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Trust, but Verify: Fast and Accurate Signal
Recovery from 1-bit Compressive Measurements

Jason N. Laska, Zaiwen Wen, Wotao Yin, and Richard G. Baraniuk

Abstract—The recently emerged compressive sensing (CS)
framework aims to acquire signals at reduced sample rates
compared to the classical Shannon-Nyquist rate. To date, the
CS theory has assumed primarily real-valued measurements; it
has recently been demonstrated that accurate and stable signal
acquisition is still possible even when each measurement is
quantized to just a single bit. This property enables the design
of simplified CS acquisition hardware based around a simple
sign comparator rather than a more complex analog-to-digital
converter; moreover, it ensures robustness to gross non-linearities
applied to the measurements. In this paper we introduce a
new algorithm — restricted-step shrinkage (RSS) — to recover
sparse signals from 1-bit CS measurements. In contrast to
previous algorithms for 1-bit CS, RSS has provable convergence
guarantees, is about an order of magnitude faster, and achieves
higher average recovery signal-to-noise ratio. RSS is similar in
spirit to trust-region methods for non-convex optimization on the
unit sphere, which are relatively unexplored in signal processing
and hence of independent interest.

Index Terms—1-bit compressive sensing, quantization, consis-
tent reconstruction, trust-region algorithms

I. INTRODUCTION

THE great leap forward in digital processing over the
last few decades has created an insatiable demand for

the digitization of ever wider bandwidth signals and ever
higher resolution images and video. In turn, this has led to an
increased burden on signal acquisition devices, forcing them to
sample faster or pack more sensors onto an imaging array. The
emergence of these high resolution devices has also created
a new problem — we now create more data than can be
stored, transmitted, or in some cases even processed [1]. This
phenomenon has been termed the data deluge.

To deal with the data deluge, a new acquisition frame-
work, compressive sensing (CS), has emerged. This framework
tackles both the acquisition and data deluge problems in the
following way. Suppose that a conventional Nyquist sampling
system acquires N samples; however, only K coefficients are
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non-zero, i.e., the signal is K-sparse. Rather than acquiring
all N samples, the CS framework explains that, for a small
constant C ∼ 1 − 10, only M = CK log(N/K) � N mea-
surements need be acquired to capture the salient information
about the signal, and in fact recover the signal itself [2, 3]. This
theory can be extended to signals that are not exactly K-sparse
and signals where the K elements are coefficients in some
transform basis. In practice, fewer measurements translates to
slower sampling rates, fewer sensors, or shorter sensing times.
It also implies that the number of values to store or transmit
is closer to the minimum K values that would be needed if
the signal was known a priori.

In theory, CS measurements are assumed to be real-valued.
In practice, measurements are quantized; that is, real-values
are mapped to a finite set of values represented by bits.
Quantization introduces measurement error, which can be
treated as noise and mitigated using a variety of new CS
techniques [4–8].

Remarkably, it has been shown that signals can be recovered
with high accuracy from measurements quantized to just one
bit each, at the cost of slightly increasing C [9]. This fact
has numerous practical implications. First, the number of bits
needed to be transmitted or stored is drastically reduced. In
many applications the goal is to reduce the total number of
bits, not just the number of measurements. Quantization to
one bit per measurement is one approach toward meeting this
goal. Second, simple 1-bit hardware quantizers consist only
of a comparator and can operate at high speeds. Thus, we
can reduce the sampling complexity by reducing the number
of bits per measurement, rather than decreasing the number
of measurements. Third, because 1-bit encoding is invariant
under many kinds of non-linearities, 1-bit CS techniques are
robust to gross non-linearities applied to measurements [10].
These deep practical benefits justify the further study of 1-bit
quantization and signal recovery in CS.

Our work in this paper builds on the 1-bit CS setup and
recovery problem proposed in [9]. In this framework, quantiza-
tion is achieved by only retaining the signs of measurements,
and for recovery, we find the sparsest signal, such that the
signs of its measurements match those that we acquired, i.e.,
the solution is consistent. Since absolute scaling information is
lost, we impose a constraint that the signal has unit energy, a
non-convex constraint. While algorithms have been previously
proposed to deal with this constraint in this framework [9, 11],
they do not have provable convergence.

In this paper, we introduce a new 1-bit CS signal recovery
algorithm that we dub the restricted-step shrinkage (RSS)
algorithm. First, we formulate an algorithm, RSS-outer, to
solve the 1-bit CS problem using the augmented Lagrangian



2 SEPTEMBER 2010

optimization framework. Second, we employ a restricted-step
subroutine, RSS-inner, to solve a non-convex subproblem.
The subroutine is computationally efficient, since it adaptively
chooses its step-sizes and step directions in similar fashion to
trust-region techniques [12]. Specifically, RSS-inner iteratively
solves for the optimal value of a smoothed approximation of
the objective function within a ball of a given radius. If this
results in a feasible point, then the radius is increased in the
next iteration; otherwise it is decreased.

The hallmarks of the RSS algorithm include: provable con-
vergence, orders of magnitude speedup compared to existing
techniques, and improved consistency or feasibility perfor-
mance compared to existing techniques. This is demonstrated
with a detailed numerical comparison between the RSS algo-
rithm and those in the literature.

The organization of this paper is as follows. Section II de-
fines some terminology used in this paper. Section III reviews
the current literature on 1-bit CS and Section IV describes the
basic procedure of trust-region methods. Section V introduces
the RSS algorithm for 1-bit CS and provides convergence
guarantees. Section VI demonstrates the performance of our
algorithm and compares it with previous methods. We con-
clude in Section VII with a discussion the feasibility of this
problem, and possible future directions of this work.

II. TERMINOLOGY

In the remainder of this paper, we will use the following
terms. A stationary point of an optimization problem is a
point that satisfies the Karush-Kuhn-Tucker (KKT) first-order
optimality conditions [13]. By convergence we mean that an
algorithm converges to a stationary point of the objective from
any starting point, but not necessarily to a global minimizer of
the objective. We say a point x is a cluster point of sequence
{xs}s∈N if for any ε > 0 there exist an infinite number of
points of {xs} lying in the ε-ball of x. Note that the sequence
{xs} may not converge. A feasible solution is a solution
such that all constraints are satisfied. The subgradient ∂f of
function f(x) at point x0 is defined as any vector z such that

f(x)− f(x0) ≥ z(x− x0). (1)

III. BACKGROUND ON COMPRESSIVE SENSING

A. Compressive sensing

In the CS framework, we acquire a signal x ∈ RN via the
linear measurements

y = Φx, (2)

where Φ is an M × N measurement matrix modeling the
sampling system and y ∈ RM is the vector of samples
acquired. If x is K-sparse when represented in the sparsity
basis Ψ, i.e., x = Ψβ with ‖β‖0 := |supp(β)| ≤ K,1 then one
can acquire only M = O(K log(N/K)) measurements and
still recover the signal x [2, 3]. A similar guarantee can be
obtained for approximately sparse, or compressible, signals.
In this paper, without the loss of generality, we fix Ψ = I , the
identity matrix, implying that x = β.

1‖ · ‖0 denotes the `0 quasi-norm, which simply counts the number of
nonzero entries of a vector.

Signal recovery can be performed via the optimization

x̂← min
x
‖x‖1 s.t. Φx = y, (3)

where ‖x‖1 =
∑
i |xi|. Under certain conditions on Φ, this

program will recover K-sparse x exactly [14]. In particular,
it is sufficient for Φ to have the restricted isometry property
(RIP)

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22, (4)

for all K-sparse x and δ > 0. The RIP is exhibited with high
probability by a large class of random matrices. Specifically,
matrices whose entries are drawn independently from a sub-
Gaussian distribution are admissible [15].

While convex optimization techniques such as (3) are a
powerful method for CS signal recovery, there also exist a
variety of alternative algorithms that are commonly used in
practice and for which comparable performance guarantees
exist. In particular, greedy algorithms such as CoSaMP are
known to satisfy similar guarantees to (3), but under slightly
stronger assumptions on Φ [16]. Furthermore, alternative re-
covery strategies based on (3), often tailored for measurement
noise, have been developed and analyzed [5, 7, 9, 17–22].

B. 1-bit compressive sensing

In practice measurements are quantized; that is, the real
valued elements of y are mapped to a finite set of values,
encoded by bits. Quantization inherently induces error on the
measurements and, in most practical cases, the measurements
cannot be represented exactly with a finite number of bits. The
quantization of CS measurements has recently motivated new
analysis and in many cases inspired several new algorithms [4–
8]. In this paper, we focus on a particularly coarse quantization
not considered in these works, where each measurement is
represented by only a single bit, i.e., the measurement’s sign.

The 1-bit CS setup is as follows. Let the 1-bit quantized
measurements be denoted as

ys = sgn(Φx), (5)

where the function sgn(·) denotes the sign of the variable,
element-wise, and zero values are assigned to be +1. Note
that the scaling of both the signal and the measurements is
lost with this representation.

In this setup, M is not only the number of measurements
acquired but also the number of bits acquired. Thus, the ratio
M/N can be considered the “bits per coefficient” of the
original N -length signal. In sharp contrast to conventional CS
settings, this means that in cases where hardware allows, it
may actually be beneficial to acquire M > N measurements.

Let the matrix Y have the elements of ys along the diagonal
and zero elsewhere. We can approximately recover sparse
signals up to a scaling factor with the following optimization
program [9]:

x̂← min
x
‖x‖1 s.t. Y Φx ≥ 0 and ‖x‖2 = 1. (6)

Much like (3), the `1 objective favors sparse solutions. The
first constraint enforces consistency between the 1-bit quan-
tized measurements and the solution. Since the signal scaling
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information is lost, the second constraint forces the solution
to lie on the unit sphere, and ensures a nontrivial solution. As
in all quanitzation schemes, the accuracy of the solution will
be dependent on the number of bits acquired.

To implement (6), the authors of [9] propose a modified
version of fixed point continuation (FPC) [23]. FPC is modified
by using the well-known technique of projecting the gradient
and the intermediate solutions onto the sphere to enforce the
constraint. While this modification is effective in adapting
some optimization methods to the unit norm constraint, it
exhibits poor performance within FPC. In addition to optimiza-
tion techniques, a greedy algorithm, known as matching sign
pursuit (MSP), has also been proposed [11]. This algorithm
has empirically been shown to find good solutions but lacks
any provable guarantees. It also requires that one solve a
non-convex subproblem that can lead to slow computational
performance. We compare the performance of 1-bit FPC and
MSP against our proposed method in Section VI.

C. Benefits of 1-bit compressive sensing

There are numerous benefits to the 1-bit CS technique. First,
efficient hardware quantizers can be built to operate at high
speeds, because the quantizer can be a simple comparator
that merely tests if a measurement is above or below zero.
Second, significantly fewer bits need be stored or transmitted
for a fixed number of measurements. Thus, significant gains
are made when the cost of transmission is high. This benefit
can work in conjunction with the simple hardware that reduces
the cost of signal acquisition. Third, it has been shown that
the program (6) can be used to recover signals with gross
non-linearities applied to the measurements [10]. In particular,
suppose a non-linearity f(·) is applied to the measurements. If
the f(·) preserves the sign of the measurements, then clearly
(6) can be still be used to recover x with the same performance
as using the non-linearity-free measurements. Additionally, if
we assume that the non-linearity preserves the relationship

f(xi) < f(xi+1) if xi < xi+1,

then the program

x̂← min
x
‖x‖1 s.t. Y ′DΦx ≥ 0 and ‖x‖2 = 1, (7)

can be used to recover x with similar guarantees as (6), where
D is a difference matrix with 1’s along the diagonal and −1’s
along the first sub-diagonal, and Y ′ is a diagonal matrix with
sign(diff(f(Φx))) along the diagonal, with diff(x) = xi+1 −
xi, for i = 1, . . . , N − 1 [10].

D. Alternative 1-bit CS frameworks

Two alternative approaches have been introduced to acquire
1-bit measurements and recover sparse signals. In [24], the
authors propose a convolution-based imaging system with 1-
bit measurements. Reconstruction is performed using total
variation (TV) minimization and a gradient descent algorithm.
In addition, the authors introduce a convex regularization
parameter that simultaneously enforces both sign consistency
and non-zero signal norm. Because their algorithm makes

use of convolution-based measurement systems, and we only
consider randomized measurement systems in this paper, we
will not compare this algorithm with ours.

In [25], the authors propose both non-adaptive and adaptive
1-bit sensing schemes. The non-adaptive scheme, which most
closely relates to the framework presented here, relies on
knowledge of the dynamic range of the signal, as well as an
assumption about the distribution of the values of the nonzero
coefficients, and thus we also will not compare this algorithm
with ours.

IV. BACKGROUND ON TRUST-REGION ALGORITHMS

A. Trust-region algorithms

One approach to solving optimization problems like (6) and
(7) is to adapt standard CS optimization algorithms to seek a
solution on the sphere. However, since these algorithms are
intended to solve convex problems and the sphere constraint
is non-convex, computational performance may suffer. In
particular, the choice of an appropriate step-size is elusive.
Common methods for choosing adaptive step-sizes, such as
Barzilai-Borwein (BB) steps, do not necessarily perform well
with a unit sphere constraint, since they were designed for
unconstrained convex optimization [26]. In addition, to enforce
the sphere constraint, many approaches must introduce an
additional step that renormalizes intermediate solutions. It is
not obvious that such approaches will converge.

The methods used in this work are inspired by a particular
class of restricted step-size algorithms called trust-region
methods [12]. Given the unconstrained nonlinear programming
problem

min
x∈RN

f(x), (8)

trust-region methods compute the next trial point iteratively
by finding the minimizer of the approximation ms(x) of f(x)
within a trust-region defined by a ball centered at the current
point xs with radius ∆s; that is,

min
x∈RN

ms(x) s.t. ‖x− xs‖2 ≤ ∆s. (9)

The size of the trust-region ∆s is increased or decreased
automatically according to the performance of the model
(9) during previous iterations. These methods choose step
directions and lengths simultaneously, and they have been
proven to be reliable for solving difficult non-convex prob-
lems [12]. Additionally, these algorithms often have provable
convergence guarantees.

To motivate the use of trust-region methods in 1-bit CS,
consider the following simple example program:

min
x∈R2

‖x‖1 s.t. x1 ≤ x2 and ‖x‖2 = 1. (10)

The behavior of the method can be best explained by exam-
ining both a successful iteration and a failure iteration of the
algorithm applied to (10). Examples of these cases are depicted
in Figure 1. The first constraint is depicted by the shaded area.
The initial point is denoted by xs, where s is the iteration
number. The algorithm will take a step in a direction specified
by an approximation ms(x) (not depicted) to point w and then
project the result onto the unit sphere. The light dashed sphere
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(a) successful iteration example

(b) failure iteration example
Fig. 1. Example scenarios of trust region algorithm iterations to solve (10).
The goal is find an x with the minimum `1-norm such that x has unit `2-
norm and x1 ≤ x2. The shaded region denotes the feasible constraint region
and the iteration number is denoted by s, with initial point xs. The light
dashed circle denotes trust region at iteration s and the dark dashed circle
denotes trust region at iteration s + 1. ws and ws+1 denote steps taken
before projecting onto the unit circle. (a) During a successful iteration, the
trial point falls within the feasible region and thus is accepted, denoted by
xs+1, and the radius of the trust region is enlarged. (b) During a failure
iteration, the trust region radius is too large and the trial point falls outside
the feasible region. In this case, the trust region radius is reduced and a new
trial step is taken from the initial point xs.

depicts the trust region at iteration s while the dark dashed
sphere depicts the trust region at iteration s + 1. Depending
on the success of the trial point, the trust region will expand
or contract.

During a successful iteration, as depicted in Figure 1(a), the
algorithm takes a step to point ws and projects the point onto
the sphere. This is depicted by the red dashed line. Since the
result is within the feasible region, the point is accepted and

denoted by xs+1. The trust region radius is expanded and the
procedure repeats. During a failure iteration, as depicted in
Figure 1(b), the trust region radius is too large and the trial
point on the circle is not within the feasible region. Thus, we
do not accept this trial point and take a new step from the
initial point xs, this time with a smaller trust region radius. In
this example, the new step results in a feasible point.

The program (9) is generally not solvable in closed form.
This includes the case studied in this paper where f(x) is the
`1-norm. However, by relaxing the problem, a closed form
optimal solution can often be obtained, resulting in lower cost
computation at each iteration. In this paper, rather than solving
(9), we iteratively solve a sequence of problems of the form

min
x∈RN

ms(x) +
λs

2
‖x− xs‖22, (11)

where the parameter λs essentially plays a role like the trust-
region radius ∆s in model (9). In fact, the solutions of (9) and
(11) are the same under some properly chosen λs and ∆s. We
will show that our adaptation of this algorithm indeed also
has guaranteed convergence, as with conventional trust region
algorithms.

V. THE RESTRICTED STEP SHRINKAGE ALGORITHM FOR
1-BIT CS

In this section, we derive an algorithm for the generalized
formulation of (6) and (7)

min
x∈RN

‖x‖1 s.t. Ax ≥ b and ‖x‖2 = 1. (12)

Our strategy is as follows. First, using the augmented La-
grangian framework, we formulate an algorithm that solves
(12) and denote it as RSS-outer. We choose the augmented
Lagrangian framework since many state-of-the-art CS recon-
struction algorithms are formulated this way [21, 27, 28].
Second, a step within RSS-outer requires that we solve a non-
convex subproblem of the form

min
x∈RN

ζµ(x) = ‖x‖1 + µf(x) s.t. ‖x‖2 = 1, (13)

where f(x) : RN → R is differentiable and µ > 0. We solve
(13) with a trust-region-like subroutine, denoted as RSS-inner.
The total procedure obtained by combining RSS-outer and
RSS-inner is called the RSS algorithm.

The RSS-inner subroutine is the main contribution of this
paper. Thus, we choose to describe RSS-inner in terms of the
general program (13). Algorithm frameworks other than the
augmented Lagrangian can be used to formulate an algorithm
for (12), and in some cases may employ the RSS-inner
subroutine. As an example, the quadratic penalty formulation
to this problem is given in Appendix A. This formulation is
simpler to implement, but does not perform as fast in practice.

A. Augmented Lagrangian formulation of (12) (RSS-outer)

We first formulate an algorithm to solve (12) using aug-
mented Lagrangian framework. Starting from λ0 = 0, at each
iteration s we solve the Lagrangian function

min
x∈RN

L(x, λs, µs) s.t. ‖x‖2 = 1, (14)
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Algorithm 1: RSS-outer
S0 Initialize

Given initial solution x0

Choose initial step-size µ0 and κ > 0
Set iteration s := 0, Lagrangian multiplier λ0 = 0

S1 Compute next estimate (via RSS-inner)
Set xs+1 = minL(x, λs, µs) s.t. ‖x‖2 = 1,
where the objective is given by (15).

S2 Update multiplier and µ
Set λs+1 := max

{
λs − µs(Axs+1 − b), 0

}
Set µs+1 := κµs

S3 Stopping rule
If converged, then STOP
otherwise, set s := s+ 1 and go to S1

for xs+1, where λ ∈ RM and µ > 0. We then set µs+1 :=
κµs, with κ > 0, and updates the Lagrangian multipliers λs+1

according to

λs+1 := max
{
λs − µs(Axs+1 − b), 0

}
.

The augmented Lagrangian function for (12) is

L(x, λ, µ) := ‖x‖1 +

m∑
i=1

ρ((Ax− b)i, λi, µ), (15)

where

ρ(t, σ, µ) :=

{
−σt+ 1

2µt
2, if t− σ

µ ≤ 0,

− 1
2µσ

2, otherwise.
(16)

Thus, the intermediate problem (14) is of the form of (13)
and will be solved with RSS-inner. The complete augmented
Lagrangian procedure, and how it relies on the RSS-inner
subroutine is summarized in Algorithim 1.

B. Restricted-step subroutine to solve (13) (RSS-inner)

The RSS-inner subroutine finds the solution to the subprob-
lem (13) and proceeds as follows. We begin with an initial
signal estimate x0 and an initial step-size τ0. At iteration
s, from the point xs, we compute a smooth approximation
ms(x) to the original objective function ζµ(x) in (13). The
approximation is formed by adding the first-order Taylor
expansion of µf(x) and a proximal term with respect to xs

to the `1-norm of x

ms(x) = ‖x‖1 + µf(xs) + µ (gs)
>

(x− xs) +
τs

2
‖x− xs‖22,

where the step size τs > 0 and gs is the gradient of f(x). Next,
we find the optimal solution to the smoothed approximation

zs := arg min
x∈Rn

ms(x) s.t. ‖x‖2 = 1. (17)

The relationship between the optimal solution zs of the
subproblem (17) and its subgradient ∂‖zs‖1, together with the
norm constraint, implies that zs can be expressed explicitly.
In fact, zs can be expressed in terms of the shrinkage (“soft
threshold”) operator, defined for any α ∈ RN , as

S(α, T ) := sign(α)�max {|α| − T, 0} , (18)

where � denotes the element-wise product between two vec-
tors and | · | denotes the magnitude of each element in the
vector. This is demonstrated in the following Lemma.

Lemma 1. Suppose that xs is not a stationary point of ζµ.

1) If Ss := S (τsxs − µgs, 1) 6= 0, then the closed-form
solution of the subproblem (17) is

zs =
Ss

‖Ss‖2
. (19)

2) If |τsxsi − µgsi | < 1 for i = 1, . . . , n, then zsi = 0
for all i except that zsi = sgn(τsi x

s − µgsi ), where i =
arg maxk=1,...,n |τsxsk − µgsk| (select only one i if there
are multiple solutions).

3) Otherwise, the optimal Lagrangian multiplier λ with
respect to ‖x‖2 = 1 satisfies τs−λ = 0, |τsxs−µgs| ≤ 1,
and the set {i | |τsxsi − µgsi | = 1} is not empty and
the closed-form solutions of the subproblem (17) satisfy
‖zs‖2 = 1 and

zsi ∈ (0,+∞), if τsxsi − µgsi = 1,

zsi ∈ (−∞, 0), if τsxsi − µgsi = −1,

zsi = 0, otherwise.

(20)

The proof of this Lemma can be found in Appendix B. The
Lemma implies that the next trial point zs can be computed
in closed form via the ratio (19).

We now present our strategy for choosing the step-size τs

and updating the new iterate xs+1 from zs. We first calculate
the difference between the actual reduction of the objective
function ζµ(x) and predicted reduction

δ(xs, zs) = ‖xs‖1 − ‖zs‖1 − µ(gs)>(zs − xs)

and then compute the ratio

rs =
ζµ(xs)− ζµ(zs)

δ(xs, zs)
(21)

to decide whether to accept the trial point zs as well as if the
step-size should be updated. Specifically, if rs ≥ η1 > 0, then
the iteration was successful and we set xs+1 = zs; otherwise,
the iteration was not successful and we set xs+1 = xs. Finally,
the step-size τs is updated as

τs+1 ∈


[γ1τ

s, γ2τ
s], if rs ≥ η2,

[γ2τ
s, τs], if rs ∈ [η1, η2),

[γ3τ
s, τmax], if rs ≤ η1,

(22)

where 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 < γ3.
The parameters η1, η2, γ1, γ2, γ3 determine how aggressively
the step-size is increased when an iteration is successful
and how aggressively it is decreased when an iteration was
unsuccessful. In practice, the performance of RSS-inner is not
sensitive to the actual values of the parameters.

The complete RSS-inner procedure to solve subproblem
(13) is summarized in Algorithm 2.
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Algorithm 2: RSS-inner (subroutine)
S0 Initialize

Given initial solution x0 and initial step-size τ0

Choose 0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 < γ3

Set iteration s := 0
S1 Compute step

Compute a new trial point zs via (19)
Compute the ratio rs via (21)

S2 Accept or reject the trial point
If rs ≥ η1, then set xs+1 = zs

otherwise, set xs+1 = xs

S3 Adapt step-size
Update τs according to (22)

S4 Stopping rule
If converged, then STOP
otherwise, set s := s+ 1 and go to S1

C. Convergence

We next demonstrate that the RSS algorithm converges.
Recall that by convergence we mean that the algorithm will
converge to a stationary point of (13). Before proceeding, we
first note that there exists λ ∈ R such that the first-order
optimality conditions of (13) hold; that is,

p+ µg(x)− λx = 0, ‖x‖2 = 1, p ∈ ∂‖x‖1, (23)

where g(x) = ∇f(x). In addition, we make the following
assumption on g(x),

Assumption 1. The gradient g(x) of f(x) is Lipschitz con-
tinuous with constant L:

‖g(x)− g(y)‖2 ≤ L‖x− y‖2.

Note that this assumption is valid for the objective function
in (13).

We are now ready to establish convergence of the RSS-inner
algorithm.

Theorem 1. Suppose that for (13) S (τsxs − µgs) 6= 0
for every iteration. If the RSS-inner algorithm has finitely
many successful iterations, then it converges to a stationary
point. If the RSS-inner algorithm has infinitely many successful
iterations, then there exists at least one cluster point of the
sequence {xs} and every cluster point is a stationary point.

To prove this, we first demonstrate that an iteration is
successful if the step size at that iteration is sufficiently large.
The remainder of the proof is by contradiction, by checking
how much the objective function value of (13) decreases, for
the successful iterations. The detailed proof can be found in
Appendix B. The convergence of RSS-outer follows from the
standard theory for non-smooth optimization [13].

In summary, in this section our goal was to solve (12).
To do this, we formulated an algorithm for (12) using the
augmented Lagrangian framework as given by Algorithm 1.
Within the algorithm, we must solve the subproblem (14).
Because (14) is of the form (13), it can be efficiently solved
by the RSS-inner subroutine, as given by Algorithm 2, with

provable convergence. In the next section, we demonstrate that
in practice, the algorithm outperforms previously proposed
algorithms in terms of accuracy and speed.

VI. NUMERICAL SIMULATIONS

In this section, we perform numerical simulations to il-
lustrate the performance of the RSS algorithm for 1-bit CS
reconstruction as well as compare it to the performance
of existing algorithms. We focus on K-sparse signals and
Gaussian measurement matrices and measure performance in
terms of accuracy, speed, and consistency. The purpose of
these experiments is to give a reasonable comparison of the
performance and behavior of the different available algorithms;
however the specific values obtained should not be considered
absolute. All experiments were performed in MATLAB on the
same computer.

A. Experimental Setup

In each experimental trial, we generate a new length-N , K-
sparse signal x with non-zero coefficient values drawn from
a zero-mean Gaussian distribution. The locations of the non-
zero coefficients are randomly permuted. The signal is then
normalized to unit `2 norm. Note that in general the signal does
not need to be normalized; normalization merely facilitates
direct comparison between x and its 1-bit CS reconstruction.
Indeed, in the noiseless setting, the scale of the input has no
effect on performance. A new M ×N measurement matrix is
drawn for each trial, with entries from a zero-mean Gaussian
distribution with variance 1/M . The measurements are then
computed as in (5). We obtain estimates x̂ using Matching
Sign Pursuit (MSP) [11], 1-bit FPC [9], and the RSS algorithm
introduced in this paper.

All simulations were performed for 200 trials, with µ = 50
for the RSS algorithm. We found these parameters to perform
well over many combinations of K,M , and N . Additionally,
we tuned the parameters of both MSP and 1-bit FPC to
perform well given the choice of parameters, to the best of
our ability.

We consider three configurations of the parameters N,M ,
and K. In the first configuration we fix N = 1000 and
M = 500 and we vary K between 1 and 15. In the second
configuration we fix N = 1000 and K = 10 and we vary
M such that M/N is between 0.05 and 2. In the third
configuration, we fix K = 10, we vary N between 500 and
5500, and set M = N . In all figures, dashed lines denote MSP,
dotted lines denote 1-Bit FPC, and solid triangle-marked lines
denote the RSS algorithm.

B. Accuracy

We first compare the accuracy of the algorithms by com-
puting the average mean squared error (MSE) ‖x− x̂‖2 over
the trials and expressing it in terms of the signal-to-noise ratio
(SNR) in dB

SNRdB(x, x̂) = 10 log10

(
‖x‖22
‖x− x̂‖22

)
. (24)
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Fig. 2. Accuracy comparison: Average SNR for (a) fixed N = 1000 and
M = 500 with K between 1 and 15, and (b) N = 1000 and K = 10
with M/N is between 0.05 and 2. These plots demonstrate that MSP and
RSS perform similarly in terms of accuracy, with 1-bit FPC performing worse
than the others. Furthermore, we see that a signal can be recovered with SNR
greater than 20dB using less than 0.5 bits per coefficient of x.

In most cases this is an appropriate metric for measuring
reconstruction performance, since we acquire only M bits of
information, the error is not likely to be zero and thus the SNR
will not be infinite. One exception to this is when K = 1, since
if the algorithm finds the correct support, then the value of the
coefficient is exactly 1 due to the unit norm constraint.

The results of this experiment are depicted in Figure 2(a) for
fixed M and in Figure 2(b) for fixed K. The plots demonstrate
that the RSS algorithm and MSP algorithm perform similarly.
The 1-bit FPC algorithm exhibits poorer performance than the
others. When K = 1, the RSS and MSP algorithms find an
exact solution, yielding an infinite SNR that is not visible on
the plot.

C. Consistency

We next test whether the algorithms find a feasible solution,
i.e., yield a consistent reconstruction. In this case, we are look-
ing to see whether the signs of measurements of the estimate
are the same as the signs of the original measurements. To
this end, we measure the consistency, i.e., average number
of incorrect signs from sign(Φx̂). We say a reconstruction is
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Fig. 3. Average consistency comparison: Average number of incorrect signs
for (a) fixed N = 1000 and M = 500 with K between 1 and 15, and (b)
N = 1000 and K = 10 with M/N is between 0.05 and 2. None of the
algorithms find a consistent solution except when K = 1. We also see that
RSS obtains the best performance.

consistent if there are no incorrect signs.
Figure 3 depicts the consistency of the algorithms where

Figure 3(a) is for fixed M and in Figure 3(b) is for fixed
K. We see that the sign errors decrease toward zero as M
increases, as expected. Similarly, the sign errors increase as K
increases, with a seemingly linear trend. Note that in almost all
of the cases tested, we did not, on average, achieve consistent
reconstruction even when M = 2N . The only case where we
do achieve consistency is when K = 1.

We consider the effect of consistency on error. For each trial,
we record both the `2-error and consistency. A summary of
this experiment is depicted in Figure 4. In particular, we plot
this for fixed N = 1000 and K = 10, with M/N = 0.1,
M/N = 0.7, and M/N = 1.5. This experiment gives
a glimpse into the dependence between consistency of the
measurements and the the error of the solution. We see that
when M/N is small (e.g., 0.1), there appears to be little
clear relationship between the error and the consistency of the
solution. This is particularly striking for the RSS algorithm,
where the consistency can be very low but the error very high,
and vice-versa. This unpredictable behavior is most likely due
to the fact that too few measurements have been acquired. As
M/N increases, there is a clear linear relationship between the
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Fig. 4. Consistency-error-dependence comparison: Reconstruction error vs. normalized sign error for (a) fixed N = 1000, M/N = 0.1, and K = 10, (b)
fixed N = 1000, M/N = 0.7, and K = 10, (c) fixed N = 1000, M/N = 1.5, and K = 10. When M/N is large enough (e.g., 0.7, 1.5), there is a linear
relationship between the measurement sign errors and the signal reconstruction errors.

sign error and the reconstruction error. This means that in this
regime the sign error is a good indication of the reconstruction
error. It also emphasizes the importance of finding a feasible
solution. The RSS algorithm concentrates closest to the origin
and thus has the best performance.

D. Speed
We compare the speed of the algorithms by measuring

the average time it takes each algorithm to terminate. The
results of this experiment are depicted in Figure 5, where
Figure 5(a) is for fixed M and Figure 5(b) is for fixed K. We
find that the RSS algorithm is about an order of magnitude
faster than the MSP algorithm. The main bottleneck in speed
for MSP is the least-squares step, which is performed using
gradient descent on the sphere. When we implemented the
least-squares subroutine, we chose to maximize the SNR of
the algorithm, however, speed performance can be improved
at the cost of reducing SNR. The speed of the RSS algorithm
will be sensitive to the choice of µ, but not significantly.

E. Missing and misidentified support
We are also interested in how well each algorithm finds

the signal support, meaning the locations of the nonzero co-
efficients. To measure this we consider two metrics. First, we
measure the number of nonzero coefficients that an algorithm
“misses,” i.e., determines to be zero. Second, we measure
the number of non-zero coefficients that are “misidentified,”
i.e., coefficients that are determined to be nonzero when
they should be zero. These two experiments are depicted in
Figures 6 and 7, respectively.

Figure 6(a) depicts the number of missed coefficients as a
function of K and Figure 6(b) depicts it as a function of M/N .
In both cases, the RSS algorithm is significantly less likely to
miss a coefficient than the MSP algorithm.

Figure 7(a) depicts the number of misidentified coefficients
as a function of K and Figure 7(b) depicts it as a function of
M/N . In this case, we find that the MSP algorithm outper-
forms all of the others. This is because the MSP algorithm
returns exactly K coefficients and thus can misidentify at
most K coefficients. Interestingly, the performance of the RSS
algorithm does not change significantly as a function of M/N
but does degrade linearly as K increases.
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Fig. 6. Missed support comparison: Average number of coefficients not
found for (a) fixed N = 1000 and M = 500 with K between 1 and 15, and
(b) N = 1000 and K = 10 with M/N is between 0.05 and 2. The RSS
algorithm is less likely to miss a non-zero coefficient.

F. Performance in noise

The 1-bit CS technique is quite robust to noise. To demon-
strate this, we perform an experiment where in each trial, we
add zero-mean Gaussian noise e to the measurements before
quantization, i.e.,

ys = sgn(Φx+ e). (25)
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Fig. 5. Speed comparison: Average convergence time for (a) fixed N = 1000 and M = 500 with K between 1 and 15, (b) N = 1000 and K = 10 with
M/N is between 0.05 and 2, and (c) K = 10, N is between 500 and 5500, and M = N . The RSS algorithm is at least an order of magnitude faster than
the other algorithms.
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Fig. 7. Misidentified support comparison: Average number of misidentified
coefficients for (a) fixed N = 1000 and M = 500 with K between 1 and
15, and (b) N = 1000 and K = 10 with M/N is between 0.05 and 2. MSP
is the least likely to misidentify a coefficient, as expected.

We use the parameters N = 1000, K = 10, M = 2N and
scale the noise so that the measurement SNR varies between
0 dB and 40 dB. Once the measurements are quantized, we
perform reconstruction. In this experiment, we only compare
the RSS and MSP algorithms, since 1-bit FPC exhibited sig-
nificantly poorer SNR performance. Furthermore, since MSP
returns exactly K coefficients, we will also include the error on
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Fig. 8. Reconstruction SNR as a function of measurement SNR (before
quantization). Reconstructions performed with MSP and RSS for fixed N =
1000, K = 10, M = 2N and measurement SNR between 0 dB and 40 dB.

the maximum K coefficients returned by the RSS algorithm.
Figure 8 depicts the results of this experiment. We find that

for measurement SNR below 20 dB, the reconstruction SNR
from the RSS algorithm is approximately a linear function
of the measurement SNR. Above 20 dB, the performance
plateaus, approaching the noiseless performance. We also find
that below 25dB, the MSP algorithm performs better than the
RSS algorithm. However, the error on the largest K elements
returned by the RSS algorithm is comparable to the error from
the MSP algorithm (also only K elements).

VII. DISCUSSION

In this paper, we have proposed a new reconstruction
algorithm, the RSS algorithm, for 1-bit quantized CS mea-
surements. Our algorithm takes a trust-region-like approach
to solve a non-convex subproblem within the augmented
Lagrangian framework. The RSS algorithm outperforms previ-
ously existing 1-bit CS algorithms in terms of speed, accuracy,
and consistency.

Our algorithm demonstrates that signal recovery from 1-bit
CS measurements can indeed be performed in a practical way,
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with provable convergence guarantees. Thus, the possibilities
for efficient and unique hardware designs have been extended.

When testing and comparing the 1-bit CS algorithms, one
point of interest that arose is that none of them find a
consistent or feasible solution with high probability, except
for when K = 1. Thus, several possible questions could
be answered in the future. Is there a formulation that offers
guaranteed consistent reconstruction, that also solves the 1-bit
reconstruction problem? Also, if consistent reconstruction is
achieved, then is the accuracy of the solution guaranteed to
increase on average? The results presented here hint that this
might be the case.

APPENDIX A
QUADRATIC PENALTY FRAMEWORK

The quadratic penalty framework can also make use of
the RSS-inner subroutine to solve (12). This framework has
been is used by FPC and gradient projection for sparse
reconstruction (GPSR) to solve conventional CS reconstruc-
tion problems [29]. This approach proceeds by iteratively
minimizing a sequence of penalty functions:

min
x∈RN

‖x‖1 +
µs

2
‖min{Ax− b, 0}‖22 s.t. ‖x‖2 = 1, (26)

where µs > 0 is the penalty parameter, and we increase µs →
+∞ by setting µs+1 := κµs with κ > 1. In fact, (26) often
only needs to be solved once for some values of µs = µ, as
is done in practice with FPC and GPSR.

It is then straightforward to see that (26) is of the form (13)
and can be solved by the RSS-inner subroutine.

APPENDIX B
CONVERGENCE PROOF OF ALGORITHM 2

A. Lemmas

Before proving Lemma 1 from Section V-B, we introduce
an additional Lemma 2 that provides bounds on the reduction
of the first-order approximation ms(x). We then present a
proof that demonstrates both Lemmas.

Lemma 2. Suppose that xs is not a stationary point of (13).
Denote by ds := zs − xs the search direction computed at
xs ∈ RN . Then the predicted reduction satisfies δ(xs, zs) ≥
τs

2 ‖d
s‖22. In particular, if S(τsxs − µgs) 6= 0, the reduction

of the objective function of the subproblem (17) satisfies

ms(x
s)−ms(z

s) ≥ 1

2
‖Ss‖2‖ds‖22. (27)

Proof of Lemmas 1 and 2: The corresponding first-order
optimality conditions of (17) are

p+µgs+τs(zs−xs)−λzs = 0, λ ∈ R, ‖zs‖2 = 1, (28)

where p ∈ ∂‖zs‖1. Given any feasible solution x with ‖x‖2 =

1, we have

ms(x)−ms(z
s)

= ‖x‖1 − ‖zs‖1 + (µgs + τs(zs − x))
>

(x− zs)

+
τs

2
‖x− zs‖22

= ‖x‖1 − ‖zs‖1 + (λzs − p)> (x− zs) +
τs

2
‖x− zs‖22

= ‖x‖1 − p>x+ (λzs)>x− λ+
τs

2
‖x− zs‖22

= ‖x‖1 − p>x+
τs − λ

2
‖x− zs‖22 (29)

≥ τs − λ
2
‖x− zs‖22, (30)

where the first equality follows from the Taylor expansion of
the smooth terms of ms(x), the second equality comes from
(28), the third equality uses p>zs = ‖zs‖1 and ‖zs‖2 = 1,
and the fact ‖x‖1 = max

q∈[−1,1]
q>x gives the last inequality.

It follows from (28) that (τs−λ)zs := τsxs−µgs−p. We
now discuss the following cases:

1) τs−λ > 0 and S(τsxs−µgs) 6= 0. It can be verified that
τs − λ = ‖S‖2, and zs = Ss

‖Ss‖2 is a global minimizer.
Substituting x = xs into (30) gives (27).

2) τs − λ > 0 and |τsxs − µgs| ≤ 1. Without loss of
generality, we can assume that there exists a component
zsi > 0. Then pi = 1 and τsxs − µgs − 1 ≤ 0 which
contradicts (τs − λ)zsi > 0.

3) τs − λ < 0. Suppose that zs has at least two nonzero
components. Without loss of generality, we can assume
that there exits a component zsi > 0. Let x̄i = zsi + ε
with ε > 0 and x̄j = zsj for all other j 6= i. It is obvious
that x = x̄

‖x̄‖2 is feasible, x 6= zs and p ∈ ∂‖x‖1. Hence
‖x‖1− p>x = 0 and (29) implies that ms(x) < ms(z

s),
which contradicts the fact ms(x) ≥ ms(z

s). Therefore,
the solution zs only has one nonzero element and its value
must be either −1 or 1. Note that

ms(x) = ‖x‖1 + (µgs − τsxs)>x+ constant.

It can be verified that zsi = sgn(τsi x
s − µgsi ), where i =

arg maxk=1,...,n |τsxsk − µgsk| (select only one i if there
are multiple solutions); otherwise zsi = 0. In fact, the set
{i | |τsxsi − µgsi | = 1} is empty.

4) τs − λ = 0. Then we must have |τsxs − µgs| ≤ 1,
p /∈ ∂‖xs‖1, the set {i | |τsxsi − µgsi | = 1} is not empty
and the closed-form solution of the subproblem (17) is
given by (20).

�
The next lemma shows that iteration s will be successful

for a sufficient large τs, hence, the number of unsuccessful
iterations between two successful iterations cannot be infinity.

Lemma 3. Suppose that ‖ds‖2 > 0 and τs ≥ τ̄ := 2µL
1−η2 .

Then the s-th iteration is a very successful iteration which
satisfies τs+1 ≤ τs.

Proof: Using the definition of rs, Lemma 2 and Assumption
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1, we obtain

|rs − 1| =

∣∣∣∣ζµ(xk)− ζµ(zs)− δ(xs, zs)
δ(xs, zs)

∣∣∣∣
=

∣∣∣∣µf(xs) + µ(gs)>ds − µf(zs)

δ(xs, zs)

∣∣∣∣
≤ 2µ‖g(xs + ξds)− g(xs)‖2 ‖ds‖2

τs‖ds‖22
, (ξ ∈ (0, 1))

≤ 2µL

τs
≤ 1− η2.

Therefore, rs ≥ η2 and the s-th iteration is very successful.
The rule (22) ensures that τs+1 ≤ τs. �

The following lemma gives a useful alternative characteri-
zation of stationarity.

Lemma 4. For any successful iteration k with τs < +∞, the
point xs is a stationary point of (13) if only if ds = 0.

Proof: Suppose that ds 6= 0. Since iteration k is successful,
Lemma 2 and the ratio (21) testing show that the function
value at zs is smaller than that of xs, implying that xs is not
a stationary point. Conversely, if ds = 0, then it follows from
(28) and xs = zs that

p+ µgs − λxs = 0, λ ∈ R, ‖xs‖2 = 1,

which are the first-order optimality conditions of (13). �
We are now ready to prove Theorem 1.

B. Proof of Theorem 1

If Algorithm 2 has finitely many successful iterations, then
for sufficiently large s, the iteration is unsuccessful. Thus, the
sequence {τs} converges to +∞. Suppose that s0 is the index
of the last successful iteration and ‖ds‖2 > 0 for s > s0. It
follows from Lemma 3 that there must exist a very successful
iteration of index s larger than s0, which is a contradiction to
the assumption.

Suppose that Algorithm 2 has infinitely many successful
iterations. Since an unsuccessful iterate in the sequence {xs}
remains the same and makes no progress, it can be substituted
by the same successful iterate. The substituted sequence which
only consists of different successful iterates is still denoted by
the same notation {xs}. Since the sequence satisfying ‖xs‖ =
1 lies in a compact set, there exists at least one cluster point
x∗ such that ‖x∗‖ = 1.

Suppose that the cluster point x∗ is not a stationary point.
According to Lemma 3, there exits a constant τ̃ such that
τs ≤ τ̃ < +∞ for all s. Hence, there exists a subsequence
{xsi} approaches x∗ and lim

si→∞
τsi = t∗ ≥ 0. Since x∗ is not

a stationary point, by Lemma 4, d∗ 6= 0 and

δ(x∗, x∗ + d∗) = ‖x∗‖1 − ‖x∗ + d∗‖1 − µ(g∗)>d∗ = ε > 0.

Using the fact that the shrinkage operator is non-expansive,
i.e.,

‖S(x)− S(y)‖2 ≤ ‖x− y‖2,

we obtain

‖Ssi − S∗‖2
= ‖S(τsixsi − µg(xki))− S(τ∗x∗ − µg(x∗))‖2
≤ ‖τsixsi − τ∗x∗ − µ(g(xsi − g(x∗))‖2
≤ |τ∗|‖xsi − x∗‖2 + |τsi − τ∗|‖xsi‖2 + µM‖xsi − x∗‖2,

which implies that lim
si→∞

Ssi = S∗ and lim
si→∞

dsi = d∗. Note

that g(x) and ‖x‖1 are continuous. For si large enough, we
have therefore that

δ(xsi , xsi + dsi) = ‖xsi‖1 − ‖xsi + dsi‖1 − µ(gsi)>dsi ≥ ε

2
.

It follows from the acceptance rule for successful iterations
(22) that

ζµ(xsi)− ζµ(xsi+1) ≥ η1δ(x
s, xsi + dsi) ≥ η1ε

2
. (31)

However, since the series with positive terms
∞∑
i=1

ζµ(xsi)− ζµ(xsi+1) ≤
∞∑
s=s1

ζµ(xsi)− ζµ(xsi+1)

= ζµ(xs1)− ζµ(x∗) < +∞

is convergent, we have

lim
si→∞

ζµ(xsi)− ζµ(xsi+1) = 0,

which contradicts (31) and completes the proof. �
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