Low-Rank Factorization Models for Matrix Completion and Matrix Separation

Zaiwen Wen Joint work with Wotao Yin, Yin Zhang and Shen Yuan

IPAM, UCLA Oct. 5, 2010

• Matrix completion: find a low-rank matrix $W \in \mathbb{R}^{m \times n}$ so that $W_{ij} = M_{ij}$ for some given M_{ij} with all (i, j) in an index set Ω :

$$\min_{W \in \mathbb{R}^{m \times n}} \operatorname{rank}(W), \text{ s.t. } W_{ij} = M_{ij}, \ \forall (i, j) \in \Omega$$

• Matrix separation: find a low-rank $Z \in \mathbb{R}^{m \times n}$ and a sparse matrix $S \in \mathbb{R}^{m \times n}$ so that Z + S = D for a given D.

直 とう かい うちょう

Convex approximation

Nuclear norm $||W||_*$: the summation of singular values of W

- Matrix completion:
 - Nuclear-norm relaxation:

$$\min_{\boldsymbol{W}\in\mathbb{R}^{m\times n}}\|\boldsymbol{W}\|_*, \text{ s.t. } \boldsymbol{W}_{ij}=\boldsymbol{M}_{ij}, \ \forall (i,j)\in\Omega,$$

• Nuclear-norm regularized linear least square:

$$\min_{\boldsymbol{W}\in\mathbb{R}^{m\times n}} \mu \|\boldsymbol{W}\|_* + \frac{1}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{W}-\boldsymbol{M})\|_F^2,$$

• Matrix separation:

$$\min_{Z,S\in\mathbb{R}^{m\times n}} \quad \|Z\|_* + \mu \|S\|_1 \quad \text{ s.t. } \quad Z+S=D,$$

Singular value decomposition can be very expensive!

伺 とく ヨ とく ヨ と

Low-rank factorization model for matrix completion

- Finding a low-rank matrix W so that ||P_Ω(W − M)||²_F or the distance between W and {Z ∈ ℝ^{m×n}, Z_{ij} = M_{ij}, ∀(i, j) ∈ Ω} is minimized.
- Any matrix $W \in \mathbb{R}^{m \times n}$ with $\operatorname{rank}(W) \leq K$ can be expressed as W = XY where $X \in \mathbb{R}^{m \times K}$ and $Y \in \mathbb{R}^{K \times n}$.

New model

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

- Advantage: SVD is no longer needed!
- Related work: the solver OptSpace based on optimization on manifold

ヘロト ヘアト ヘビト ヘビト

Low-rank factorization model for matrix separation

• Consider the model

$$\min_{Z,S} \|S\|_1 \text{ s.t. } Z + S = D, \text{ rank}(L) \leq K$$

• Low-rank factorization: Z = UV

$$\min_{U,V,Z} \|Z - D\|_1 \text{ s.t. } UV - Z = 0$$

Only the entries D_{ij}, (i, j) ∈ Ω, are given. P_Ω(D) is the projection of D onto Ω.

New model

$$\min_{V,Z} \|\mathcal{P}_{\Omega}(Z-D)\|_{1} \quad \text{s.t.} \quad UV-Z=0$$

• Advantage: SVD is no longer needed!

Consider:

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

Alternating minimization:

$$X_+ = ZY^{\top}(YY^{\top})^{\dagger} = \operatorname*{argmin}_{X \in \mathbb{R}^{m \times K}} \frac{1}{2} \|XY - Z\|_F^2,$$

▲圖 ▶ ▲ 理 ▶ ▲ 理 ▶ …

Nonlinear Gauss-Seideal scheme

Consider:

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

First variant of alternating minimization:

$$\begin{array}{rcl} X_+ &\leftarrow & \boldsymbol{Z}\boldsymbol{Y}^{\dagger} \equiv \boldsymbol{Z}\boldsymbol{Y}^{\top}(\boldsymbol{Y}\boldsymbol{Y}^{\top})^{\dagger}, \\ Y_+ &\leftarrow & (X_+)^{\dagger}\boldsymbol{Z} \equiv (X_+^{\top}X_+)^{\dagger}(X_+^{\top}\boldsymbol{Z}), \\ Z_+ &\leftarrow & X_+Y_+ + \mathcal{P}_{\Omega}(\boldsymbol{M} - X_+Y_+). \end{array}$$

Let \mathcal{P}_A be the orthogonal projection onto the range space $\mathcal{R}(A)$

•
$$X_+Y_+ = \left(X_+(X_+^\top X_+)^{\dagger}X_+^\top\right)Z = \mathcal{P}_{X_+}Z$$

- One can verify that $\mathcal{R}(X_+) = \mathcal{R}(ZY^{\top})$.
- $X_+ Y_+ = \mathcal{P}_{ZY^{\top}} Z = ZY^{\top} (YZ^{\top}ZY^{\top})^{\dagger} (YZ^{\top})Z.$
- idea: modify X_+ or Y_+ to obtain the same product X_+Y_+

E> < E> < E</p>

Consider:

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

Second variant of alternating minimization:

$$\begin{array}{rcl} X_+ &\leftarrow & \boldsymbol{Z}\boldsymbol{Y}^\top, \\ Y_+ &\leftarrow & (X_+)^\dagger \boldsymbol{Z} \equiv (X_+^\top X_+)^\dagger (X_+^\top \boldsymbol{Z}), \\ Z_+ &\leftarrow & X_+ Y_+ + \mathcal{P}_{\Omega} (\boldsymbol{M} - X_+ Y_+). \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(?)

Nonlinear Gauss-Seideal scheme

Consider:

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } Z_{ij} = M_{ij}, \forall (i,j) \in \Omega$$

Second variant of alternating minimization:

$$\begin{array}{rcl} X_+ &\leftarrow & \boldsymbol{Z}\boldsymbol{Y}^\top, \\ Y_+ &\leftarrow & (X_+)^\dagger \boldsymbol{Z} \equiv (X_+^\top X_+)^\dagger (X_+^\top \boldsymbol{Z}), \\ Z_+ &\leftarrow & X_+ Y_+ + \mathcal{P}_{\Omega} (\boldsymbol{M} - X_+ Y_+). \end{array}$$

Third variant of alternating minimization: $V = orth(ZY^{\top})$

$$\begin{array}{rcl} X_+ & \leftarrow & V, \\ Y_+ & \leftarrow & V^\top Z, \\ Z_+ & \leftarrow & X_+ Y_+ + \mathcal{P}_{\Omega}(M - X_+ Y_+). \end{array}$$

◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ の Q ()

- The nonlinear GS scheme can be slow
- Linear SOR: applying extrapolation to the GS method to achieve faster convergence

The first implementation:

$$\begin{array}{rcl} X_+ &\leftarrow & ZY^\top (YY^\top)^\dagger, \\ X_+(\omega) &\leftarrow & \omega X_+ + (1-\omega)X, \\ Y_+ &\leftarrow & (X_+(\omega)^\top X_+(\omega))^\dagger (X_+(\omega)^\top Z), \\ Y_+(\omega) &\leftarrow & \omega Y_+ + (1-\omega)Y, \\ Z_+(\omega) &\leftarrow & X_+(\omega)Y_+(\omega) + \mathcal{P}_{\Omega}(M-X_+(\omega)Y_+(\omega)), \end{array}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

3

Nonlinear SOR

- Let $S = \mathcal{P}_{\Omega}(M XY)$. Then Z = XY + S
- Let $Z_{\omega} \triangleq XY + \omega S = \omega Z + (1 \omega)XY$
- Assume Y has full row rank, then

$$\begin{aligned} Z_{\omega} Y^{\top} (YY^{\top})^{\dagger} &= \omega ZY^{\top} (YY^{\top})^{\dagger} + (1-\omega) XYY^{\top} (YY^{\top})^{\dagger} \\ &= \omega X_{+} + (1-\omega) X, \end{aligned}$$

Second implementation of our nonlinear SOR:

$$\begin{array}{rcl} X_{+}(\omega) & \leftarrow & Z_{\omega}Y^{\top} \text{ or } Z_{\omega}Y^{\top}(YY^{\top})^{\dagger}, \\ Y_{+}(\omega) & \leftarrow & (X_{+}(\omega)^{\top}X_{+}(\omega))^{\dagger}(X_{+}(\omega)^{\top}Z_{\omega}), \\ \mathcal{P}_{\Omega^{c}}(Z_{+}(\omega)) & \leftarrow & \mathcal{P}_{\Omega^{c}}(X_{+}(\omega)Y_{+}(\omega)), \\ \mathcal{P}_{\Omega}(Z_{+}(\omega)) & \leftarrow & \mathcal{P}_{\Omega}(M). \end{array}$$

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Assume that $\operatorname{rank}(Z_{\omega}) = \operatorname{rank}(Z), \forall \omega \in [1, \omega_1]$ for some $\omega_1 \ge 1$. Then there exists some $\omega_2 \ge 1$ such that

 $\|S\|_{F}^{2} - \|S_{+}(\omega)\|_{F}^{2} = \rho_{12}(\omega) + \rho_{3}(\omega) + \rho_{4}(\omega) > 0, \quad \forall \, \omega \in [1, \omega_{2}].$

•
$$\rho_{12}(\omega) \triangleq \|SP\|_F^2 + \|Q(\omega)S(I-P)\|_F^2 \ge 0$$

• $\rho_3(\omega) \triangleq \|\mathcal{P}_{\Omega^c}(SP+Q(\omega)S(I-P))\|_F^2 \ge 0$
• $\rho_4(\omega) \triangleq \frac{1}{\omega^2}\|S_+(\omega) + (\omega-1)S\|_F^2 - \|S_+(\omega)\|_F^2$
• Whenever $\rho_3(1) > 0$ ($\mathcal{P}_{\Omega^c}(X_+(1)Y_+(1) - XY) \ne 0$) and $\omega_1 > 1$, then $\omega_2 > 1$ can be chosen so that

 $\rho_4(\omega) > \mathbf{0}, \forall \, \omega \in (\mathbf{1}, \omega_2].$

◆□ → ◆ 三 → ◆ 三 → ◆ ⑤ ◆

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Reduction of the residual $||S||_F^2 - ||S_+(\omega)||_F^2$

Problem: how can we select a proper weight ω to ensure convergence for a nonlinear model? Strategy: Adjust ω dynamically according to the change of the objective function values.

- Calculate the residual ratio $\gamma(\omega) = \frac{\|S_+(\omega)\|_F}{\|S\|_F}$
- A small γ(ω) indicates that the current weight value ω works well so far.
- If γ(ω) < 1, accept the new point; otherwise, ω is reset to 1 and this procedure is repeated.
- ω is increased only if the calculated point is acceptable but the residual ratio γ(ω) is considered "too large"; that is, γ(ω) ∈ [γ₁, 1) for some γ₁ ∈ (0, 1).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Algorithm 1: A low-rank matrix fitting algorithm (LMaFit)

1 Input index set Ω, data $\mathcal{P}_{\Omega}(M)$ and a rank overestimate $K \ge r$.

2 Set
$$Y^0, Z^0, \omega = 1, \tilde{\omega} > 1, \delta > 0, \gamma_1 \in (0, 1)$$
 and $k = 0$.

3 while not convergent do

4 Compute
$$(X_+(\omega), Y_+(\omega), Z_+(\omega))$$
.

5 Compute the residual ratio
$$\gamma(\omega)$$

if
$$\gamma(\omega) \ge 1$$
 then set $\omega = 1$ and go to step 4.

Update
$$(X^{k+1}, Y^{k+1}, Z^{k+1})$$
 and increment k.

if
$$\gamma(\omega) \geq \gamma_1$$
 then

8 9

set
$$\delta = \max(\delta, 0.25(\omega - 1))$$
 and $\omega = \min(\omega + \delta, \tilde{\omega})$.

(E) < E)</p>

nonlinear GS .vs. nonlinear SOR

Zaiwen Wen Low-Rank Factorization Models

프 에 에 프 어

ъ

Extension to problems with general linear constraints

• Consider problem:

$$\min_{W \in \mathbb{R}^{m \times n}} \operatorname{rank}(W), \text{ s.t. } \mathcal{A}(W) = b$$

Nonconvex relaxation:

$$\min_{X,Y,Z} \frac{1}{2} \|XY - Z\|_F^2 \text{ s.t. } \mathcal{A}(Z) = b$$

• Let
$$\mathcal{S} := \mathcal{A}^{\top} (\mathcal{A} \mathcal{A}^{\top})^{\dagger} (b - \mathcal{A}(XY))$$
 and $\mathcal{Z}_{\omega} = XY + \omega \mathcal{S}$

Nonlinear SOR scheme:

★ E ► ★ E ►

ъ

Main result: Let $\{(X^k, Y^k, Z^k)\}$ be generated by the nonlinear SOR method and $\{\mathcal{P}_{\Omega^c}(X^k Y^k)\}$ be bounded. Then there exists at least a subsequence of $\{(X^k, Y^k, Z^k)\}$ that satisfies the first-order optimality conditions in the limit.

Technical lemmas:

•
$$\omega S \bullet (X_+(\omega)Y_+(\omega) - XY) = ||X_+(\omega)Y_+(\omega) - XY||_F^2$$
.

• Residual reduction from $||S||_F^2$ after the first two steps

$$\frac{1}{\omega^2} \|X_+(\omega)Y_+(\omega) - Z_{\omega}\|_F^2 = \|(I - Q(\omega))S(I - P)\|_F^2 = \|S\|_F^2 - \rho_{12}(\omega)$$

•
$$\lim_{\omega o 1^+} rac{
ho_4(\omega)}{\omega-1} = 2 \|\mathcal{P}_{\Omega^c}(X_+(1)Y_+(1)-XY)\|_F^2 \geq 0$$

Practical issues

- Variants to obtain $X_+(\omega)$ and $Y_+(\omega)$: "linsolve" .vs. QR
- Storage: full Z or partial $S = \mathcal{P}_{\Omega}(M XY)$
- Stopping criteria:

$$\operatorname{relres} = \frac{\|\mathcal{P}_{\Omega}(M - X^{k}Y^{k})\|_{F}}{\|\mathcal{P}_{\Omega}(M)\|_{F}} \leq \operatorname{tol} \operatorname{and} \operatorname{reschg} = \left|1 - \frac{\|\mathcal{P}_{\Omega}(M - X^{k}Y^{k})\|_{F}}{\|\mathcal{P}_{\Omega}(M - X^{k-1}Y^{k-1})\|_{F}}\right| \leq \operatorname{tol}/2,$$

- Rank estimation:
 - Start from $K \ge r$ then decrease K aggressively
 - QR = XE, E is permutation, d := |diag(R)| nonincreasing
 - compute the sequnce $\tilde{d}_i = d_i/d_{i+1}$, $i = 1, \dots, K-1$,
 - examine the ratio $\tau = \frac{(K-1)\tilde{d}(p)}{\sum_{i\neq p}\tilde{d}_i}$, $\tilde{d}(p)$ is the maximal element
 - of $\{\tilde{d}_i\}$ and p is the corresponding index.
 - reset *K* to *p* once *τ* > 10
 - Start from a small K and increase K to min(K + κ, rank_max) when the alg. stagnates

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The sensitivity with respect to the rank estimation K

Convergence behavior of the residual

Zaiwen Wen Low-Rank Factorization Models

< ∃→

э

Phase diagrams for matrix completion recoverability

Zaiwen Wen Low-Rank Factorization Models

ъ

э

	Probler	n		APO	βL			FPCA		LMaFit				
								K =	[1.25 <i>r</i>]	$K = \lfloor 1.5r \rfloor$				
r	SR	FR	μ	time	rel.err	tsvd	time	rel.err	tsvd	time	rel.err	time	rel.err	
10	0.04	0.50	5.76e-03	3.89	4.04e-03	82%	32.62	8.21e-01	12%	0.98	4.72e-04	1.00	4.35e-04	
10	0.08	0.25	1.02e-02	2.25	6.80e-04	71%	13.24	7.30e-04	19%	0.35	2.27e-04	0.40	2.19e-04	
10	0.15	0.13	1.78e-02	2.44	2.14e-04	<mark>66%</mark>	7.76	4.21e-04	42%	0.39	1.16e-04	0.41	1.48e-04	
10	0.30	0.07	3.42e-02	4.11	1.40e-04	<mark>58%</mark>	17.54	1.97e-04	72%	0.59	8.99e-05	0.62	9.91e-05	
50	0.20	0.49	2.94e-02	123.90	2.98e-03	<mark>93%</mark>	71.43	4.64e-04	56%	3.96	3.03e-04	4.96	2.63e-04	
50	0.25	0.39	3.59e-02	23.80	8.17e-04	87%	101.47	3.24e-04	67%	2.98	1.89e-04	3.20	2.11e-04	
50	0.30	0.33	4.21e-02	18.64	6.21e-04	85%	146.24	2.64e-04	75%	2.56	1.78e-04	2.78	1.91e-04	
50	0.40	0.24	5.53e-02	19.17	3.69e-04	82%	42.28	2.16e-04	77%	2.28	1.11e-04	2.69	1.65e-04	
100	0.35	0.54	5.70e-02	73.48	1.24e-03	92%	259.37	5.41e-04	77%	13.07	3.01e-04	17.40	3.09e-04	
100	0.40	0.47	6.37e-02	63.08	8.19e-04	<mark>91%</mark>	302.82	4.11e-04	79%	9.74	2.56e-04	11.39	2.41e-04	
100	0.50	0.38	7.71e-02	61.44	4.91e-04	90%	359.66	3.10e-04	82%	7.30	1.55e-04	7.37	1.92e-04	
100	0.55	0.35	8.40e-02	50.78	4.12e-04	<mark>89%</mark>	360.28	2.89e-04	<mark>81%</mark>	6.23	1.14e-04	7.18	9.99e-05	

・ロン ・聞 と ・ ヨ と ・ ヨ と

₹ 990

Large random problems

		APGL						LMaFit $(K = \lfloor 1.25r \rfloor)$				LMaFit $(K = \lfloor 1.5r \rfloor)$				
n	r	SR	FR	μ	iter	#sv	time	rel.err	iter	#sv	time	rel.err	iter	#sv	time	rel.err
1000	10	0.119	0.167	1.44e-2	39	10	2.47	3.04e-4	23	10	0.29	1.67e-4	23	10	0.28	1.73e-4
1000	50	0.390	0.250	5.36e-2	40	50	14.48	3.08e-4	18	50	1.88	6.58e-5	18	50	2.04	7.62e-5
1000	100	0.570	0.334	8.58e-2	53	100	49.67	3.98e-4	20	100	5.47	1.86e-4	21	100	5.99	1.42e-4
5000	10	0.024	0.166	1.37e-2	52	10	12.48	2.17e-4	29	10	1.99	1.71e-4	29	10	2.17	1.77e-4
5000	50	0.099	0.200	6.14e-2	76	50	161.82	1.26e-3	20	50	15.87	2.72e-5	20	50	16.49	3.86e-5
5000	100	0.158	0.250	1.02e-1	60	100	316.02	3.74e-4	26	100	57.85	1.57e-4	27	100	60.69	1.47e-4
10000	10	0.012	0.166	1.37e-2	53	10	23.45	3.61e-4	34	10	5.08	1.54e-4	34	10	5.56	1.66e-4
10000	50	0.050	0.200	5.97e-2	56	50	225.21	2.77e-4	23	50	44.80	4.76e-5	23	50	48.85	5.70e-5
10000	100	0.080	0.250	9.94e-2	71	100	941.38	2.87e-4	30	100	168.44	1.63e-4	30	100	176.45	1.70e-4
20000	10	0.006	0.167	1.35e-2	57	10	60.62	2.37e-4	38	10	12.46	1.44e-4	38	10	13.60	1.57e-4
30000	10	0.004	0.167	1.35e-2	59	10	95.50	1.96e-4	39	10	20.55	1.71e-4	39	10	23.48	1.73e-4
50000	10	0.002	0.167	1.35e-2	66	10	192.28	1.58e-4	42	10	43.43	1.81e-4	42	10	49.49	1.84e-4
100000	10	0.001	0.167	1.34e-2	92	10	676.11	2.10e-4	46	10	126.59	1.33e-4	46	10	140.32	1.30e-4

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Random low-rank approximation problems

프 🕨 🗆 프

Random low-rank approximation problems

Prob	olem	APGL					FPC	CA	LMa	Fit(e	st_rank=1)	LMaFit(est_rank=2)		
SR	FR	μ	#sv	time	rel.err	#sv	time	rel.err	#sv	time	rel.err	#sv	time	rel.err
	power-low decaying													
0.04	0.99	1.00e-04	90	16.30	6.48e-01	1	40.49	1.39e-01	5	0.70	3.68e-01	11	0.31	8.96e-03
0.08	0.49	1.00e-04	85	19.95	2.00e-01	2	45.81	4.38e-02	5	1.59	2.20e-01	20	0.60	1.13e-03
0.15	0.26	1.00e-04	7	1.73	4.05e-03	4	14.46	1.78e-02	5	1.47	1.52e-01	20	0.75	4.57e-04
0.30	0.13	1.00e-04	11	1.85	1.86e-03	4	31.48	1.04e-02	5	3.20	8.12e-02	22	1.33	2.36e-04
	exponentially decaying													
0.04	0.99	1.00e-04	100	15.03	7.50e-01	14	35.79	5.05e-01	5	0.48	3.92e-01	16	0.86	4.08e-01
0.08	0.49	1.00e-04	100	21.60	3.31e-01	8	39.82	1.24e-01	5	0.44	2.66e-01	26	1.84	1.98e-02
0.15	0.26	1.00e-04	100	17.43	4.71e-02	13	12.31	2.76e-02	5	0.63	2.39e-01	28	1.62	7.26e-04
0.30	0.13	1.00e-04	42	9.50	3.31e-03	14	29.13	1.71e-02	6	1.03	1.71e-01	30	2.01	2.38e-04

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

Video Denoising

original video

50% masked original video

э

æ

Video Denoising

recovered video by LMaFit

recovered video by APGL

			APC			LMaFit	5		
m/n	μ	iter	#sv	time	rel.err	iter	#sv	time	rel.err
76800/423	3.44e+01	34	80	516.22	4.58e-02	64	80	92.47	4.93e-02

ъ

э

- Explore matrix completion by using the low-rank facotrization model
- Reduce the cost of the nonlinear Gauss-Seideal scheme by eliminating an unecessary least square problem
- Propose a nonlinear successive over-relaxation (SOR) algorithm with convergence guarantee
- Adjust the relaxation weight of SOR dynamically
- Excellent computational performance on a wide range of test problems

(四) (日) (日)

Matrix separation

Consider:

$$\min_{U,V,Z} \|\mathcal{P}_{\Omega}(Z-D)\|_1 \quad \text{s.t.} \quad UV-Z=0$$

Introduce the augmented Lagrangian function

$$\mathcal{L}_{\beta}(U, V, Z, \Lambda) = \|\mathcal{P}_{\Omega}(Z - D)\|_1 + \langle \Lambda, UV - Z \rangle + rac{\beta}{2} \|UV - Z\|_F^2,$$

Alternating direction augmented Lagrangian framework:

・ 同 ト ・ ヨ ト ・ ヨ ト …

ъ

ADM subproblems

• Let
$$B = Z - \Lambda/\beta$$
, then
 $U_+ = BV^\top (VV^\top)^\dagger$ and $V_+ = (U_+^\top U_+)^\dagger U_+^\top B$
Since $U_+ V_+ = U_+ (U_+^\top U_+)^\dagger U_+^\top B = \mathcal{P}_{U_+} B$, then:
 $Q := \operatorname{orth}(BV^\top), \quad U_+ = Q$ and $V_+ = Q^\top B$

• Variable Z:

$$\begin{aligned} \mathcal{P}_{\Omega}(Z_{+}) &= \mathcal{P}_{\Omega}\left(\mathcal{S}\left(U_{+}V_{+}-D+\frac{\Lambda}{\beta},\frac{1}{\beta}\right)+D\right) \\ \mathcal{P}_{\Omega^{c}}(Z_{+}) &= \mathcal{P}_{\Omega^{c}}\left(U_{+}V_{+}+\frac{\Lambda}{\beta}\right) \end{aligned}$$

ヘロト 人間 とくほとくほとう

E 990

Theoretical results

• Let $X \triangleq (U, V, Z, \Lambda)$. The KKT conditions are

$$\Lambda V^{\top} = 0, \ U^{\top} \Lambda = 0, \ \partial_Z (\|Z - D\|_1) = \Lambda, \ UV - Z = 0.$$

The equation $\partial_Z(||Z - D||_1) = \Lambda$ is equivalent to

$$Z - D = S(Z - D + \Lambda/\beta, 1/\beta) = S(UV - D + \Lambda/\beta, 1/\beta),$$

 Let {X^j}_{p=1}[∞] be an uniformly bounded sequence generated by ADM with

$$\lim_{p\to\infty}(X^{j+1}-X^j)=0.$$

Then any accumulation point of $\{X^j\}_{p=1}^{\infty}$ satisfies the KKT conditions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

CPU and rel. err vs. sparsity: m = 100 and $k^* = 5$

Zaiwen Wen Low-Rank Factorization Models

ъ

Recoverability test: phase plots

► < E >

э.

æ

Performance with respect to size

Zaiwen Wen Low-Rank Factorization Models

э

Deterministic low-rank matrices

Figure: Recovered results of "brickwall". Upper left: original image; upper right: corrupted image; lower left: IALM; lower right: LMaFit.

Zaiwen Wen

Low-Rank Factorization Models

≣⇒

Video separation

Figure: original, separated results by IALM and LMaFit .

Zaiwen Wen Low-Rank Factorization Models

э

Video separation

Figure: original, separated results by IALM and ${\tt LMaFit}$.

Zaiwen Wen Low-Rank Factorization Models

Wotao, Yin, Fast Curvilinear Search Algorithms for Optimization with Constraints $||x||_2 = 1$ or $X^{\top}X = I$

- p-harmonic flow into spheres
- polynomial optimization with normalized constraints
- maxcut SDP relaxation
- low-rank nearest correlation matrix estimation
- linear and nonlinear eigenvalue problems
- quadratic assignment problem

伺き くほき くほう しほ