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Outline

@ Basic Concepts of Semi-smooth Newton method
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Composite convex program

Consider the following composite convex program

min  f(x) + h(x),

XERM

where f and h are convex, f is differentiable but h may not

Many applications:

@ Sparse and low rank optimization: h(x) = ||x|ly or || X|l. and many
other forms.

@ Regularized risk minimization: f(x) = }}; fi(x) is a loss function of
some misfit and h is a regularization term.

@ Constrained program: his an indicator function of a convex set.
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A General Recipe

Goal: study approaches to bridge the gap between first-order and
second-order type methods for composite convex programs. J

key observations:

@ Many popular first-order methods can be equivalent to some
fixed-point iterations: x**1 = T(x¥);
e Advantages: easy to implement; converge fast to a solution with
moderate accuracy.

o Disadvantages: slow tail convergence.

@ The original problem is equivalent to the system
F(x):=(I-T)(x)=0.

@ Newton-type method since F(x) is semi-smooth in many cases

@ Computational costs can be controlled reasonably well

5/53



An SDP From Electronic Structure Calculation
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Forward-backward splitting (FBS)

@ proximal mapping:

, 1
prox,(x) := argmin {h(u) + =llu — xI[3}.
UERN 2t

@ FBS is the iteration
XK1 = prox,,(xK - tvf(x¥)), k =0,1,---,
= argmin (VH(xXF), x = xK) + 2lt||x — X2 + h(x)
@ Equivalent to a fixed-point iteration
XK1 = Tegs(x9).

where
TFBS i= Proxy, o (I - tVf)
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Douglas-Rachford splitting (DRS)/ADMM

@ DRS is the following update:

Xkt = proxth(zk),
yk+1 — prOth(2Xk+1 _ Zk),
2R gk gkt ket

@ Equivalent to a fixed-point iteration
2K = Tprs(29),

where
Tprs := | + prox;s o (2proxs, — /) — proxy,.

@ The ADMM to the primal is equivalent to the DRS to the dual
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Semi-smoothness

@ Solving the system
F(z) =0,

where F(z) = T(z) — z and T(z) is a fixed-point mapping.
@ F(z) fails to be differentiable in many interesting applications.

@ but F(z) is (strongly) semi-smooth and monotone.
(a) F is directionally differentiable at x; and

(b) forany d e R"and J € dF(x + d),
IF(x +d) - F(x)—Jdl> = o(lldllz) asd — 0.

9/53



A regularized semi-smooth Newton method

@ The Jacobian Jx € dgF(z¥) is positive semidefinite

@ Let ux = A4||F¥|l». Constructe a Newton system:
(Jk +pxl)d = —F*,
@ Solving the Newton system inexactly:
= (i + ukl)d* + F¥.
We seek a step d* approximately such that
Ir¥ll2 < = min{1, AlIFX|lalld¥]le),  where 0 < 7 < 1

@ Newton Step: zK+1 = zK 4 ¥
@ Faster local convergence is ensured
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Outline

9 Semi-smooth Newton method for SDP
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Semidefinite Programming

Consider the SDP

min(C, X),st. AX=b,X>0

f(X) =(C. X) + 1 ax=p(X).
h(X) = 1x(X), where K = {X : X = 0}.
Proximal Operator: prox,(Z) = argminy 3[IX - Z||f__ + th(X)

Let Z = QX QT be the spectral decomposition

proxy(Y) = (Y +1C)-A(AY + tAC - b),
prox;(Z) = Q.X.Q,

Fixed-point mapping from DRS:

F(Z) = prox;y(Z) - proxy(2prox;s(Z) - Z) = 0.
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Semi-smooth Newton System

@ assumption: AA* = |
@ The SMW theorem yields the inverse matrix
(Jk +uk) " =HV+ HTAT(I - AWHTAT) ' AWH!

T+ AT s I+ ATAT) T A(=—2—1- T)).

ulu+1) 2u+ 1 2u+ 1
° ATATd = AQ(Q o (QT(D)Q))QT, where D = A*d,
Ea/a la&
QO N [ I(Z;_l 0 ]’
pki

and E,, is a matrix of ones and /; = s s

@ computational cost O(|a|n?)
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Semi-smooth Newton method

@ SelectO<v<1,0<pi<m<tand1<y; <y2.4>0
@ A trial point UK = ZkK + S¥

@ Define a ratio

~(F(U9). 8)
Pk = ———FF5.
I1S¥I12
@ Update the point
K AfIF(UR)IIF < F(Z))llg, [Newt
Zk+1 — Un it (U )||F_Vmax(1,lT?i(1)§jsk|l ( )HF [ ew OI’]]
Zk, otherwise. [failed]

@ Update the regularization prameter

(LL /lk)’ if px > 12,
Ak41 € [/lk’ Y1 ﬂ'k]’ if 71 < pk < no,
(v1dk,y24k], otherwise,.
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Switching between the ADMM and Newton steps

the reduced ratios of primal and dual infeasibilities

B meank_5§/§k77’p K meaﬂk—Ssjsk’fq
wy = — and Wy, = —.
meank_25sjsk_207fp meank—25§jﬁk—2077jq

Repeat:

@ Semi-smooth Newton steps (doSSN == 1)
Compute UX = ZK + SX. Then update Z¥*1 and Ay +.
If Newton step is failed, set Ny = N¢ + 1.
If N; > N; or the Newton step performs bad
Set doSSN = 0 and parameters for the ADMM steps

@ ADMM steps (doSSN == 0)
Perform an ADMM step.
If the ADMM step performs bad
Set doSSN = 1, Nf = 0 and parameters of the Newton steps
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Global Convergence

Suppose that {Z} is a sequence generated by the semismooth
Newton method. Then the residuals of {Z¥} converge to 0, i.e.,
limy e [IF(Z¥)1l = 0.

e If {Z¥} is bounded, Then any accumulation point of {Z}
converges to some point Z such that F(Z) = 0.

@ This algorithm can solve the general composite optimization.
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Comparison on electronic structure calculation

@ The data set are used in the paper of Nakata, et al. Thanks Prof.
Nakata Maho and Prof. Mituhiro Fukuta for sharing all data sets on
2RDM

@ solver:

o SDPNAL: Newton-CG Augmented Lagrangian Method proposed
by Zhao, Sun and Toh

o SDPNAL+: Enhanced version of SDPNAL by Yang, Sun and Toh

o SSNSDP: the semi-smooth Newton method using stop rules
np<3x10%andny <3x1077.

@ all experiments were performed on a computing cluster with an Intel
Xeon 2.40GHz CPU that processes 28 cores and 256GB RAM.

@ main criteria:

— lA(X) - bll2 ng = Ay — C—Sllr
P max(1,1bll2) max(1,[IClIF)
bTy —tr(CTX
ng = o7y —w(C” X ( ) err = b’ y — energygicr

max(1,tr(CT X))
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Compuational Results: C2
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Comparison on electronic structure calculation
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Comparison on electronic structure calculation

success: max{np,nq} < 1078

SSNSDP SDPNAL SDPNAL+
case number percentage | number percentage | number  percentage
sliceess 276 100% 53 192% | 265 9%
fastest 0 T43% 30 109% | # 14.9%
fastest under success 12 841% ] 1.09% 41 14.9%
not slower 1.2 times B 8BS | T 25.7% §1 31.5%
not slower 1.2 times under success | 251 90.9% ) 1.81% §1 31.5%

Figure: Comparison between SDPNAL, SDPNAL+ and SSNSDP
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Outline

e Stochastic Semi-smooth Newton Method
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Examples and Applications

@ Consider
mXin f(x) + h(x) =: ¢(x)

@ Expected and Empirical Risk Minimization:

N
100 = BIF(x.8)] = [ FOxe) dP(o). x) = D (0

i=1

Applications and Typical Situation:

@ Large-scale machine learning problems, LASSO, sparse and
bilinear logistic regression, low-rank matrix completion, sparse
dictionary learning, ...

@ P is not known (completely) or N is very large.
~» Full evaluation of f and Vf is impractical or even not possible.
~» Use stoch. optimization techniques and sampling strategies!
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Algorithmic ldea

Basic idea based on x* 1 = Tigs(xX) = prox)(x* — tVF(x¥)).
@ The proximity operator [Moreau '65]

’
proxp(y) := argmin, h(z) + §||y—z||,2\.

@ We incorporate second order information and use stochastic
Hessian oracles (SSO)

H(xX; tK) ~ V2f(x¥)
to estimate the Hessian V2f and compute the Newton step.

@ The sample collections s¥ and tX are chosen independently of
each other and of the other batches s¢, ¢, ¢ € Ny \ {k}.

@ letG:R"x=—->R"and H: R"x = — S" be Carathéodory
functions. We work with the following S7 0O and SSO:

nh

1 1 O

G (X) 1= ngZst and  Hu(x ::m H(x
= k j=1
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Stochastic Semi-smooth Newton Method: Idea
To accelerate the stochastic proximal gradient method, we want to
augment it by a stochastic Newton-type step, obtained from the
(sub-sampled) optimality condition:

FMx) = x - prOle)(X - A 1Gs(x)) = 0. J

The semi-smooth Newton step is given by

My d* = —F(x"), XK = x* 4 ok, J

with sample batches s*, t and My e M0 , (x¥),
M/S\,I(X) ={M=1-D+DN"Hy(x): De dprox (Ua(x))}
and u(x) = x - A 1G4(x).
~» Aim: Utilize fast local convergence to stationary points!
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Stochastic Semismooth Newton Method

Sub-sampled Semi-smooth Newton Method

0.

. Compute st\kk(xk) and choose My € M

Choose x° € dom h, batch sizes (n}), (n!

step sizes (ak). Select ind. batches s°, t°. Set k := 0.

While “not converged” do:
N« (xK). Select new

sample batches sk*1, th+1,

. Compute the semismooth Newton step via

Mid* = —Fl(xk).

If this is not possible, go to step 4.

. Set zK := xK 4+ dk. If zK e dom h and z* satisfies the growth

conditions (%), set x¥*1 := zK and go to step 5.
Compute a proximal gradient step x**' := x — a F1(x*).

. Increment k and go to step 1.

), matrices (Ax), and

y
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Algorithmic Framework (Cont’)

We use the following growth conditions (x) in step 3:
IFL (20N < (7 + vi) - 6k + & (G.1)
(2 < w(x¥) + - 0 2IFNS (212 + €2, (G.2)

where € (0,1), 8> 0, and (vk), (£2) € €1, (¢}) € £1/2.

We set k1 to ||F kkjﬂ (x**+1)|1if x**1 was obtained in step 3.

@ Calculating F' kkjﬂ (z¥) requires evaluation of G1(2¥). This

information can be reused in the next iteration if zX ~» xkt1 is

accepted as new iterate.

26/53



Global Convergence: Assumptions

Basic Assumptions:

(A.1) Vfis Lipschitz continuous on R with constant L.
(A.2) The matrices (Ax) c '}, satisfy Am/ = Ax = Ayl for all k.
(A.3) v is bounded from below on dom h.

Stochastic Assumptions:
(S.1) For all k € N, there exists oy > 0 such that

E[IVF(x¥) = G (X)IP] < o2

(S.2) The matrices M, chosen in step 1, are random operators.
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Global Convergence

Theorem: Global Convergence [MXCW, ’17]

Suppose that (A.1)—(A.3) and (S.1)—(S.2) are fulfilled. Then, under
the additional conditions, ax < @ := min{1, A,/L},

(ak) is nonincreasing , Zak = oo, Zakfri <

it holds liminfx_,., E[IIF(x¥)I[?] = 0 and liminf,_., F\(x¥) = 0 a.s. for
any Ae ST .

@ Verify that (x¥) actually defines an adapted stochastic process.
@ The batch s and the iterate x* are not independent.
@ Derive approximate and uniform descent estimates for the terms

Y(xH) —u(x).

For strongly convex case: limg_,. E[||F(x*)|I’] = 0 and
liMke FA(X¥) =0 a.s. forany AesT .
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Numerical Results: Sparse Logistic Regression

We consider the following ¢1-regularized logistic regression problem

N
, 1
min N;f;(x)wnxm, (x) = log(1 + exp(~b; - ] X)) J

where a,.T € R" denotes the ith row of the data matrix A € RN*" and
b € {-1,1}N is a binary vector.

Specifications of the test framework:!

| dataset | data points N | features n | \

covtype 581012 54 u=5e-3
gisette 6000 5000 u=5e-2
rcvl 20242 47236 | u=1e-3

"LIBSVM - www.csie.ntu.edu.tw/ cjlin/libsvm/ 29/53



Numerical Comparisons - covtype, Epochs
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Numerical Comparisons - covtype, Time
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Numerical Comparisons - gisette, Epochs

relative sub-optimality

.
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Numerical Comparisons - gisette, Time

. .
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Outline

e Regularized Newton Method for Optimization on Manifold
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Optimization on Riemannian Manifold

Problem definition

109

where M is a Riemannian manifold.

@ Common matrix manifolds
o Stiefel Manifold: St(p,n) £ {X e R™P | XTX = I}

e Grassmann manifold: Grass(p, n) denote the set of all p—
dimensional subspaces of R"

e Oblique manifold: {X € R™" | diag(XT X) = I,}
e Rank-p manifold: {X € R™" : rank(X) = p}
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Electronic Structure Calculation

@ Total energy minimization:
ch)i(r:]/Ekinetic(X) + Eion(X) + EHartree(X) + Exc(X) + Efock(X)>
where

Ekinetic(X) = %tf(X*LX)
Eion(X) = (X" VionX)

Evarnce(X) = p(X)"L'p(X)

Exc(X) = p(X) uxe(o(X))

p(X) diag(D(X)), D(X) = XX*
Enck(X) = (V(D)X.X)
@ Nonlinear eigenvalue problem (looks like the KKT condtions):

HX)X = XA
XX =1
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Bose-Einstein condensates

Minimization problem

min & (¢),

Bd

E@) = [ |57000F + Vbt + ot - 230 Le0x)| ox

V)]
I

o160 <. [ woopax=1}.

Discretized problem

min 7(X) := lx*Ax+aZ|X|4 st Xl = 1.
XeCN -
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Cryo-electron microscopy reconstruction

Projection P;

Molecule ¢ @

|1

R

Electron '
source]

/ \ | \
Ry= ( Rl R: R ) € SO(3)

Find 3D structure given samples of 2D projections images

Thanks: Amit Singer
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Regularized Newton Method

@ Our new adaptively regularized Newton (ARNT) method:

: 1
min - mg(x) := (VF(Xk), X — Xic) + 3 (Hi[x = xi], X — xic) + %Hx — Xkll?,
st xeM,

where Vf(xx) and H are the Euclidean gradient Hessian.

@ Regularized parameter update (trust-region-like strategy):

o ratio: px = %

e regularization parameter o:

Ol acm (i3]
Tk1 €3 [0k v10K] if 71 < pk < 2, =>
[71 Tk, ‘)/QO'k] otherwise. =

where 0 <ny <ma<land 1<y <ys.
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Solvers for subproblem

@ The subproblem implicitly preserve the Lagrangian multipliers

Hessmi (X )[§] = P (Hk[£] — Usym((Xk)"VF(Xk))) + k&,
@ Riemannian Gradient method with BB step size.

@ Newton system for the subproblem
grad my(xx) + Hessmy(xk)[¢] = 0.

@ Modified CG method

with 1, =

o +1xdy if dk # 0, (dk, grad My (X)),
T ) sk if dj = O, = (k. Hessmic(x) [0h]),

@ dk represents and transports the negative curvature information
e s¥ corresponds to the “usual” output of the CG method.

40/53



Hartree-Fock total energy minimization

Solver| fval |[nrmG| its | time fval [nrmG| its | time
ctube661 glutamine

ACE |-1.43e+2(9.2e-7| 8(2.8) | 795 ||-1.04e+2|3.9e-7| 10(3.0) | 229
GBBN|-1.43e+2|6.5e-7|10(26.3)| 1399 ||-1.04e+2|8.4e-7|11(13.3)| 256
ARN [-1.43e+2|6.0e-7| 9(14.1) | 832 ||-1.04e+2|8.8e-7| 10(9.5) | 209
ARQN|-1.43e+2(2.0e-7| 8(13.2) | 777 ||-1.04e+2(1.5e-7| 8(10.1) | 182
AKQN|-1.43e+2|6.1e-7|{17(10.3)| 1502 [|-1.04e+2|9.1e-7| 25(6.0) | 515
RQN |-1.43e+2|7.2e-6| 59 [6509.0(|-1.04e+2|2.9e-6| 57 1532
graphene16 graphene30
ACE |-1.01e+2|7.6e-7| 13(3.4) | 367 ||-1.87e+2|8.6e-7| 58(4.2) {14992
GBBN|-1.01e+2|4.2e-7|14(42.1)| 659 ||-1.87e+2|8.9e-7[29(72.2)|19701
ARN |-1.01e+2|4.5e-7|14(23.0)| 403 ||-1.87e+2|9.0e-7|45(35.6)|14860
ARQN|-1.01e+2[4.9e-7({11(20.2)| 357 ||-1.87e+2|7.6e-7|15(26.5)| 6183
AKQN|-1.01e+2|7.9e-7|49(15.1)| 1011 ||-1.87e+2|8.0e-7(39(12.3)| 9770
RQN |-1.01e+2{1.0e-3 74 2978 ||-1.87e+2|1.5e-5| 110 |39091

41/53



Bose-Einstein condensates

solver

[ f its nrmG time |

[ f its nrmG  time

B =500

Q=0.70

Q=0.80

OptM

6.9731 340 1.0e-4 56.3

6.1016 386 1.0e-4 65.2

TRQH

6.9731 7(55) 2.0e-4 61.6

6.1016 5(64) 2.0e-4 83.1

ARNT

6.9731 10(99) 8.7e-5 44.4

6.1016 10( 104) 8.7e-5 70.6

RTR

6.9731 99(118) 9.36-5 2342

6.1016 18(130) 7.7e-5 130.1

Q =0.90

Q =0.95

OptM

4.7784 10000 1.2e-3 243.6

3.7419 10000 7.4e-4 241.6

TRQH

4.7778 277(176) 2.0e-4 1090.9

3.7416 363( 181) 2.0e-4 1185.1

ARNT

4.7777 147(132) 9.6e-5 413.3

3.7414 500( 147) 2.6e-4 1204.0

RTR

4.7777 500( 147) 8.5e-4 1250.4

3.7415 500( 172) 9.7e-4 1419.0

B =1000

Q=0.70

Q=0.80

OptM

9.5283 990 1.0e-4 63.7

8.2627 10000 5.5e-4 231.9

TRQH

9.5301 102( 156) 2.0e-4 404.1

8.2610 453( 177) 2.0e-4 1427.0

ARNT

9.5301 60(81) 9.3e-5 140.4

)
8.2610 202( 105) 6.7e-5 412.7

RTR

9.5301 293(91) 8.6e-5 478.8

8.2610 500( 113) 5.5e-4 972.7

Q =0.90

Q =0.95

OptM

6.3611 10000 3.0e-3 230.8

4.8856 10000 5.2e-4 241.4

TRQH

6.3607 142(170) 2.0e-4 5956

4.8831 172(178) 2.0e-4 7081

ARNT

6.3607 500( 110) 2.8e-3 931.5

4.8822 500( 121) 1.6e-3 1015.8

RTR

6.3607 500( 122) 7.6e-4 1010.8

4.8823 500( 137) 1.9e-3 1103.8
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Outline

e Modified Levenberg-Marquardt Method For Phase Retrieval
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Phase retrieval

Detectors record intensities of diffracted rays =— phaseless data
only!

diffraction patterns

@ Recover x from phaseless measurements about x € C”
find x, s.t. |Ax| = b.

@ An equivalent model
. 1 o
Xecn,qur;Rm EIIAX - yll5, s.t. |yl =b.
Applications: Hubble Space Telescope, X-ray crystallography
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Phase retrieval by non-convex optimization

Solve the system of quadratic equations:

Ve =Kan X2, r=1,2,...m.

@ Gaussian model:
a, e C" " N(0, 1/2) + iN(O, 1/2).

Nonlinear least square problem

. 1 < 212
min  £(2) = 7 ;(yk - Kak, 2)I)

f is nonconvex, many local minima
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Wirtinger flow: Candes, Li and Soltanolkotabi ('14)

@ Spectral Initialization:
1 Input measurements {a,} and observation {y/}(r = 1,

2,.
m
2 Calculate z to be the leading eigenvector of Y = 15 2 yrara;

m).

3 Normalize zg such that [|zo|[? = nzzﬁg,,nz'

@ Iteration via Wirtinger derivatives: forr=0,1,...

Hr41
Zej1 =2 — HZTWVf(ZT)
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The Modified LM method for Phase Retrieval

Levenberg-Marquardt lteration:

21 = 2 — (V(2k) + d) ™ 9(2x)

Algorithm

1 Input: Measurements {a,}, observations {y,}. Set € > 0.

2 Construct zp using the spectral initialization algorithms.
3 While ||g(zx)|| > € do
e Compute sk by solving equation

Wiisk = (W(zk) + ukl) sk = —9(2«).

until
H\U’;ﬁsk + Q(Zk)” < nkllg(zx)ll-
o Setzy 1 =2zx+skand k : =k + 1.
3 Output: z.
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Convergence of the Gaussian Model

If the measurements follow the Gaussian model, the LM equation is
solved accurately (nx = 0 for all k), and the following conditions hold:

e m > cnlog n, where c is sufficiently large;
o I f(z) > 1242 oty = 700000 \/nf(zk); if else, let ux = /F(zk).

Then, with probability at least1 — 15e™" — 8/n? — me~'°", we have
dist(zy, x) < (1/8)|Ix], and

dist(Zkt1, X) < cydist(z, X),

o 2
Meanwhile, once f(zs) < 2L for any k > s we have

dist(zx41, X) < Cadist(zx, X)2.
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Key to proof

Lower bound of GN matrix’s second smallest eigenvalue
Forany y, ze C", Im(y*z) = 0, we have:

yu(2)y = llylFilzI?,
holds with high probability.

Im(y*z) =0 = [|(V5) Tyl <

Iyl
B
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Key to proof

Local error bound property

1
24ist(z, Xx)? < f(2) < 8.04dist(z, x)? + 6.06ndist(z, x)*,

holds for any z satisfying dist(z, x) < g.

Regularity condition

holds for any z = x + h, ||| < 8,and f(z) > 9 0

n:
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Numerical Result: Natural Image

Figure: The Milky Way Galaxy. Image size is 1080x1920 pixels. For the ALM method, the
CPU time is 20240.64s, with a final relative error to be 2.44 x 10~'%; for the ILM algorithm, the
CPU time is 4733.43s, and the final relative error is 2.42 x 10~18; for WF algorithm, the CPU
time is 5211.35s, while the final relative error is 4.91 x 10-16




Numerical Result: Natural Image
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Figure: Relation between relative error and CPU time used for natural images recovery.
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Contact Information

Many Thanks For Your Attention!

@ Looking for Ph.D students and Postdoc
Competitive salary as U.S and Europe

@ http://bicmr.pku.edu.cn/~wenzw
@ E-mail: wenzw@pku.edu.cn
@ Office phone: 86-10-62744125

53/53


http://bicmr.pku.edu.cn/~wenzw 

	Basic Concepts of Semi-smooth Newton method
	Semi-smooth Newton method for SDP
	Stochastic Semi-smooth Newton Method
	Regularized Newton Method for Optimization on Manifold
	Modified Levenberg-Marquardt Method For Phase Retrieval

