ∈ R
m×n is defined as 〈A,B〉 :=

∑
jk Aj,kBj,k = Tr(A⊤B). The Frobenius norm of a matrix A ∈ R

m×n is

defined as ‖A‖F :=
√∑

i,j A2
i,j .

2. Alternating direction augmented Lagrangian methods.

2.1. A two-splitting scheme for standard form SDPs. Consider the standard form SDP

(2.1) min
X∈Sn

〈C,X〉 s.t. A(X) = b, X � 0,

where the linear map A(·) : Sn → R
m is defined as

(2.2) A(X) :=
(〈

A(1),X
〉
, · · · ,

〈
A(m),X

〉)⊤
,

the matrices C,A(i) ∈ Sn, i = 1, · · · ,m, and the vector b ∈ R
m are given, and the unknown matrix X ∈ Sn

+.

Let vec(X) be a vector that contains the columns of the matrix X, stacked each on top of the next in the

order that they appear in the matrix, and mat(x) be a matrix X such that x = vec(X). Note that the

equation A(X) = b is equivalent to Avec(X) = b, where

A :=
(
vec(A(1)), · · · ,vec(A(m))

)⊤
∈ R

m×n2

.

The adjoint operator A∗ : R
m → Sn of A is defined as A∗(y) :=

∑m
i=1 yiA

(i) = mat(A⊤y). The operator

AA∗ : R
m → R

m is defined as A(A∗(y)) = (AA⊤)y and the operator A∗A : Sn → Sn is defined as

A∗(A(X)) = mat
((

A⊤A
)
vec(X)

)
.

We make the following assumption throughout our presentation.

Assumption 2.1. The matrix A has full row rank and the Slater condition holds for (2.1); that is, there

exists a matrix X̄ ≻ 0 satisfying A(X̄) = b.

The dual problem of (2.1) is

(2.3) min
y∈Rm,S∈Sn

−b⊤y s.t. A∗(y) + S = C, S � 0.

The augmented Lagrangian function for the dual SDP (2.3) corresponding to the linear constraints is defined

as:

Lµ(X, y, S) := −b⊤y + 〈X,A∗(y) + S − C〉 +
1

2µ
‖A∗(y) + S − C‖2

F ,

where X ∈ Sn and µ > 0. Starting from X0 = 0, the augmented Lagrangian method solves on the k-th

iteration

(2.4) min
y∈Rm,S∈Sn

Lµ(Xk, y, S), s.t. S � 0,

for yk+1 and Sk+1, and then updates the primal variable Xk+1 by

(2.5) Xk+1 := Xk +
A∗(yk+1) + Sk+1 − C

µ
.

4

Since solving problem (2.4) exactly is very expensive, we consider instead an alternating direction

method. Starting from X0 and S0 at the first iteration, we update on the kth iteration the variables y,

S and X by first minimizing Lµ(X, y, S) with respect to y to obtain yk+1 with X := Xk and S := Sk

fixed; then minimizing Lµ(X, y, S) with respect to S subject to S � 0 to obtain Sk+1 with X := Xk and

y := yk+1 fixed; and finally, updating Xk by (2.5); that is, we compute

yk+1 := arg min
y∈Rm

Lµ(Xk, y, Sk),(2.6a)

Sk+1 := arg min
S∈Sn

Lµ(Xk, yk+1, S), S � 0,(2.6b)

Xk+1 := Xk +
A∗(yk+1) + Sk+1 − C

µ
.(2.6c)

The first-order optimality conditions for (2.6a) are

∇yLµ(Xk, yk+1, Sk) := A(Xk) − b +
1

µ
A(A∗(yk+1) + Sk − C) = 0.

Since by Assumption 2.1 AA∗ is invertible , we obtain yk+1 := y(Sk,Xk), where

(2.7) y(S,X) := −(AA∗)−1 (µ(A(X) − b) + A(S − C)) .

By rearranging the terms of Lµ(Xk, yk+1, S), it is easily verified that problem (2.6b) is equivalent to

(2.8) min
S∈Sn

∥∥S − V k+1
∥∥2

F
, S � 0,

where V k+1 := V (Sk,Xk) and the function V (S,X) is defined as

(2.9) V (S,X) := C −A∗(y(S,X)) − µX.

Hence, we obtain the solution Sk+1 := V k+1
† := Q†Σ+Q⊤

† , where

QΣQ⊤ =
(
Q† Q‡

)(Σ+ 0

0 Σ−

)(
Q⊤

†
Q⊤

‡

)

is the spectral decomposition of the matrix V k+1, and Σ+ and Σ− are the nonnegative and negative eigen-

values of V k+1. It follows from the updating equation (2.6c) that

(2.10) Xk+1 := Xk +
A∗(yk+1) + Sk+1 − C

µ
=

1

µ
(Sk+1 − V k+1) =

1

µ
V k+1
‡ ,

where V k+1
‡ := −Q‡Σ−Q⊤

‡ . Note that Xk+1 is also the optimal solution of

(2.11) min
X∈Sn

∥∥µX + V k+1
∥∥2

F
, X � 0.

From the above observation, we arrive at the alternating direction augmented Lagrangian method in

Algorithm 1, below.

Remark 2.2. In the boundary point method [22] and regularization method [20], Xk is fixed until

Alternating Direction Augmented Lagrangian Methods for SDP 5

Algorithm 1: Alternating direction augmented Lagrangian method for SDP

Set X0 � 0 and S0 � 0.
for k = 0, 1, · · · do

Compute yk+1 according to (2.7).
Compute V k+1 and its eigenvalue decomposition, and set Sk+1 := V k+1

† .

Compute Xk+1 = 1
µ
(Sk+1 − V k+1).

1
µ
(Sk+1 − V k+1) is nearly feasible. However, the actual regularization method implemented in the numerical

experiments in [20] is exactly Algorithm 1.

Remark 2.3. If AA∗ = I, as is the case for many SDP relaxations of combinatorial optimization

problems, such as the maxcut SDP relaxation, the SDP relaxation of the maximum stable set problem and

the bisection SDP relaxation, step (2.6a), i.e., (2.7), is very inexpensive. If AA∗ 6= I, we can compute AA∗

and its inverse (or its Cholesky factorization) prior to executing Algorithm 1. If computing the Cholesky

factorization of AA∗ is very expensive, the strategies in [7, 10] can be used to compute an approximate

minimizer yk+1 in step (2.6a).

2.2. Convergence analysis of Algorithm 1. Although the techniques for analyzing the convergence

properties of the alternating direction methods for optimization problems arising from PDEs in [12], varia-

tional inequalities in [15] and a class of nonlinear optimization problems in [1] can be applied to our algorithm,

we present here a different and simple argument by formulating our algorithm as a fixed point method. For

any matrix V ∈ Sn, let the matrix
(
V†, V‡

)
be denoted by P(V). Hence, each iteration of Algorithm 1 can

be expressed as

(2.12) yk+1 := y(Sk,Xk) and
(
Sk+1, µXk+1

)
:= P(V k+1) = P(V (Sk,Xk)).

We first describe a result of the orthogonal decomposition.

Lemma 2.4. (Theorem 3.2.5 in [16], J.-J. Moreau) Let K be a closed convex cone and K⋄ be the polar

cone of K, that is, K⋄ := {s ∈ R
n : 〈s, x〉 ≤ 0 for all x ∈ K}. For the three elements x, x1 and x2 in R

n,

the properties below are equivalent:

(i) x = x1 + x2 with x1 ∈ K and x2 ∈ K⋄ and 〈x1, x2〉 = 0;

(ii) x1 = PK(x) and x2 = PK⋄(x),

where PK(x) is the projection of x on K.

The next lemma shows that any optimal solution of (2.1) is a fixed point of the equations (2.12).

Lemma 2.5. Suppose Assumption 2.1 holds. Then, there exists primal and dual optimal solutions

(X, y, S) for (2.1) and (2.3) and the following two statements are equivalent:

(i) (X, y, S) satisfies the KKT optimality conditions

A(X) = b, A∗(y) + S = C, SX = 0, X � 0, Z � 0.

(ii) (X, y, S) satisfies

y = y(S,X) and
(
S, µX

)
= P(V (S,X)).

Proof. The proof here is similar to Proposition 2.6 in [20]. Since the Slater condition holds, there exists

6

primal and dual optimal solution (X, y, S) for (2.1) and (2.3) so that statement (i) is true. Direct algebraic

manipulation shows that y = y(S,X) from statement (i). It follows from Lemma 2.4 that

S − µX = V (S,X), X � 0, S � 0, SX = 0,

is equivalent to S = V†(S,X) and µX = V‡(S,X). Hence, statement (i) implies statement (ii).

Now, suppose statement (ii) is true; i.e., S = V†(S,X) and µX = V‡(S,X). Since S − µX = V (S,X), it

follows from V (S,X) = C −A∗(y) − µX that S = C −A∗(y). From y = y(S,X), we obtain

(AA∗)y = µ(b −A(X)) + A(C − S) = µ(b −A(X)) + (AA∗)y,

which implies that A(X) = b. Hence, statement (ii) implies statement (i).

We now show that the operator P(V) is nonexpansive.

Lemma 2.6. For any V, V̂ ∈ Sn,

(2.13)
∥∥∥P(V) − P(V̂)

∥∥∥
F
≤ ‖V − V̂ ‖F ,

with equality holding if and only if V ⊤
† V̂‡ = 0 and V ⊤

‡ V̂† = 0.

Proof. We denote V†−V̂† by W† and V‡−V̂‡ by W‡. Since V ⊤
† V‡ = 0 and V̂ ⊤

† V̂‡ = 0, we obtain −W⊤
† W‡ =

V ⊤
† V̂‡ + V̂ ⊤

† V‡. The positive semidefinitess of the matrices V†, V‡, V̂†, V̂‡ � 0 implies that Tr(V ⊤
† V̂‡) ≥ 0 and

Tr(V̂ ⊤
† V‡) ≥ 0. Expanding terms of V − V̂ , we obtain

∥∥∥V − V̂
∥∥∥

2

F
= Tr

(
(W† − W‡)

⊤(W† − W‡)
)

= Tr
(
W⊤

† W† + W⊤
‡ W‡

)
− 2 Tr

(
W⊤

† W‡
)

=
∥∥∥P(V) − P(V̂)

∥∥∥
2

F
+ 2 Tr

(
V ⊤
† V̂‡ + V̂ ⊤

† V‡
)

≥
∥∥∥P(V) − P(V̂)

∥∥∥
2

F
,

which proves (2.13).

The following lemma shows that the operator V (S,X) is nonexpansive.

Lemma 2.7. For any S,X, Ŝ, X̂ ∈ Sn
+,

(2.14) ‖V (S,X) − V (Ŝ, X̂)‖F ≤
∥∥∥
(
S − Ŝ, µ(X − X̂)

)∥∥∥
F

with equality holding if and only if V − V̂ = (S − Ŝ) − µ(X − X̂).

Proof. From the definition of y(S,X) in (2.7), we have

y(Ŝ, X̂) − y(S,X) = (AA∗)−1
(
µA(X − X̂) + A(S − Ŝ)

)
,

which together with (2.9) gives

V (S,X) − V (Ŝ, X̂) = (C −A∗(y(S,X)) − µX) − (C −A∗(y(Ŝ, X̂)) − µX̂)

= A∗(y(Ŝ, X̂) − y(S,X)) + µ(X̂ − X)

= mat
(
−µ (I − M)vec(X − X̂) + Mvec(S − Ŝ)

)
,(2.15)

Alternating Direction Augmented Lagrangian Methods for SDP 7

where M := A⊤(AA⊤)−1A. Since M is an orthogonal projection matrix whose spectral radius is 1, we

obtain from (2.15) that

∥∥∥V (S,X) − V (Ŝ, X̂)
∥∥∥

2

F
=
∥∥∥µ (I − M)vec(X − X̂) − Mvec(S − Ŝ)

∥∥∥
2

2

≤ ‖µvec(X − X̂)‖2
2 + ‖vec(S − Ŝ)‖2

2(2.16)

=
∥∥∥
(
S − Ŝ, µ(X − X̂)

)∥∥∥
2

F
,

which proves (2.14).

If the equality in (2.14) holds, it also holds in (2.16); that is,

‖µ(I − M)vec(X − X̂)‖2
2 + ‖Mvec(S − Ŝ)‖2

2 = ‖µvec(X − X̂)‖2
2 + ‖vec(S − Ŝ)‖2

2.

This implies that Mvec(X − X̂) = 0 and (I − M)vec(S − Ŝ) = 0. Using this relations in (2.15), we obtain

V (S,X) − V (Ŝ, X̂) = mat
(
vec(S − Ŝ) − µvec(X − X̂)

)
,

which proves the second statement.

Lemma 2.8. Let (X∗, y∗, S∗), where y∗ = y(S∗,X∗), be an optimal solution of (2.1) and (2.3). Under

Assumption 2.1, if

(2.17) ‖P(V (S,X)) − P(V (S∗,X∗))‖F =
∥∥∥
(
S − S∗, µ(X − X∗)

)∥∥∥
F

,

then, (S, µX) is a fixed point, that is, (S, µX) = P(V (S,X)), and hence, (X, y, S), where y = y(S,X), is a

primal and dual optimal solutions of (2.1) and (2.3).

Proof. From Lemma 2.5, we have (S∗, µX∗) = P(V (S∗,X∗)). From Lemmas 2.6 and 2.7, we have

V (S,X) − V (S∗,X∗) = (S − S∗) − µ(X − X∗),

which implies that V (S,X) = S−µX. Since S and X are all positive semidefinite, and S⊤X = 0, we obtain

from Lemma 2.4 that (S, µX) = P(V (S,X)).

Given Lemmas 2.6, 2.7 and 2.8, we can prove convergence of Algorithm 1 by following the proof of

Theorem 4.5 in [13].

Theorem 2.9. The sequence {(Xk, yk, Sk)} generated by Algorithm 1 from any starting point (X0, y0, S0)

converges to a solution (X∗, y∗, S∗) ∈ X ∗, where X ∗ is the set of primal and dual solutions of (2.1) and

(2.3).

Proof. Since both P(·) and V (·, ·) are non-expansive, P(V (·, ·)) is also nonexpansive. Therefore,

{(Sk, µXk)} lies in a compact set and must have a limit point, say S̄ = limj→∞ Skj and X̄ = limj→∞ Xkj .

Also, for any (X∗, y∗, S∗) ∈ X ∗,

∥∥(Sk+1, µXk+1) − (S∗, µX∗)
∥∥

F
=
∥∥P(V (Sk, µXk)) − P(V (S∗, µX∗))

∥∥
F
≤
∥∥V (Sk, µXk) − V (S∗, µX∗)

∥∥
F

≤
∥∥(Sk, µXk) − (S∗, µX∗)

∥∥
F

,

8

which means that the sequence {‖(Sk, µXk) − (S∗, µX∗)‖F } is monotonically non-increasing. Therefore,

(2.18) lim
k→∞

∥∥(Sk, µXk) − (S∗, µX∗)
∥∥

F
=
∥∥(S̄, µX̄) − (S∗, µX∗)

∥∥
F

,

where (S̄, µX̄) can be any limit point of {(Sk, µXk)}. By the continuity of P(V (·, ·)), the image of (S̄, µX̄),

P(V (S̄, µX̄)) = lim
j→∞

P(V (Skj , µXkj)) = lim
j→∞

(Skj+1, µXkj+1),

is also a limit of {(Sk, µXk)}. Therefore, we have

∥∥P(V (S̄, µX̄)) − P(V (S∗, µX∗))
∥∥

F
=
∥∥(S̄, µX̄) − (S∗, µX∗)

∥∥
F

,

which allows us to apply Lemma 2.8 to get that (S̄, ȳ, µX̄), where ȳ = y(S̄, X̄), is an optimal solution to

problems (2.1) and (2.3). Finally, by setting (S∗, µX∗) = (S̄, µX̄) in (2.18), we get that

lim
k→∞

∥∥(Sk, µX̄k) − (S̄, µX̄)
∥∥

F
= lim

k→∞

∥∥(Skj , µX̄kj) − (S̄, µX̄)
∥∥

F
= 0,

i.e., {(Sk, µXk)} converges to its unique limit of (S̄, µX̄).

We now describe the relationship between the primal infeasibility ‖A(Xk+1)− b‖2 and dual infeasibility

‖C −A∗(yk+1) − Sk+1‖F and the difference between the matrices {V k}.
Corollary 2.10. Let {(Xk, yk, Sk)} be a sequence generated by Algorithm 1. Then

1. A(Xk+1) − b = 1
µ
A(Sk+1 − Sk) and ‖A(Xk+1) − b‖2 ≤ ‖A‖2

µ
‖V k+1 − V k‖F .

2. C −A∗(yk+1) − Sk+1 = µ(Xk − Xk+1) and ‖C −A∗(yk+1) − Sk+1‖F ≤ ‖V k+1 − V k‖F .

3. ‖V k+1 − V k‖F ≤ ‖V k − V k−1‖F .

Proof. 1). It follows from (2.7), (2.9) and Assumption 2.1 that

A(Xk+1) − b =
1

µ
A(Sk+1 − V k+1) − b

=
1

µ
A(Sk+1 − C) + A(Xk) − b + (b −A(Xk)) +

1

µ
A(C − Sk)

=
1

µ
A(Sk+1 − Sk).

Since the projection V k+1
† is nonexpansive, we obtain

‖A(Xk+1) − b‖2 ≤ ‖A‖2

µ
‖vec(Sk+1 − Sk)‖2 ≤ ‖A‖2

µ
‖V k+1 − V k‖F .

2) Rearranging the terms of (2.6c), we obtain the first part of statement 2. The nonexpansiveness of the

projection V k+1
‡ gives

‖C −A∗(yk+1) − Sk+1‖2 = ‖V k+1
‡ − V k

‡ ‖F ≤ ‖V k+1 − V k‖F .

3) From Lemmas 2.6 and 2.7, we obtain

‖V k+1 − V k‖F ≤
∥∥∥
(
Sk − Sk−1, µ(Xk − Xk−1)

)∥∥∥
F

=
∥∥∥
(
V k
† − V k−1

† , V k
‡ − V k−1

‡

)∥∥∥
F
≤ ‖V k − V k−1‖F .

Alternating Direction Augmented Lagrangian Methods for SDP 9

2.3. A multiple-splitting scheme for an expanded problem. Although SDP problems with in-

equality constraints can be put into the standard form (2.1), it is often more convenient to treat the inequality

constraints directly in order to preserve special structure of the constraints, like sparsity and orthogonality.

We now extend our alternating direction method (2.6a)-(2.6c) to solve an expanded SDP problem, that

includes, in particular, positivity constraints on the elements of the matrix X; i.e.,

(2.19) min
X∈Sn

〈C,X〉 , s.t. A(X) = b, B(X) ≥ d, X � 0, X ≥ 0,

where d ∈ R
q and the linear map B(·) : Sn → R

q is defined as

(2.20) B(X) :=
(〈

B(1),X
〉
, · · · ,

〈
B(q),X

〉)⊤
, B(i) ∈ Sn, i = 1, · · · , q.

As we did for the operator A, we define the operators B∗, BB∗ and B∗B by introducing

B =
(
vec(B(1)), · · · ,vec(B(q))

)⊤
∈ R

q×n2

.

We also make the following assumption.

Assumption 2.11. The matrices A and B have full row rank and a refined Slater condition holds for

(2.19); that is, there exists a positive definite matrix X̄ satisfying A(X̄) = b, B(X̄) ≥ d and X̄ ≥ 0.

The dual of problem (2.19) is

(2.21) min
y∈Rm,v∈Rq,S∈Sn,Z∈Sn

−b⊤y − d⊤v, s.t. A∗(y) + B∗(v) + S + Z = C, v ≥ 0, S � 0, Z ≥ 0.

The augmented Lagrangian function for the dual SDP (2.21) corresponding to the linear constraints is defined

as:

Lµ(X, y, v, Z, S) := −b⊤y − d⊤v + 〈X,A∗(y) + B∗(v) + S + Z − C〉(2.22)

+
1

2µ
‖A∗(y) + B∗(v) + S + Z − C‖2

F ,

where X ∈ Sn and µ > 0. Starting from X0 � 0, v0 ≥ 0, Z0 ≥ 0 and S0 � 0, our alternating direction

method computes new iterates similar to the procedure (2.6a)-(2.6c) as follows

yk+1 := arg min
y∈Rm

Lµ(Xk, y, vk, Zk, Sk),(2.23a)

vk+1 := arg min
v∈Rq

Lµ(Xk, yk+1, v, Zk, Sk), v ≥ 0,(2.23b)

Zk+1 := arg min
Z∈Sn

Lµ(Xk, yk+1, vk+1, Z, Sk), Z ≥ 0,(2.23c)

Sk+1 := arg min
S∈Sn

Lµ(Xk, yk+1, vk+1, Zk+1, S), S � 0,(2.23d)

Xk+1 := Xk +
A∗(yk+1) + B∗(vk+1) + Sk+1 + Zk+1 − C

µ
.(2.23e)

Note that yk+1, Sk+1 and Xk+1 can be computed in the same fashion as in (2.7), (2.8) and (2.10), respectively.

By rearranging the terms of Lµ(Xk, yk+1, v, Zk, Sk), it is easily verified that problem (2.23b) is equivalent

10

to the strictly convex quadratic program

(2.24) min
v∈Rn

(
B
(

Xk +
1

µ
Y k+1

)
− d

)⊤
v +

1

2µ
v⊤(BB∗)v, v ≥ 0,

where Y k+1 := A∗(yk+1) + Sk + Zk −C. By rearranging the terms of Lµ(Xk, yk+1, vk+1, Z, Sk), it is easily

verified that problem (2.23c) is equivalent to

min
Z∈Sn

∥∥Z − Uk+1
∥∥2

F
, Z ≥ 0,

where Uk+1 := C−A∗(yk+1)−B∗(vk+1)−Sk−µXk. Hence, the solution of problem (2.23c) is Zk+1 = Uk+1
+ ,

the positive part of Uk+1, that is, (Uk+1
+)i,j := max(Uk+1

ij , 0).

3. Practical Issues. In this section, we discuss practical issues related to the eigenvalue decomposition

performed at each iteration, strategies for adjusting the penalty parameter, the use of a step size for updating

the primal variable X, termination rules and how to detect stagnation to enhance the performance of our

methods. Our focus is on procedures (2.6a)-(2.6c) for problem (2.1), but our discussion applies equally to

the expanded problem (2.19).

3.1. Eigenvalue decomposition. One of the bottlenecks of our alternating direction method is the

computation of the eigenvalue decomposition. Fortunately, for many problems in practice, either the primal

solution X or the dual solution S is a low rank matrix. For example, the primal variable X in the maxcut

SDP relaxation often has low rank while the dual variable S in frequency assignment problem often has low

rank. Moreover, since the optimal solution pair (X, y, S) satisfies the complementary condition XS = 0,

the matrices X and S share the same set of eigenvectors and the positive eigenvalues of X (S) correspond

to zero eigenvalues of S (X). Therefore, we only need to compute either V k
† , the part corresponding to the

positive eigenvalues of V k, or V k
‡ , the part corresponding to the negative eigenvalues of V k, at iteration k.

Specifically, the following adaptive scheme can be used at the end of iteration k − 1 to decide whether V k
†

or V k
‡ should be computed. Suppose that V k−1

† has been computed and let κ+(V k−1) be the total number

of the positive eigenvalues of V k−1. If κ+(V k−1) ≤ n
2 , this suggests that Sk might have low rank and we

compute V k
† . Otherwise, it is possible that Xk has low rank and we compute V k

‡ . If the total number of the

negative eigenvalues κ−(V k−1) of V k−1 is known, a similar strategy can be used.

There are two types of methods, direct and iterative, for computing selected eigenvalues and eigenvectors

of a real symmetric matrix V . Direct methods, which reduce V to tridiagonal form and then compute the

required eigenvalues and eigenvectors from the tridiagonal matrix, are suitable for small and medium sized

matrices. Since n is less than 5000 in our numerical experiments, the code “DSYEVX” in LAPACK works

fairly well. Iterative methods, like the Lanczos algorithm (for example, “ARPACK”), require only matrix-

vector products and hence they are suitable for sparse matrices or matrices for which the required matrix-

vector products are cheap. If the matrices C and A∗(y) are sparse or have low rank, then advantage can be

taken of these structures since V := C − A∗(y) − µX. Since iterative methods require O(n3) operations if

O(n) eigenvalues need to be computed, they are not competitive with direct methods in this case. Hence,

iterative methods should be used only if either V k
† or V k

‡ is expected to have low rank.

Note from Corollary 2.10 that the primal infeasibility ‖A(Xk+1) − b‖2 and dual infeasibility ‖C −
A∗(yk+1) − Sk+1‖F are bounded by the difference ‖V k − V k+1‖F which is nonincreasing. Hence, when

the alternative direction method converges slowly, ‖V k − V k+1‖F is often quite small. Hence, the spectral

Alternating Direction Augmented Lagrangian Methods for SDP 11

decomposition of V k+1 is close to that of V k. However, neither the direct nor the iterative methods mentioned

above can take advantage of a good initial guess. Assume that V k
† := Qk

†Σ
k
+(Qk

†)
⊤ has low rank. Since

V k
† is the optimal solution of minS�0 ‖S − V k‖2

F , we can use nonlinear programming approaches, like the

limited-memory BFGS method, to obtain Rk+1 := arg minR∈Rn×κ ‖RR⊤ − V k+1‖2
F starting from R :=

Qk
† (Σ

k
+)

1

2 , and set Sk+1 := Rk+1(Rk+1)⊤, where κ := κ+(V k). Similarly, since V k
‡ is the optimal solution of

minS�0 ‖S + V k‖2
F , we can compute V k+1

‡ from the optimal solution of minR∈Rn×κ ‖RR⊤ + V k+1‖2
F , where

κ := κ−(V k).

3.2. Updating the penalty parameter. Although our analysis shows that our alternating direc-

tion method Algorithm 1 converges for any fixed penalty parameter µ > 0, numerical performance can be

improved by adjusting the value of µ. We next present a strategy for doing this dynamically. Since the

complementary condition XkSk = 0 is always satisfied, the pair (Xk, yk, Sk) is close to optimal if the primal

and dual infeasibilities ‖A(Xk+1) − b‖2 and ‖C − A∗(yk+1) − Sk+1‖F are small. Hence, we can tune µ so

that the primal and dual infeasibilities are balanced, that is, ‖A(Xk+1) − b‖2 ≈ ‖C −A∗(yk+1) − Sk+1‖F .

Specifically, we have from Corollary 2.10 that

A(Xk+1) − b =
1

µ
A(Sk+1 − Sk) and C −A∗(yk+1) − Sk+1 = µ(Xk − Xk+1),

which suggests that the primal and dual infeasibilities are proportional to 1
µ

and µ, respectively. Therefore,

we decrease (increase) µ by a factor γ (1
γ
), 0 < γ < 1, if the primal infeasibility is less than (greater than) a

multiple of the dual infeasibility for a number of consecutive iterations. In addition, µ is required to remain

within an interval [µmin, µmax], where 0 < µmin < µmax < ∞.

3.3. Step size for updating the primal variable X. For many alternating direction methods [11,

12, 15, 19, 7, 18, 26], numerical performance is often improved if a step size is added to the update of the

Lagrange multiplier. Here, we replace step (2.6c) by

(3.1) Xk+1 := Xk + ρ
A∗(yk+1) + Sk+1 − C

µ
= (1 − ρ)Xk +

ρ

µ
(Sk+1 − V k+1) := (1 − ρ)Xk + ρX̄k+1,

where ρ ∈ (0, 1+
√

5
2) and X̄k+1 := 1

µ
(Sk+1 − V k+1). Convergence of this variant of the algorithm can be

proved in the same fashion as in [15]. Specifically, the following property holds.

Theorem 3.1. Let (X∗, y∗, S∗) be an optimal solution of (2.1) and (2.3), ρ ∈ (0, 1+
√

5
2) and T =

2 − 1
2 (1 + ρ − ρ2). Then, we have

‖Xk+1 − X∗‖2
F +

ρ

µ2
‖Sk+1 − S∗‖2

F +
ρ(T − ρ)

µ2
‖A∗(yk+1) + Sk+1 − C‖2

F(3.2)

≤ ‖Xk − X∗‖2
F +

ρ

µ2
‖Sk − S∗‖2

F +
ρ(T − ρ)

µ2
‖A∗(yk) + Sk − C‖2

F

− (1 + ρ − ρ2)ρ

3µ2

(
‖A∗(yk+1) + Sk+1 − C‖2

F + ‖Sk − Sk+1‖2
F

)
.

Hence, we obtain

(3.3) lim
k→∞

(
‖A∗(yk+1) + Sk+1 − C‖2

F + ‖Sk − Sk+1‖2
F

)
= 0.

12

Based on Theorem 3.1, we can show that both the primal and dual infeasibilities and the violation of the

complementary condition converge to zero. From statement 1 of Corollary (2.10), we have

‖A(Xk+1) − b‖2 ≤ ‖A(X̄k+1) − b‖2 + ‖A(Xk+1) −A(X̄k+1)‖2(3.4)

≤ 1

µ
‖A‖2 ‖Sk+1 − Sk‖F + ‖A‖2 ‖Xk+1 − X̄k+1‖F .

We obtain from (3.1) that

‖Xk+1Sk+1‖F = (1 − ρ)‖XkSk+1‖F ≤ (1 − ρ)
(
‖(Xk − X̄k+1)Sk+1‖F + ‖X̄k+1Sk+1‖F

)
(3.5)

= (1 − ρ)‖(Xk − X̄k+1)Sk+1‖F ≤ (1 − ρ)‖(Xk − X̄k+1)‖F ‖Sk+1‖F .

It follows from (3.1) and (3.3) that

(3.6) lim
k∞

‖Xk+1 − Xk‖F = 0, lim
k∞

‖X̄k+1 − Xk‖F = 0, lim
k∞

‖Xk+1 − X̄k+1‖F = 0.

Combining (3.3)-(3.6), we obtain

lim
k→∞

‖A∗(yk+1) + Sk+1 − C‖2
F = 0, lim

k→∞
‖A(Xk+1) − b‖2

F = 0, lim
k→∞

‖Xk+1Sk+1‖F = 0.

3.4. Termination rules and detection of stagnation. Since the rate of convergence of first-order

methods can slow down as the iterates approach an optimal solution, it is critical to detect this stagnation

and stop properly. However, it is difficult to predict whether an algorithm can get out of a region in which

it is temporarily trapped and then resume a fast rate of convergence. Hence, it is usually beneficial to allow

some flexibility in the termination rules. Similar to the rules used in the Seventh DIMACS Implementation

Challenge, we measure the infeasibilities and closeness to optimality for the primal and dual problems as

follows

(3.7) pinf =
‖A(X) − b‖2

1 + ‖b‖2
, dinf =

‖C + S + Z −A∗(y)‖F

1 + ‖C‖1
, gap =

|b⊤y − 〈C,X〉 |
1 + |b⊤y| + 〈C,X〉 .

We stop our algorithm when

δ := max{pinf, dinf, gap} ≤ ǫ,

for ǫ > 0. We use “it stag” to count the number of consecutive iterations that δ does not decrease below the

best value obtained thus far and stop if the following criteria are satisfied:

(3.8) (it stag > h1 and δ <= 10ǫ) or (it stag > h2 and δ <= 102ǫ) or (it stag > h3 and δ <= 103ǫ),

where 1 < h1 < h2 < h3 are integers representing different levels of difficulty.

The complete pseduo-code for our algorithm SDPAD (SDP Alternating Direction) is presented in Algo-

rithm 2. SDPAD uses eleven parameters, the values of only a few of which are critical to its convergence

and performance. The default value of the termination tolerance ǫ is 10−6, and h1, h2 and h3 are used to

detect stagnation. The following parameters are for adjusting the penalty parameter µ: the initial value of

µ is 5, and its minimal and maximal values µmin and µmax are set to 10−4 and 104, respectively, the factor

for reducing (increasing) µ is γ = 0.5, and this is done if there are h4 consecutive iterations in which the

Alternating Direction Augmented Lagrangian Methods for SDP 13

ratio of the primal to the dual infeasibility is less than or equal to η1 (greater than η2). The step size ρ

for updating X is set to 1.6. We choose the initial iterate X0 = I and S0 = 0. Note that SDPAD can be

extended naturally to the expanded problem (2.19); we shall also refer to the resulting algorithm as SDPAD .

Algorithm 2: SDPAD

Set 0 < µmin ≤ µ ≤ µmax < +∞, ǫ > 0, γ ∈ (0, 1), 0 < η1 ≤ η2 < ∞, ρ ∈ (0, 1+
√

5
2), 1 < h1 < h2 < h3

and h4 > 1. Set X0 � 0 and S0 � 0. Set eigS = true, ref = +∞, it stag = 0, it pinf = 0 and
it dinf = 0.
for k = 0, 1, · · · do

S1 Update yk+1, Sk+1 and Xk+1:
Compute yk+1 according to (2.7) and V k+1 according to (2.9).
if eigS == true then

Compute V k+1
† , set Sk+1 := V k+1

† and Xk+1 = 1
µ
(Sk+1 − V k+1).

if κ(V k+1
†) ≥ n

2 then set eigS = false.

else

Compute V k+1
‡ , set Sk+1 := V k+1 + V k+1

‡ and Xk+1 = 1
µ
V k+1
‡ .

if κ(V k+1
‡) ≥ n

2 then set eigS = true.

Set Xk+1 := (1 − ρ)Xk + ρXk+1.
S2 Check optimality and detect stagnation:

Compute δ := max{pinf, dinf, gap}.
if δ ≤ ǫ then return the solution.
if δ ≤ ref then set ref := δ and it stag = 0 else set it stag = it stag + 1.
if condition (3.8) is satisfied then return the solution.

S3 Update penalty parameter µ:
if pinf/dinf ≤ η1 then

Set it pinf = it pinf + 1 and it dinf = 0.
if it pinf ≥ h4 then set µ = max(γµ, µmin) and it pinf = 0.

else if pinf/dinf > η2 then
Set it dinf = it dinf + 1 and it pinf = 0.
if it dinf ≥ h4 then set µ = min(1

γ
µ, µmax) and it dinf = 0.

4. Numerical Results. Although the numerical results that we present in this section are limited to

three special classes of SDP problems, they illustrate the effectiveness of our alternating direction methods.

The main parts of our code were written in C Language MEX-files in MATLAB (Release 7.3.0), and all

experiments were performed on a Dell Precision 670 workstation with an Intel Xeon 3.4GHZ CPU and 6GB

of RAM.

4.1. Frequency assignment relaxation. In this subsection, we demonstrate the effectiveness of SD-

PAD on the SDP relaxations of frequency assignment problems and compare the results with results obtained

using the code SDPNAL [35]. These problems (see equations (4) and (5) on page 363 in [5], or equation

(2) on page 5 of [21]) arise from wireless communication networks and contain both equality and inequality

constraints. Let G = (V,E) be an undirected graph with vertex set V = {1, · · · , r} and edge set E ⊆ V ×V ,

and let W ∈ Sr be a weight matrix for G such that wi,j = wj,i is the weight associated with edge (i, j) ∈ E.

For those edges (i, j) /∈ E, we assume wi,j = wj,i = 0. Let T ⊆ E be a given edge subset. These problems

14

can be formulated as:

min
〈

1
2k

diag(We) + k−1
2k

W,X
〉

s.t. Xi,j ≥ −1
k−1 , ∀(i, j) ∈ E\T,

Xi,j = −1
k−1 , ∀(i, j) ∈ T,

diag(X) = e, X � 0.

(4.1)

Using the matrices corresponding to the edges in T and the constraint diag(X) = e to construct the operator

A, and the matrices corresponding to the edges in E\T to construct the operator B, we can formulate (4.1)

as the expanded problem (2.19) without the positivity constraints X ≥ 0. We replaced the constraints

Xij = −1
k−1 by Xij/

√
2 = −1√

2(k−1)
and Xij ≥ −1

k−1 by Xij/
√

2 ≥ −1√
2(k−1)

, hence, AA∗ = I, BB∗ = I and A
and B are orthogonal to each other. Therefore, the optimal solution of the subproblems (2.23a) and (2.23b)

are explicitly available:

yk+1 := −
(
µ(A(Xk) − b) + A(Sk − C)

)
and vk+1 := max

(
−
(
µ(B(Xk) − d) + B(Sk − C)

)
,0
)
.

To accommodate the inequality constraints, the primal infeasibility was measured by

pinf =
‖A(X) − b‖2 + ‖min(B(X) − d,0)‖2

1 + ‖b‖2
.

Since the matrices corresponding to the operators A and B do not have to be stored, the memory required

by our implementation is quite small.

The parameters of SDPNAL were set to their default values. The iteration counter set points h1, h2

and h3 were set to 20, 150 and 300, respectively, the iteration counter h4 for changing µ was set to 50 and

the ratios η1 and η2 were set to 1. We stopped SDPAD when the total number of iterations reached 2000.

All other parameters were set to their default values. A summary of the computational results is presented

in Table 4.1. In that table, m̂ denotes the total number m + q of equality and inequality constraints, “itr”

denotes the total number of iterations performed and “cpu” denotes the CPU time reported in the format

of “hours:minutes:seconds”. Since running SDPNAL on “fap25” and “fap36” is very time consuming (for

example, in the results reported in [35], SDPNAL took more than 65 hours to solve problem “fap36”), we

did not run SDPNAL on our own computer on these two problems and the results presented here were taken

from Table 3 in [35]. Note that the numerical results of SDPNAL on problems from “fap01” to “fap12”

in Table 4.1 are slightly different from those reported in Table 3 in [35]. Since the results in [35] were

obtained from a PC with Intel Xeon 3.2GHZ and 4GB of RAM which has a very similar performance profile

to the computer that we used, the numbers reported in our table and Table 3 in [35] are very similar and

the comparison between them is meaningful. From these two tables, we can see that SDPAD is faster than

SDPNAL for achieving a duality gap of almost the same order. The results of the boundary point method

“mprw.m” reported in Table 4 in [35] are much worse than those of SDPAD . Since the implementation in

“mprw.m” is essentially an alternating direction method applied to SDPs in standard form, we can conclude

that treating inequality constraints directly can greatly improve the performance of such methods.

We now compare the numerical results of our alternating direction methods obtained using ρ = 1 and

ρ = 1.6 by using performance profiles as proposed in [8]. Specifically, performance plots for the duality gap

and the CPU time are presented in Figures 4.1(a) and (b), respectively. These figures show that the variant

using ρ = 1.6 is both faster than the variant using ρ = 1 and achieves a smaller duality gap.

Alternating Direction Augmented Lagrangian Methods for SDP 15

Table 4.1

Computational results on computing frequency assignment problems

SDPAD SDPNAL
name n m̂ pobj dobj pinf dinf itr gap cpu gap cpu
fap01 52 1378 3.2873028e-2 3.2882685e-2 2.78e-7 3.94e-7 607 9.06e-6 0.35 1.39e-7 6.31
fap02 61 1866 1.0769673e-3 1.0239101e-3 2.18e-6 1.94e-5 666 5.29e-5 0.49 1.15e-5 4.12
fap03 65 2145 4.9412374e-2 4.9410752e-2 5.89e-6 4.30e-6 840 1.48e-6 0.75 2.27e-6 7.44
fap04 81 3321 1.7487540e-1 1.7484595e-1 3.09e-6 2.21e-6 718 2.18e-5 1.21 1.53e-5 19.69
fap05 84 3570 3.0828829e-1 3.0830258e-1 3.49e-6 3.76e-6 768 8.84e-6 1.32 1.09e-5 31.59
fap06 93 4371 4.5936245e-1 4.5937955e-1 5.69e-6 5.72e-6 506 8.91e-6 1.07 1.73e-5 29.84
fap07 98 4851 2.1176348e+ 2.1176865e+ 4.54e-6 4.95e-6 543 9.89e-6 1.26 5.75e-6 29.88
fap08 120 7260 2.4358398e+ 2.4363324e+ 1.76e-5 8.74e-6 424 8.39e-5 1.57 5.93e-6 25.25
fap09 174 15225 1.0797819e+1 1.0797814e+1 7.99e-7 9.98e-7 505 2.06e-7 4.77 2.86e-6 59.67
fap10 183 14479 9.2596367e-3 9.7648925e-3 3.22e-6 5.46e-6 1250 4.96e-4 14.93 7.93e-5 1:50
fap11 252 24292 2.9313742e-2 2.9842171e-2 3.26e-6 3.21e-6 1654 4.99e-4 49.57 1.89e-4 5:15
fap12 369 26462 2.7277446e-1 2.7376889e-1 2.59e-6 3.19e-6 2000 6.43e-4 2:34 1.60e-4 13:14

fap25∗ 2118 322924 1.2863215e+1 1.2880243e+1 1.40e-5 1.63e-5 2000 6.37e-4 7:17:08 1.1e-4 10:53:22
fap36∗ 4110 1154467 6.9828490e+1 6.9859402e+1 2.03e-5 1.48e-5 2000 2.20e-4 53:14:12 2.5e-5 65:25:07

Fig. 4.1. Performance profiles of two variants of SDPAD for frequency assignment problems

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

gap

ρ=1.6
ρ=1

(a) gap

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

ρ=1.6
ρ=1

(b) cpu

4.2. The SDP relaxation of the maximum stable set problem. Given a graph G with edge set

E, two SDPs relaxations of the maximum stable set problem are

θ(G) = max{
〈
C⊤,X

〉
, Xij = 0, (i, j) ∈ E, 〈I,X〉 = 1, X � 0},(4.2)

θ+(G) = max{
〈
C⊤,X

〉
, Xij = 0, (i, j) ∈ E, 〈I,X〉 = 1, X � 0, X ≥ 0},(4.3)

where C = ee⊤. We scaled the constraints so that AA∗ = I, i.e., we replaced the constraints Xij = 0 by

Xij/
√

2 = 0 and 〈I,X〉 = 1 by 1√
n
〈I,X〉 = 1√

n
. The matrix C was also scaled by n. The tests problems were

taken from [17, 23, 25]. The numbers h1, h2 and h3 were set to 20, 50 and 150, respectively, the iteration

counter h4 for changing µ was set to 100 and the ratios η1 and η2 were set to 1. We stopped SDPAD when the

total number of iterations reached 1000. All other parameters were set to their default values. Summaries

of the computational results for θ(G) and θ+(G) are presented in Tables 4.2 and 4.3, respectively. In these

tables, the duality “gap” was measured in the original scale, but “pinf” and “dinf” were computed for the

scaled problems. Since running SDPNAL on all the test problems is very time consuming (for example, in the

results reported in [35], SDPNAL took almost 81 hours to compute θ+(G) on problem “1et.2048”), we did not

run SDPNAL on our own computer on any of the θ(G) and θ+(G) or BIQ (see next subsection) problems.

16

Table 4.2

Computational results on computing θ(G)

SDPAD SDPNAL
name n m̂ pobj dobj pinf dinf itr gap cpu gap cpu
theta102 500 37467 -3.8390626e+1 -3.8390551e+1 8.76e-7 6.27e-7 256 9.67e-7 47 1.6e-8 50
theta103 500 62516 -2.2528588e+1 -2.2528572e+1 2.85e-7 9.42e-7 257 3.33e-7 57 4.6e-8 1:00
theta104 500 87245 -1.3336159e+1 -1.3336141e+1 3.40e-7 9.72e-7 260 6.53e-7 48 7.6e-8 58
theta123 600 90020 -2.4668678e+1 -2.4668655e+1 3.42e-7 9.71e-7 263 4.57e-7 1:43 4.1e-8 1:34
MANN-a27 378 703 -1.3276623e+2 -1.3276388e+2 8.45e-7 3.50e-6 503 8.81e-6 27 8.3e-8 07
sanr200-0.7 200 6033 -2.3836177e+1 -2.3836162e+1 7.83e-7 9.98e-7 219 3.04e-7 04 1.4e-7 04
c-fat200-1 200 18367 -1.2000003e+1 -1.1999980e+1 1.00e-6 1.76e-7 302 9.15e-7 04 8.5e-8 09
ham-10-2 1024 23041 -1.0239734e+2 -1.0239930e+2 4.72e-7 3.16e-6 597 9.51e-6 22:8 9.0e-8 02
ham-8-3-4 256 16129 -2.5599950e+1 -2.5599909e+1 9.92e-8 9.94e-7 199 8.04e-7 05 1.3e-8 10
ham-9-5-6 512 53761 -8.5332165e+1 -8.5334776e+1 5.70e-7 4.51e-6 1000 1.52e-5 2:48 1.4e-6 1:33
brock400-1 400 20078 -3.9701971e+1 -3.9701904e+1 9.75e-7 8.06e-7 254 8.30e-7 25 1.7e-8 26
keller4 171 5101 -1.4012231e+1 -1.4012258e+1 5.06e-7 9.88e-7 249 9.32e-7 03 1.3e-8 05
p-hat300-1 300 33918 -1.0067984e+1 -1.0067963e+1 7.58e-7 6.81e-7 764 9.96e-7 37 5.3e-7 1:45
G43 1000 9991 -2.8063120e+2 -2.8062688e+2 2.84e-6 3.91e-6 935 7.68e-6 21:17 4.2e-8 1:33
G44 1000 9991 -2.8058951e+2 -2.8058568e+2 3.65e-6 4.21e-6 933 6.82e-6 21:02 3.3e-7 2:59
G45 1000 9991 -2.8017918e+2 -2.8018294e+2 4.02e-6 3.88e-6 957 6.70e-6 21:27 5.6e-8 2:51
G46 1000 9991 -2.7984557e+2 -2.7984014e+2 3.18e-6 5.46e-6 927 9.69e-6 21:02 2.3e-7 2:53
G47 1000 9991 -2.8190252e+2 -2.8189748e+2 4.86e-6 6.01e-6 880 8.91e-6 19:41 1.3e-7 2:54
2dc.512 512 54896 -1.1777815e+1 -1.1770773e+1 2.24e-5 2.57e-5 1000 2.87e-4 5:51 1.7e-4 32:16
1dc.1024 1024 24064 -9.6053190e+1 -9.5999280e+1 7.82e-5 5.10e-5 747 2.79e-4 24:26 2.9e-6 41:26
1et.1024 1024 9601 -1.8460646e+2 -1.8434339e+2 1.93e-4 1.32e-4 603 7.11e-4 20:03 1.8e-6 1:01:14
1tc.1024 1024 7937 -2.0705051e+2 -2.0663863e+2 4.16e-4 5.21e-4 611 9.93e-4 21:47 2.2e-6 1:48:04
1zc.1024 1024 16641 -1.2866647e+2 -1.2866658e+2 9.72e-7 3.78e-7 608 4.16e-7 23:15 3.3e-8 4:15
2dc.1024 1024 169163 -1.8654205e+1 -1.8641209e+1 1.85e-5 2.71e-5 1000 3.39e-4 49:05 9.9e-5 2:57:56
1dc.2048 2048 58368 -1.7527338e+2 -1.7492237e+2 2.82e-4 2.16e-4 473 9.99e-4 2:50:44 1.5e-6 6:11:11
1et.2048 2048 22529 -3.4297575e+2 -3.4229432e+2 1.78e-4 4.05e-4 904 9.93e-4 4:54:57 8.8e-7 7:13:55
1tc.2048 2048 18945 -3.7567281e+2 -3.7486271e+2 1.79e-4 4.48e-4 1000 1.08e-3 5:15:14 7.9e-6 9:52:09
1zc.2048 2048 39425 -2.3739409e+2 -2.3739845e+2 1.42e-6 3.10e-6 941 9.17e-6 6:39:07 1.2e-6 45:16
2dc.2048 2048 504452 -3.0698999e+1 -3.0679246e+1 1.88e-5 8.37e-6 1000 3.17e-4 7:12:50 4.4e-5 15:13:19

Hence, the SDPNAL results in Tables 4.2 and 4.3 are taken from Tables 5 and 6 in [35]. Because the

computer used to obtain the results in [35] has very similar performance characteristics to the computer that

we used, the comparison presented in Tables 4.2 and 4.3 is meaningful. Specifically, when we run SDPNAL

on smaller and easier problems, such as “fap01”-“fap12”, on our computer, the cpu time differed from those

reported in [35] by an insignificant amount. From Table 4.2, we can see that SDPAD achieves approximately

the same level of duality gap as SDPNAL on problems like “theta102” to “theta123”, “c-fat200-1” and

“brock400-1”. Although SDPNAL is faster than SDPAD on problems like “hamming-10-2” and “G43” to

“G47”, SDPAD is faster than SDPNAL on “2dc.512”. From Table 4.3, we can see that SDPAD is faster than

SDPNAL on most problems except “hamming-9-5-6”, “hamming-10-2”, “1zc.1024” and “1zc.2048” while

achieving almost the same level of duality gap. Finally, performance plots for numerical results obtained

using ρ = 1 and ρ = 1.6 for computing θ(G) and θ+(G) are presented in Figures 4.2(a) and (b), and Figures

4.3(a) and (b), respectively. When both the final duality gap and CPU time are considered, these plots again

show that using a fixed step size of ρ = 1.6 is preferable to a step size of ρ = 1.

4.3. Binary Integer Quadratic Programming Problem. In this subsection, we report on how

SDPAD performs on SDP relaxations of binary integer quadratic programming problems and compare these

results to those obtained using SDPNAL. These problems have the form:

(4.4)

min

〈(
Q 0

0 0

)
,X

〉

s.t. Xii − Xn,i = 0, i = 1, · · · , n − 1,

Xnn = 1, X � 0, X ≥ 0,

Alternating Direction Augmented Lagrangian Methods for SDP 17

Table 4.3

Computational results on computing θ+(G)

SDPAD SDPNAL
name n m̂ pobj dobj pinf dinf itr gap cpu gap cpu
theta102 500 37467 -3.8066274e+1 -3.8066252e+1 2.94e-7 9.58e-7 281 2.84e-7 1:01 8.4e-8 3:31
theta103 500 62516 -2.2377445e+1 -2.2377422e+1 3.27e-7 9.52e-7 262 4.85e-7 1:01 2.3e-8 3:28
theta104 500 87245 -1.3282631e+1 -1.3282610e+1 3.57e-7 9.55e-7 266 7.35e-7 52 1.6e-7 2:35
theta123 600 90020 -2.4495182e+1 -2.4495152e+1 3.77e-7 9.43e-7 267 6.02e-7 1:39 1.2e-7 6:44
MANN-a27 378 703 -1.3275956e+2 -1.3276174e+2 8.98e-7 4.08e-6 530 8.17e-6 32 1.6e-7 35
sanr200-0.7 200 6033 -2.3633314e+1 -2.3633293e+1 8.61e-7 9.57e-7 228 4.47e-7 05 2.9e-7 11
c-fat200-1 200 18367 -1.2000012e+1 -1.1999991e+1 4.71e-7 2.04e-7 306 8.40e-7 04 2.1e-7 36
ham-8-3-4 256 16129 -2.5599951e+1 -2.5599909e+1 9.91e-8 9.94e-7 199 8.05e-7 05 2.7e-10 05
ham-9-5-6 512 53761 -5.8666560e+1 -5.8666522e+1 6.49e-8 7.58e-7 472 3.25e-7 2:19 2.6e-7 42
ham-10-2 1024 23041 -8.5333069e+1 -8.5333237e+1 4.99e-8 5.49e-7 653 9.78e-7 27:58 4.2e-7 4:35
brock400-1 400 20078 -3.9331005e+1 -3.9330926e+1 9.98e-7 7.54e-7 258 9.83e-7 29 3.5e-9 1:45
keller4 171 5101 -1.3466089e+1 -1.3466006e+1 3.61e-6 9.01e-6 331 2.98e-6 05 3.7e-7 43
p-hat300-1 300 33918 -1.0020244e+1 -1.0020212e+1 1.34e-6 5.93e-7 567 1.50e-6 29 7.9e-7 6:50
G43 1000 9991 -2.7972840e+2 -2.7973289e+2 4.40e-6 5.45e-6 864 8.02e-6 20:22 2.1e-7 52:00
G44 1000 9991 -2.7975221e+2 -2.7974864e+2 4.95e-6 4.36e-6 893 6.36e-6 21:14 5.7e-8 49:32
G45 1000 9991 -2.7931027e+2 -2.7931528e+2 5.11e-6 4.08e-6 916 8.96e-6 22:54 2.4e-8 50:25
G46 1000 9991 -2.7904079e+2 -2.7903549e+2 4.34e-6 5.19e-6 886 9.47e-6 22:48 3.3e-8 44:38
G47 1000 9991 -2.8089994e+2 -2.8089501e+2 6.05e-6 5.66e-6 838 8.76e-6 21:11 5.1e-9 40:27
2dc.512 512 54896 -1.1385823e+1 -1.1383769e+1 9.43e-6 9.09e-6 1000 8.64e-5 5:10 3.8e-4 2:25:15
1dc.1024 1024 24064 -9.5563960e+1 -9.5552471e+1 2.13e-5 8.50e-6 1000 5.98e-5 57:20 1.4e-5 5:03:49
1et.1024 1024 9601 -1.8229378e+2 -1.8210159e+2 1.18e-4 2.16e-4 651 5.26e-4 36:04 1.1e-5 6:45:50
1tc.1024 1024 7937 -2.0440122e+2 -2.0425679e+2 1.65e-4 2.67e-4 799 3.53e-4 49:13 8.7e-4 10:37:57
1zc.1024 1024 16641 -1.2813904e+2 -1.2800286e+2 5.71e-5 1.80e-5 506 5.30e-4 28:22 1.6e-7 40:13
2dc.1024 1024 169163 -1.7711337e+1 -1.7709936e+1 3.81e-6 2.37e-6 1000 3.85e-5 50:34 7.3e-4 11:57:25
1dc.2048 2048 58368 -1.7477173e+2 -1.7442175e+2 2.01e-4 9.45e-5 517 9.99e-4 4:25:17 9.7e-5 35:52:44
1et.2048 2048 22529 -3.3883524e+2 -3.3837436e+2 1.76e-4 2.66e-4 659 6.80e-4 5:15:09 4.0e-5 80:48:17
1tc.2048 2048 18945 -3.7115486e+2 -3.7070213e+2 1.86e-4 3.97e-4 862 6.09e-4 6:35:33 1.4e-3 73:56:01
1zc.2048 2048 39425 -2.3739370e+2 -2.3739764e+2 3.58e-7 4.60e-6 953 8.27e-6 7:14:21 2.3e-7 2:13:04
2dc.2048 2048 504452 -2.8789604e+1 -2.8786706e+1 4.84e-6 2.79e-6 1000 4.95e-5 5:45:25 2.7e-3 45:21:42

Fig. 4.2. Performance profiles of two variants of SDPAD for computing θ(G)

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

gap

ρ=1.6
ρ=1

(a) gap

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

ρ=1.6
ρ=1

(b) cpu

where Q ∈ R
(n−1)×(n−1). We replaced the constraints Xii−Xn,i = 0 by

√
2
3 (Xij − Xn,i) = 0 and the matrix

Q was scaled by its Frobenious norm. The computational results obtained on the BIQ instances described

in [30] are presented in Table 4.4, where “best upper bound” is the best known upper bound reported in

[30], and “%pgap” and “%dgap” were computed as

%pgap :=

∣∣∣∣
best upper bound − pobj

best upper bound

∣∣∣∣× 100% and %dgap :=

∣∣∣∣
best upper bound − dobj

best upper bound

∣∣∣∣× 100%.

The numbers h1, h2 and h3 were set to 50, 400 and 500, respectively, the iteration counter h4 for changing µ

was set to 0 and the ratios η1 and η2 were set to 1 and 100, respectively. We stopped SDPADwhen the total

18

Fig. 4.3. Performance profiles of two variants of SDPAD for computing θ+(G)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

gap

ρ=1.6
ρ=1

(a) gap

0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

ρ=1.6
ρ=1

(b) cpu

Table 4.4

Computational results on the BIQ problems

SDPAD SDPNAL
name n pinf dinf gap itr best upper bound %pgap %dgap cpu %dgap cpu
be200.3.1 201 7.09e-7 5.17e-7 9.99e-7 2484 -2.5453000e+4 8.891 8.891 32 8.891 10:29
be200.3.3 201 8.73e-6 1.42e-6 6.43e-6 2296 -2.8023000e+4 5.194 5.195 31 5.192 12:09
be200.3.5 201 2.66e-6 3.45e-8 3.55e-8 4782 -2.6355000e+4 6.519 6.519 1:04 6.519 10:38
be200.3.7 201 8.88e-6 1.78e-6 9.97e-6 2447 -3.0483000e+4 3.730 3.732 32 3.730 9:43
be200.3.9 201 1.00e-6 1.75e-8 1.50e-8 6940 -2.4683000e+4 7.106 7.106 1:31 7.106 8:28
be200.8.1 201 1.93e-6 3.06e-8 2.77e-8 4267 -4.8534000e+4 4.812 4.812 57 4.811 9:41
be200.8.3 201 8.79e-6 1.03e-6 1.00e-5 2107 -4.3207000e+4 7.051 7.053 28 7.052 10:53
be200.8.5 201 8.60e-6 1.48e-6 9.99e-6 1885 -4.1482000e+4 6.725 6.723 25 6.723 9:53
be200.8.7 201 8.59e-6 4.73e-7 9.97e-6 2186 -4.6828000e+4 5.394 5.391 28 5.392 4:30
be200.8.9 201 5.57e-6 7.95e-7 4.60e-6 2146 -4.3241000e+4 5.213 5.214 29 5.213 12:16
be250.1 251 9.99e-7 3.10e-8 8.74e-9 5923 -2.4076000e+4 4.334 4.334 2:14 4.332 16:41
be250.3 251 6.12e-6 4.58e-6 7.82e-6 2747 -2.2923000e+4 4.698 4.697 1:02 4.698 17:17
be250.5 251 9.98e-7 2.21e-8 1.03e-8 6326 -2.1057000e+4 6.258 6.258 2:24 6.254 14:30
be250.7 251 2.30e-6 5.18e-8 7.88e-9 5256 -2.4095000e+4 4.250 4.250 1:57 4.250 14:00
be250.9 251 1.00e-6 5.61e-8 8.25e-9 6532 -2.0051000e+4 6.713 6.713 2:30 6.713 17:13
bqp250-1 251 6.41e-6 2.57e-6 9.97e-6 3005 -4.5607000e+4 4.509 4.507 1:08 4.508 17:42
bqp250-3 251 3.18e-6 2.06e-6 7.68e-7 3006 -4.9037000e+4 4.159 4.159 1:05 4.160 10:36
bqp250-5 251 7.80e-6 1.10e-6 9.08e-6 3129 -4.7961000e+4 4.260 4.261 1:10 4.260 19:03
bqp250-7 251 5.63e-7 3.21e-7 9.98e-7 4801 -4.6757000e+4 4.630 4.630 1:46 4.630 16:36
bqp250-9 251 6.64e-6 3.47e-6 9.24e-6 3006 -4.8916000e+4 5.277 5.279 1:06 5.276 16:12
bqp500-1 501 2.36e-7 3.92e-7 1.00e-6 8960 -1.1658600e+5 8.044 8.044 19:44 8.045 1:00:59
bqp500-3 501 2.42e-7 3.61e-7 1.00e-6 8824 -1.3081200e+5 5.842 5.841 19:04 5.842 1:01:47
bqp500-5 501 4.44e-7 4.03e-7 9.99e-7 8288 -1.2548700e+5 6.857 6.857 18:41 6.857 1:36:43
bqp500-7 501 2.75e-7 4.83e-7 9.99e-7 9153 -1.2220100e+5 7.603 7.602 20:16 7.603 1:25:26
bqp500-9 501 2.82e-7 4.88e-7 1.00e-6 8439 -1.2079800e+5 7.856 7.856 18:54 7.857 1:24:40
gka2e 201 9.99e-7 1.65e-8 2.07e-8 4375 -2.3395000e+4 6.508 6.508 57 6.506 7:23
gka4e 201 8.35e-6 2.75e-7 3.42e-6 2735 -3.5594000e+4 4.583 4.582 36 4.582 11:25
gka1f 501 4.43e-7 5.83e-7 9.99e-7 8106 -6.1194000e+4 7.133 7.133 17:57 7.133 1:28:54
gka3f 501 3.43e-7 5.27e-7 9.99e-7 7785 -1.3803500e+5 8.778 8.777 17:04 8.778 1:31:34
gka5f 501 3.78e-7 7.40e-7 1.00e-6 8849 -1.9050700e+5 8.612 8.612 18:58 8.613 1:25:48

number of iterations reached 10000. The minimum penalty parameter µmin is set to 0.1. All other parameters

were set to their default values. Again, we did not run SDPNAL on our own computer but presented the

results reported in Table 8 in [35] in Table 4.4. From this table, we can see that SDPAD is faster than

SDPNAL for achieving comparable lower bounds. Finally, performance plots for numerical results obtained

using ρ = 1 and ρ = 1.6 are presented in Figures 4.4(a) and (b). When both the final duality gap and CPU

time are considered, these plots again show that using a fixed step size of ρ = 1.6 is preferable to using a

step size of ρ = 1.

5. Conclusion. In this paper, we presented alternating direction augmented Lagrangian methods for

solving semidefinite programming (SDP) problems. At each inner iteration, the algorithm minimizes the dual

Alternating Direction Augmented Lagrangian Methods for SDP 19

Fig. 4.4. Performance profiles of two variants of SDPAD for the BIQ problems

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

gap

ρ=1.6
ρ=1

(a) gap

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

not more than 2x times worse than the best

%
 o

f p
ro

bl
em

s

cpu

ρ=1.6
ρ=1

(b) cpu

augmented Lagrangian function with respect to each block of dual variable separately while other blocks

are fixed and then updates the primal variables. For the version of our algorithm that uses a unit step size

ρ = 1, complementary is enforced by computing partial eigenvalue decompositions at each iteration. The

special structure of the constraints, such as sparsity and orthogonality, can often be used to simplify the

computation when solving the subproblems. Our method can handle SDPs with inequality and positivity

constraints directly without transforming them to equality constraints. Since the low rank structure of the

optimal solution is often exposed after relatively few iterations from our numerical experience, we plan to

explore how to take advantage of this to improve the efficiency of our algorithm.

Acknowledgements. We want to thank Kim-Chuan Toh and Defeng Sun for sharing their code SDP-

NAL and for providing the data files for the frequency assignment and maximum stable set problems. We

also want to thank Samuel Burer for sharing his code SDPLR and Andreas Stathopoulos for his helpful

comments on iterative methods for eigenvalue decomposition.

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation: numerical methods, Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1989.

[2] S. Burer, Optimizing a polyhedral-semidefinite relaxation of completely positive programs, manuscript, Department of

Management Sciences, University of Iowa, Iowa City, IA 52242-1994, USA, December 2008. Submitted to Mathematical

Programming Computation.

[3] S. Burer and R. D. C. Monteiro, A nonlinear programming algorithm for solving semidefinite programs via low-rank

factorization, Math. Program., 95 (2003), pp. 329–357.

[4] , Local minima and convergence in low-rank semidefinite programming, Math. Program., 103 (2005), pp. 427–444.

[5] S. Burer, R. D. C. Monteiro, and Y. Zhang, A computational study of a gradient-based log-barrier algorithm for a

class of large-scale SDPs, Math. Program., 95 (2003), pp. 359–379. Computational semidefinite and second order

cone programming: the state of the art.

[6] S. Burer and D. Vandenbussche, Solving lift-and-project relaxations of binary integer programs, SIAM J. Optim., 16

(2006), pp. 726–750 (electronic).

[7] G. Chen and M. Teboulle, A proximal-based decomposition method for convex minimization problems, Math. Program-

ming, 64 (1994), pp. 81–101.

[8] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002),

pp. 201–213.

[9] J. Eckstein and D. P. Bertsekas, An alternating direction method for linear programming. LIDS-P, 1967. Cambridge,

20

MA, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology.

[10] J. Eckstein and D. P. Bertsekas, On the Douglas-Rachford splitting method and the proximal point algorithm for

maximal monotone operators, Math. Programming, 55 (1992), pp. 293–318.

[11] M. Fortin and R. Glowinski, Augmented Lagrangian methods, vol. 15 of Studies in Mathematics and its Applications,

North-Holland Publishing Co., Amsterdam, 1983. Applications to the numerical solution of boundary value problems,

Translated from the French by B. Hunt and D. C. Spicer.

[12] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, vol. 9

of SIAM Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,

1989.

[13] E. T. Hale, W. Yin, and Y. Zhang, Fixed-point continuation for l1-minimization: methodology and convergence, SIAM

J. Optim., 19 (2008), pp. 1107–1130.

[14] B. He, L.-Z. Liao, D. Han, and H. Yang, A new inexact alternating directions method for monotone variational

inequalities, Math. Program., 92 (2002), pp. 103–118.

[15] B. S. He, H. Yang, and S. L. Wang, Alternating direction method with self-adaptive penalty parameters for monotone

variational inequalities, J. Optim. Theory Appl., 106 (2000), pp. 337–356.

[16] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. I, vol. 305 of Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 1993.

Fundamentals.

[17] D. S. Johnson and M. A. Trick, eds., Cliques, coloring, and satisfiability, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 26, American Mathematical Society, Providence, RI, 1996. Papers from the workshop

held as part of the 2nd DIMACS Implementation Challenge in New Brunswick, NJ, October 11–13, 1993.

[18] K. C. Kiwiel, C. H. Rosa, and A. Ruszczyński, Proximal decomposition via alternating linearization, SIAM J. Optim.,

9 (1999), pp. 668–689.

[19] S. Kontogiorgis and R. R. Meyer, A variable-penalty alternating directions method for convex optimization, Math.

Programming, 83 (1998), pp. 29–53.

[20] J. Malick, J. Povh, F. Rendl, and A. Wiegele, Regularization methods for semidefinite programming, SIAM Journal

on Optimization, 20 (2009), pp. 336–356.

[21] G. Pataki and S. Schmieta, The dimacs library of semidefinite-quadratic-linear programs, tech. rep., Center, Columbia

University, 1999.

[22] J. Povh, F. Rendl, and A. Wiegele, A boundary point method to solve semidefinite programs, Computing, 78 (2006),

pp. 277–286.

[23] N. J. A. Sloane, Challenge problems: Independent sets in graphs. http://research.att.com/ njas/doc/graphs.html.

[24] M. J. Todd, Semidefinite optimization, Acta Numer., 10 (2001), pp. 515–560.

[25] K.-C. Toh, Solving large scale semidefinite programs via an iterative solver on the augmented systems, SIAM J. Optim.,

14 (2003), pp. 670–698 (electronic).

[26] P. Tseng, Alternating projection-proximal methods for convex programming and variational inequalities, SIAM J. Optim.,

7 (1997), pp. 951–965.

[27] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.

[28] Y. Wang, J. Yang, W. Yin, and Y. Zhang, A new alternating minimization algorithm for total variation image

reconstruction, SIAM J. Imaging Sci., 1 (2008), pp. 248–272.

[29] Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg, Row by row methods for semidefinite programming, tech. rep., Dept

of IEOR, Columbia University, 2009.

[30] A. Wiegele, Biq mac library - a collection of max-cut and quadratic 0-1 programming instances of medium size, tech.

rep., 2007.

[31] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of semidefinite programming, International Series in

Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000. Theory, algorithms,

and applications.

[32] J. Yang, Y. Zhang, and W. Yin, An efficient tvl1 algorithm for deblurring multichannel images corrupted by impulsive

noise, tech. rep., Rice University, 2008.

[33] Z. Yu, Solving semidefinite programming problems via alternating direction methods, J. Comput. Appl. Math., 193 (2006),

pp. 437–445.

[34] Y. Zhang, User’s guide for yall1: Your algorithms for l1 optimization, tech. rep., Rice University, 2009.

[35] X. Zhao, D. Sun, and K. Toh, A newton-cg augmented lagrangian method for semidefinite programming, tech. rep.,

Department of Mathematics, National University of Singapore, 2008.

