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We consider in this chapter block coordinate descent (BCD) methods for solv-
ing semidefinite programming (SDP) problems. These methods are based on
sequentially minimizing the SDP problem’s objective function over blocks of
variables corresponding to the elements of a single row (and column) of the
positive semidefinite matrix X; hence, we will also refer to these methods
as row-by-row (RBR) methods. Using properties of the (generalized) Schur
complement with respect to the remaining fixed (n — 1)-dimensional princi-
pal submatrix of X, the positive semidefiniteness constraint on X reduces to
a simple second-order cone constraint. It is well known that without certain
safeguards, BCD methods cannot be guaranteed to converge in the presence of
general constraints. Hence, to handle linear equality constraints, the methods
that we describe here use an augmented Lagrangian approach. Since BCD
methods are first-order methods, they are likely to work well only if each
subproblem minimization can be performed very efficiently. Fortunately, this
is the case for several important SDP problems, including the maxcut SDP
relaxation and the minimum nuclear norm matrix completion problem, since
closed-form solutions for the BCD subproblems that arise in these cases are
available. We also describe how BCD can be applied to solve the sparse inverse
covariance estimation problem by considering a dual formulation of this prob-
lem. The BCD approach is further generalized by using a rank-two update
so that the coordinates can be changed in more than one row and column
at each iteration. Finally, numerical results on the maxcut SDP relaxation
and matrix completion problems are presented to demonstrate the robustness
and efficiency of the BCD approach, especially if only moderately accurate
solutions are desired.
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1 Introduction

Semidefinite programming (SDP) problems are convex optimization problems
that are solvable in polynomial time by interior point methods [57, 64, 70].
Unfortunately however, in practice large scale SDPs are quite difficult to solve
because of the very large amount of work required by each iteration of an in-
terior point method. Most of these methods form a positive definite m x m
matrix M, where m is the number of constraints in the SDP, and then com-
pute the search direction by finding the Cholesky factorization of M. Since m
can be O(n?) when the unknown positive semidefinite matrix is n x n, it can
take O(n®) arithmetic operations to do this. Consequently, this becomes im-
practical both in terms of the time and the amount of memory O(m?) required
when n is much larger than one hundred and m is much larger than a few
thousand. Moreover forming M itself can be prohibitively expensive unless m
is not too large or the constraints in the SDP are very sparse [27]. Although
the computational complexities of the block coordinate descent (BCD) meth-
ods presented here are not polynomial, each of their iterations can, in certain
cases, be executed much more cheaply than in an interior point algorithm. This
enables BCD methods to solve very large instances of these SDPs efficiently.
Preliminary numerical testing verifies this. For example, BCD methods pro-
duce highly accurate solutions to maxcut SDP relaxation problems involving
matrices of size 4000 x 4000 in less than 5.25 minutes and nuclear norm matrix
completion SDPs involving matrices of size 1000 x 1000 in less than 1 minute
on a 3.4 GHZ workstation. If only moderately accurate solutions are required
(i.e., a relative accuracy of the order of 1073) then less than 45 and 10 sec-
onds, respectively, is needed. We note, however, that using a BCD method as
a general purpose SDP solver is not a good idea.

1.1 Review of BCD methods

BCD methods are among the oldest methods in optimization. Since solving
the original problem with respect to all variables simultaneously can be diffi-
cult or very time consuming, these approaches are able to reduce the overall
computational cost by partitioning the variables into a few blocks and then
minimizing the objective function with respect to each block by fixing all other
blocks at each inner iteration. They have been studied in convex programming
[45, 60], nonlinear programming [6, 34, 33], nonsmooth separable minimization
with and without linearly constraints [58, 63, 59] and optimization by direct
search [42]. Although these methods have never been the main focus of the
mathematical optimization community, they remain popular with researchers
in the scientific and engineering communities. Recently, interest in coordinate
descent methods has been revived due to the wide range of large-scale prob-
lems in image reconstruction [9, 73, 24], machine learning including support
vector machine training [17, 62, 8, 39], mesh optimization [20], compressive
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sensing [44, 23, 75, 48], and sparse inverse covariance estimation [2] to which
these methods have been successfully applied.

The basic BCD algorithmic strategy can be found under numerous names,
including linear and nonlinear Gauss-Seidel methods [53, 33, 35, 69], subspace
correction methods [56] and alternating minimization approaches. BCD meth-
ods are also closely related to alternating direction augmented Lagrangian
(ADAL) methods which alternatingly minimize the augmented Lagrangian
function with respect to different blocks of variables and then update the
Lagrange multipliers at each iteration. ADAL methods have been applied to
many problem classes, such as, variational inequality problems [37, 36, 72], lin-
ear programming [21], nonlinear convex optimization [7, 43, 18, 41, 61, 32, 31],
maximal monotone operators [22], nonsmooth ¢; minimization arising from
compressive sensing [65, 71, 77] and SDP [74, 68].

There are several variants of coordinate and BCD methods. The simplest
cyclic (or Gauss-Seidel) strategy is to minimize with respect to each block
of variables one after another in a fixed order repeatedly. The essentially
cyclic rule [45] selects each block at least once every T successive iterations,
where T is an integer equal to or greater than the number of blocks. The
Gauss-Southwell rule [45, 63] computes a positive value ¢; for every block ¢
according some criteria and then chooses the block with the largest value of g;
to work on next, or chooses the k-th block to work on, where ¢, > S max; g;
for 5 € (0,1]. An extreme case is to move along the direction corresponding
to the component of the gradient with maximal absolute value [49, 19]. The
approach in [49] chooses a block or a coordinate randomly according to pre-
specified probabilities for each block or coordinate.

The convergence properties of BCD methods have been intensively studied
and we only summarize some results since the 1990s. Bertsekas [6] proved that
every limit point generated by the coordinate descent method is a stationary
point for the minimization of a general differentiable function f(z1,...,zxN)
over the Cartesian product of closed, nonempty and convex subsets {X;}¥,,
such that z; € X;, « = 1,..., N, if the minimum of each subproblem is
uniquely attained. Grippo and Sciandrone [33] obtained similar results when
the objective function f is componentwise strictly quasiconvex with respect to
N — 2 components and when f is pseudoconvex. Luo and Tseng [45] proved
convergence with a linear convergence rate without requiring the objective
function to have bounded level sets or to be strictly convex, by consider-
ing the problem min,>o g(Exz) + bz, where g is a strictly convex essentially
smooth function and E is a matrix. In [58], Tseng studied nondifferentiable
(nonconvex) functions f with certain separability and regularity properties,
and established convergence results when f is pseudoconvex in every pair of
coordinate blocks from among N — 1 coordinate blocks or f has at most one
minimum in each of N — 2 coordinate blocks if f is continuous on a com-
pact level set, and when f is quasiconvex and hemivariate in every coordinate
block. Tseng and Yun [63] considered a nonsmooth separable problem whose
objective function is the sum of a smooth function and a separable convex
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function, which includes as special cases bound-constrained optimization and
smooth optimization with ¢;-regularization. They proposed a (block) coor-
dinate gradient descent method with an Armijo line search and established
global and linear convergence under a local Lipschitz error bound assumption.

Recently, complexity results for BCD methods have also been explored.
Saha and Tewari [54] proved O(1/k) convergence rates, where k is the
iteration counter, for two cyclic coordinate descent methods for solving
min, f(x) + Aljz||; under an isotonicity assumption. In [49], Nesterov pro-
posed unconstrained and constrained versions of a Random Coordinate De-
scent Method (RCDM), and showed that for the class of strongly convex
functions, RCDM converges with a linear rate, and how to accelerate the
unconstrained version of RCDM to have an O(1/k?) rate of convergence. A
stochastic version of the coordinate descent method with runtime bounds was
also considered in [55] for ¢;-regularized loss minimization.

1.2 BCD methods for SDP

All coordinate descent and block coordinate descent methods for SDP, that
maintain positive semidefiniteness of the matrix of variables, are based upon
the well known relationship between the positive semidefiniteness of a sym-
metric matrix and properties of the Schur complement of a sub-matrix of
that matrix [76]. We note that Schur complements play an important role
in SDP and related optimization problems. For example, they are often used
to formulate problems as SDPs [10, 64]. In [1, 29, 30] they are used to re-
formulate certain SDP problems as second-order cone programs (SOCPs).
More recently, they were used by Banerjee, El Ghaoui and d’Aspremont [2] to
develop a BCD method for solving the sparse inverse covariance estimation
problem whose objective function involves the log determinant of a positive
semidefinite matrix. As far as we know, this was the first application of BCD
to SDP.

As in the method proposed in Banerjee et. al [2], the basic approach de-
scribed in this chapter uses Schur complements to develop an overlapping
BCD method. The coordinates (i.e., variables) in each iteration of these meth-
ods correspond to the components of a single row (column) of the unknown
semidefinite matrix. Since every row (column) of a symmetric matrix con-
tains one component of each of the other rows (columns), the blocks in these
methods overlap. As we shall see below, the convergence result in [6] can be
extended to the case of overlapping blocks. However, they do not apply to the
case where constraints couple the variables between different blocks. To handle
general linear constraints, the BCD methods for SDP described here resort
to incorporating these constraints into an augmented Lagrangian function,
which is then minimized over each block of variables. Specifically, by fixing
any (n — 1)-dimensional principal submatrix of X and using its Schur comple-
ment, the positive semidefinite constraint is reduced to a simple second-order
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cone constraint and then a sequence of SOCPs constructed from the primal
augmented Lagrangian function are minimized.

Most existing first-order methods for SDP are also based on the augmented
Lagrangian method (also referred to as the method of multipliers). Specific
methods differ in how the positive semidefinite constraints are handled. In
[13, 14], the positive definite variable X is replaced by RR' in the primal
augmented Lagrangian function, where R is a low rank matrix, and then
nonlinear programming approaches are used. In [11, 15], a BCD (alternating
minimization) method and an eigenvalue decomposition are used to minimize
the primal augmented Lagrangian function. In [78], the positive semidefinite
constraint is represented implicitly by using a projection operator and a semis-
mooth Newton approach combined with the conjugate gradient method is
applied to minimize the dual augmented Lagrangian function. The regular-
ization methods [47, 50]) and the alternating direction augmented Lagrangian
method [68] are also based on a dual augmented Lagrangian approach and the
use of an eigenvalue decomposition to maintain complementarity.

We also generalize the BCD approach by using rank-two updates. This
strategy also gives rise to SOCP subproblems and enables combinations of the
coordinates of the variable matrix X in more than a single row and column
to change at each iteration. Hence, it gives one more freedom in designing an
efficient algorithm.

1.3 Notation and Organization

We adopt the following notation. The sets of n X n symmetric matrices and
n X n symmetric positive semidefinite (positive definite) matrices are denoted
by 8™ and ST (S% ), respectively. The notation X > 0 (X > 0) is also used
to indicate that X is positive semidefinite (positive definite). Given a matrix
A € R™™™ we denote the (4, j)-th entry of A by A; ;. Let o and 5 be given
index sets, i.e., subsets of {1,2,--- ,n}. We denote the cardinality of « by |«|
and its complement by o := {1,2,--- ,n}\a. Let A, g denote the submatrix
of A with rows indexed by « and columns indexed by S, i.e.,

Aa17ﬁ1 Aal,ﬁ\m
Aa,p = : :
Aa\ahﬁl Aam\vﬁw

We write ¢ for the index set {i} and denote the complement of {i} by
i°:={1,2,--- ,n}\{¢}. Hence, Ajc ;e is the submatrix of A that remains after
removing its i-th row and column, and Aje; is the ith column of the ma-
trix A without the element A;;. The inner product between two matrices C'
and X is defined as (C, X) := 3", Cj ;X and the trace of X is defined as

Tr(X) = >""" , X;i. The vector (“;) obtained by stacking the vector z € RP
on the top of the vector y € RY is also denoted by [z;y] € RPTI.
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The rest of this chapter is organized as follows. In section 2, we briefly
review the relationship between properties of the Schur complement and the
positive semidefiniteness of a matrix, and present a prototype of the RBR
method for solving a general SDP. In section 3.1, the RBR method is spe-
cialized for solving SDPs with only diagonal element constraints, and it is
interpreted in terms of the logarithmic barrier function. Coordinate descent
methods for sparse inverse covariance estimation are reviewed in section 3.3.
Convergence of the RBR method for SDPs with only simple bound constraints
is proved in section 3.4. To handle general linear constraints, we apply the
RBR method in section 4 to a sequence of unconstrained problems using an
augmented Lagrangian function approach. Specialized versions for the maxcut
SDP relaxation and the minimum nuclear norm matrix completion problem
are presented in sections 4.2 and 4.3, respectively. A generalization of the RBR
scheme based on a rank-two update is presented in section 5. Finally, numer-
ical results for the maxcut and matrix completion problems, are presented in
section 6 to demonstrate the robustness and efficiency of our algorithms.

2 Preliminaries

In this section, we first present a theorem about the Schur complement of a
positive (semi-) definite matrix, and then present a RBR prototype method
for SDP based on it.

2.1 Schur complement

Theorem 1. ([76], Theorems 1.12 and 1.20) Let the matriz X € 8™ be par-
T
titioned as X := (5 yB)’ where £ €R, y € R*! and B € S"~'. The Schur

complement of B in X is defined as (X/B) := ¢ —y' Bly, where BT is the
Moore-Penrose pseudo-inverse of B. Then the following holds.

1) If B is nonsingular, then X > 0 if and only if B > 0 and (X/B) > 0.

2) If B is nonsingular, then X »= 0 if and only if B = 0 and (X/B) > 0.

3) X =0 if and only if B> 0, (X/B) >0 and y € R(B), where R(B) is the
range space of B.

Proof. We only prove here 1) and 2). Since B is nonsingular, X can be fac-

torized as N T
_ (ly B~ E—y' B 'y 0 1 0
X = <0 I > < 0 B B yI)" (1)

Hence, det(X) = (¢ —y " B~ 'y) det(B) and

X = (=)0« B> 0and (X/B):=¢—y' B 'y > (>)0. (2)
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2.2 A RBR method prototype for SDP
We consider here the standard form SDP problem
min  (C, X)

XeSsSn (3)
st. AX)=b, X =0,

where the linear map A(-) : S — R™ is defined by

A(X) = (<Au>,x> 7<A<m>,X>)T7

the matrices C, A®) € 8", and the vector b = (by,...,b,)" € R™ are given.
Henceforth, the following Slater condition for (3) is assumed to hold.

Assumption 2 Problem (3) satisfies the Slater condition:
A: 8" — R™ is onto , )
IX*' e 8t such that A(X') =b.

Given a strictly feasible solution X* = 0, we can construct a SOCP re-
striction for the SDP problem (3) as follows. Fix the n(n — 1)/2 variables in
the (n—1) x (n— 1) submatrix B := X{. ;. of X* and let £ and y denote the

remaining unknown variables X7 1 and Xi-; (i.e., row 1/column 1), respec-
T

tively. Hence, the matrix X := <£ yT) = (5 y ) It then follows from
’ y B Y X{%ylc

Theorem 1 that X > 0 is equivalent to & —y' B~'y > 0. Here we write this
as £ —y ' B~y > v, with v = 0, so that strict positive definiteness of X can
be maintained if we choose v > 0. Hence, the SDP problem (3) becomes

. ~T
min ¢ [¢;
[&y]ERn &)

st. A (& 9] =, (5)
E—y By >,

where v = 0, and ¢, A and b are defined as follows using the subscript i = 1:

A 248 by — <A§:,)ic7 B>

1,5¢

= (22“), A= - and b 1= -
icyi (

A 2ALy o (472, 5)

If we let LLT = B be the Cholesky factorization of B and introduce a new
variable z = L'y, the Schur complement constraint ¢ — y' B~ly > v is
equivalent to the linear constraints Lz = y and n = £ — v and the rotated
second-order cone constraint ||z]|3 < 7. Clearly, similar problems can be con-
structed if for any i, i = 1,--- ,n, all elements of X* other than those in the



8 Zaiwen Wen, Donald Goldfarb, and Katya Scheinberg

i-th row/column are fixed and only the elements in the i-th row/column are
treated as unknowns.

We now present the RBR method for solving (3). Starting from a positive
definite feasible solution X!, we update one row/column of the solution X at
each of n inner steps by solving subproblems of the form (5) with v > 0. As
we shall show below, choosing v > 0 in (5) (i.e., keeping all iterates positive
definite), is necessary for the RBR method to be well-defined. This procedure
from the first row to the n-th row is called a cycle. At the first step of the
k-th cycle, we fix B := X{“ﬂc, and solve subproblem (5), whose solution is
denoted by [¢;y]. Then the first row/column of X* is replaced by X}, := ¢ and
Xfu’l := y. Similarly, we set B := X{i)ic in the i-th inner iteration and assign
the parameters ¢, A and b according to (6). Then the solution [£;y] of (5) is
used to set XF; := & and X[, := y. The k-th cycle is finished after the n-th
row/column is updated. Then we set X*+! := X* and repeat this procedure
until the relative decrease in the objective function on a cycle becomes smaller
than some tolerance e. This RBR method prototype is outlined in Algorithm 1.
In the next section, we illustrate its usefulness for problems in which the linear
constraints are simple bound constraints. Unfortunately, when they are not,
the RBR prototype fails. Hence, for the general case we present an augmented
Lagrangian version of the RBR method is section 4.

Algorithm 1: A RBR method prototype
Set X' >0, >0, k:=1and e > 0. Set F* := 400 and compute
F':={(C,X").
. k—1_ pk
while m Z e do
fori=1,--- ,ndo

Set B := X,ch’ic and the parameters ¢, A and b according to (6).
Solve the subproblem (5) whose solution is denoted by & and y.
Update Xlkl =&, Xlk(‘l =y and X{fic =y,

Compute FF = <C’,Xk>. Set XF ' .= X* and k:=k + 1.

We note that the RBR method is similar to the block Gauss-Seidel method
for solving a system of linear equations and the block coordinate descent
method (sometimes referred to as the nonlinear Gauss-Seidel method) for
nonlinear programming, except that because of the symmetry of X, the blocks
in the RBR method overlap. Specifically, exactly one of the variables in any
two inner iterations of the RBR method overlap.
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3 The RBR methods for SDPs with bound constraints

We now apply the RBR method to SDPs with simple bound constraints,
including the maxcut SDP relaxation, the SDP relaxation of the matrix com-
pletion problem, and the sparse inverse covariance estimation problem. Con-
vergence of the RBR method for such problems is also analyzed.

3.1 Maxcut SDP relaxation

The well known SDP relaxation [28, 12, 38, 3] for the maxcut problem, which
seeks to partition the vertices of a graph into two sets so that the sum of the
weighted edges connecting vertices in one set with vertices in the other set is
maximized, takes the following form:

min  (C, X)
X>0 (7)
s.t. X”:L z:l,,n

We now present the RBR subproblem for solving (7). Since the diagonal
elements of X are known to be equal to 1, they are kept fixed at 1. At the ith
step of the k-th cycle, we fix B = X[ .., where X* is the iterate at the (i —1)-
st step of the k-th cycle. Although in all RBR algorithms positive definiteness
of all iterates is maintained, we assume here that B is positive semidefinite
and use the generalized Schur complement to construct the second-order cone
constraint. Hence, the RBR subproblem (5) for problem (7) is

: AT
st. 1—y'Bly>v, yeR(B),

where ¢ := 2Cje ;.

Lemma 1. If v := ¢ B¢ > 0, the solution of problem (8) with v < 1 is given
by
1—v

v

y=- Be. (9)
Otherwise, y = 0 is a solution.

Proof. Suppose that the matrix B € S has rank r, where 0 < 7 < n. Hence,
B has the spectral decomposition

.
B=QAQ" = (Q, Q) (% 8) (gﬂ =Q.A,.Q, . (10)

where @ is an orthogonal matrix, A = diag(Ay, -, A, 0,---0), and \y >
Ao > -+ >\, > 0, and the Moore-Penrose pseudo-inverse of B is
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AZE0N (Q) 1T

Let z = QTy =: [z, 2]. Since y € R(B) and R(B) = R(Q,), z, = 0; hence,
problem (8) is equivalent to

. TNT
min c) z

g (@0 (11)
st. 1—z A1z >,

whose Lagrangian function is £(z,,A) = (Q}¢) "z, — (1 —v — 2
where A > 0. At an optimal solution z} to (11),

Vo Uz N) =Q) e+ N Az = 0. (12)

Suppose that 1 — (z7) " A71z > v. Tt follows from the complementary condi-
tions that \* = 0, which implies that Q¢ = 0 and v = 0 by using (12). It is
obvious that y* = 0 is a solution. Otherwise, 2 satisfies the constraint (11)
with equality, i.e., 1 — (2*)T A712* = v. Then, we have z* = —A,Q, ¢/\* and

T QAN A QT E Y
1-— =1- = .
(A%)? (A%)?
Since v < 1, we must have v > 0. Hence, we obtain A\* = \/~/(1 — v) and

g = Q= — 2L A,Q = — |2V e
Y v

For simplicity, we let PURE-RBR-M denote the RBR method for the max-
cut SDP described above. PURE-RBR-M is extremely simple since only a
single matrix-vector product is involved at each inner step. Numerical experi-
ments show PURE-RBR-M works fine if the initial solution X is taken as the
identity matrix even if we take v = 0. However, there exist examples where
starting from a rank-one point that is not optimal, the RBR method using
v = 0 either does not move away from the initial solution or it moves to a
non-optimal rank-one solution and stays there.

We next interpret PURE-RBR-M as a variant of the RBR method ap-
plied to a logarithmic barrier function approximation to (7). Consider the
logarithmic barrier problem for (7), i.e.,

O

min ¢, (X) :=(C, X) — ologdet X
Xesn (13)
st. Xu=1LVi=1,--- ,n, X >0,

where we define log det(X) to be negative infinity for X not positive definite.
Given a row ¢ and fixing the block B = Xje ;e, we have from (1) that
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det(X) = det(B)(1 — Xt ; B~ X;e 3),
which implies that
¢ (X) =" Xje; — olog(l — Xt ;B Xie 3) + w(B),

where ¢ = 2C;-; and w(B) is a function of B (i.e., a constant). Hence, the
RBR subproblem for (13) is the unconstrained minimization problem

min ¢ y—olog(l—y B y). (14)
yeRn—l

Lemma 2 below shows that PURE-RBR-M is essentially the RBR method
applied solving problem (13), if in the former algorithm v is replaced by

p T Akl
Y

. If B is only positive semidefinite the (14) is replaced by

I%in . ¢y —olog(l—y Bly), st.yeR(B). (15)
yeRm—

Lemma 2. If v :=¢' B¢ > 0, the solution of problem (15) is

2 _
y = A e (16)
Y

Vol+y—0o

Hence, the subproblem (8) has the same solution as (15) if v = 20—

Proof. Similar to Lemma 1, we have the spectral decomposition (10) of B.
Let z = Q Ty =: [2,; 1. Since y € R(B) and R(B) = R(Q,), we obtain z; = 0
and hence y = Q,z,. Therefore, problem (15) is equivalent to

min  (Q0) "z —alog(l — 2 A 12,), (17)

Zr
whose first-order optimality conditions are

—1 %
207 2

— T —0,and 1— ()" A2k > 0. 18
1 _ (z;f)TA,«_lz;f an (Z’r) T ZT ( )

Q ¢+

T~
Let @ = 1— ()T A-1z*. Then equation (18) implies that z* = —%. Sub-
stituting this expression for 2 into the definition of §, we obtain 62 T t0-1=

— 2 —
0, which has a positive root 6 = 2oVoT iy m2e ”023;72(’ Hence, y* = —7“#:7035.
Since V2¢,(y) = 0, y* is an optimal solution of (15). Furthermore, problems

(8) and (15) are equivalent if 7”02::_7_0 = 177”; that is v = 207“72:7_0. O

Remark 1. Note from (16) that lim,_,oy = —5—%.
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3.2 Matrix Completion
Given a matrix M € RP*? and an index set

QC{@ ) [ve{l,--,phjef{l,-,a}},
the nuclear norm matrix completion problem is

miny epexa [|[W]

st Wi = My, ¥ (irj) € 2. (19)
An equivalent SDP formulation of (19) is

minyxesn Tr(X)

si. = )V(V(lT) XV‘{QJ =0 (20)

Wij = Mija v (27]) € ‘Qa

where n = p 4 ¢ and the number of linear constraints is m = |{2|. Let Mg, be
the vector whose elements are the components of {M; ; | (i,7) € 2} obtained
by stacking the columns of M from column 1 to column ¢ and then keeping
only those elements that are in (2. Hence, M, corresponds to the right hand
side b of the constraints in the general SDP (3).

We now present the RBR subproblem (46) corresponding to problem (20).
First, the vector y can be partitioned into two subvectors corresponding to
elements whose indices are, respectively, in and not in the set (2:

Y iR <%> . Yi=Xa,, and ¥ = Xg,,

where, the index sets 8 := i\« and

_J{i+p 1jea}, where a:={j| (i,4) € 2,j=1,--- ,q}, if i <p,
S \UlGDeR =1 phifp<i<n

(21)
Letting
— (M), i<,
pim { Mia)', i<y (22)
Myi—p, ifp<i<n,
the RBR subproblem (5) becomes
min ¢
(&y)eR™ (23)

s.t. gjzg, E—y'B ly >,

Xk k
where the matrix B = ( T %7‘3).
8.8
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Lemma 3. The optimal solution of the RBR subproblem (23) is given by
E=N"b+v, §=XE A\ where, A= (X' )70 (24)

Proof. Note that the optimal solution [£;y] = [£;7;9] of (23) must satisfy
¢ =y B~ 'y+v. Hence, (23) is equivalent to the linearly constrained quadratic

minimization problem _
minfy” By | =0} (25)

whose optimality conditions are
XEOXENT (A
@ < ap J) - =0 26
Gic) ()-()-o 2
(7)- () - G
v) \g)  \XE.)”

Note from (24) that we only need to solve a single system of linear equa-
tions, whose size is the number of known elements in the row and hence
expected to be small, to obtain the minimizer of the RBR subproblem (23).

which implies that

O

3.3 Sparse inverse covariance estimation

In this subsection, we review the block coordinate descent methods proposed
in [2] and [26] for solving the sparse inverse covariance estimation problem.
Given an empirical covariance matrix S € S™, the problem is to maximize the
l1-penalized log-likelihood function, i.e.,

Y7t =argmaxy, o logdet X — Tr(SX) — | X||1, (27)

where A > 0 and [|X|[|; = >, ;|X; ;[ Instead of solving (27) directly, the
approaches in [2] and [26] consider the dual of (27)

- .. - oo< )
b)) arg max logdet W, s.t. |[W —S]oc <A (28)

which is a problem with only simple bound constraints. To derive this, note
that (27) is equivalent to

max HUrﬁlolonS)\ logdet X — Tr(X (S + U)), (29)

since the £1-norm || X||; can be expressed as max|y <1 Tr(XU), where ||U]||
is the maximum of the absolute values of the elements of the symmetric matrix
U. It is obvious that
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—logdet(S+U) —n = max logdet X — Tr(X (S +U)).
-

Hence, the dual (28) is obtained by exchanging the max and the min in (29).

The subproblems solved at each iteration of the BCD methods in [2] and
[26] are constructed as follows. Given a positive definite matrix W = 0, W
and S are partitioned according to the same pattern as

_(&yT ~(&s yd
W_<yB and S = ve Bs )

where £,65 € R, y,ys € R"! and B, Bg € S*L. Since logdet W = log(¢£ —
y' B~'y)det B, and B is fixed, the RBR subproblem for (28) becomes the
quadratic program

min y' B ly—¢ st |Gy - Esiys)lle < A, €2 0. (30)

Note that (30) is separable in y and £. The solution £ is equal to £g + A.
In fact, the first-order optimality conditions of (27) and X > 0 imply that
Wii = Sii+Afori=1,...,n. Hence, problem (30) reduces to

myin y' By, st |y —yslle <A (31)

It can be verified that the dual of (31) is
min ' Bx —ydx + Nz, (32)

which is also equivalent to

2

+ Allzlls. (33)
2

min
xr

1 ]_ 1
B2y — iBffys

If & solves (33), then y = Bz solves (31).

The BCD method in [2] solves a sequence of constrained problems (31).
Specifically, the initial point is set to W' = S + Al so that only off-diagonal
elements have to be updated. The parameters B := Wi’Z,ic, ys = Sie; and
Bg = Sjc ;o are assigned in the i-th inner iteration at k-th cycle. Then the
solution y of (30) is computed and one sets WﬁZ :=g. A similar procedure is
used in the approach in [26] except that the solution y is obtained by solving
the so-called LASSO problem (33) using a coordinate descent algorithm, which

does not require computation of either B z or B72.

3.4 Convergence results

The RBR method can be extended to solve
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min ¥, (X) := f(X) — ologdet X
Xesn (34)
st. XeX ={XeS"|L<X<UX >0}

where f(X) is a differentiable convex function of X, the constant matri-
ces L,U € 8" satisfy L < U and L < X means that L; ; < X;; for all
i,j = 1,---,n. Note that L, ; = —oo (U;; = o0) if X, ; is unbounded be-
low (above). Clearly, problem (34) includes (13) and the logarithmic barrier
function version of problems (20) and (28) as special cases. Starting from
the point X* = 0 at the k-th cycle, we fix the n(n — 1)/2 variables in the
(n—1) x (n—1) submatrix B := X[’ ;. of X* and let £ and y denote the re-
maining unknown variables X; ; and Xje ; (i.e., row ¢/column ¢), respectively;

&
ie., Xk~ (f/ yB ) Hence, the RBR subproblem for problem (34) becomes

min - f(€y) —olog(€ ~y B y)

Lii £ Uii (35)
o (@)= 0) =)

where f(&,y) := f(X*). Inspired by Proposition 2.7.1 in [6], we now prove the
following convergence result for the RBR method applied to problem (34).

Theorem 3. Let {X*} be a sequence generated by the RBR method for solving
(34). Assume that the level set {X € X[, (X) < ¥, (X1} is compact. Then
every limit point of {X*} is a global minimizer of (34).

Proof. Clearly, the RBR method produces a sequence of nondecreasing objec-
tive function values

Vo (XF) > 0o (XP1) > ho (XF2) > o > (XF7T1) > 4 (XFF). 0 (36)

Let X be a limit point of the sequence {X*}. It follows from equation (36)
that the sequences {15 (X*)}, {0 (X* 1)}, -+, {¥o (X*®7~1)} all converge to
a bounded number 1/)0()? ). Hence, X must be positive definite. We now show
that X minimizes 1, (X).

Let {X*i} be a subsequence of {X*} that converges to X. We first show
that {X*i»1 — X%} converges to zero as j — oo. Assume on the contrary, that
{X*i:b — X%} does not converges to zero. Then there exists a subsequence
{k;} of {k;} and some 4 > 0 such that v*/ := || X%t — Xki||p > 7 for all j. Let
DFirli= (XFit — XFi) Joki . Thus X*ol = XK 44k DRl || DR p = 1 and
D¥::1 differs from zero only along the first row/column. Since D*i:! belongs
to a compact set, it has a limit point D'. Hence, there exists a subsequence
of {k;} of {k;} such that D3l converges to D!. Consider an arbitrary t €
[0,1]. Since 0 <ty < ’y’gﬂ', XFki 4 ¢DFi1 lies on the segment joining Xk and
Xki 4 'yki Dkl = X’:”'J"l, and belongs to X since X is a convex set. Moreover,
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since Xkl uniquely minimizes 1, (X) over all X that differ from X ki along
the first row/column, it follows from the convexity of 1, (X) that

wa(Xl%j,l) = ’(/}U(XEJ —‘r’)/’%fDl;j’l) < "/)U(X]%j +t7f€ij€j’1) < wU(X]%j)' (37)

Since 1/}0—(ij’1) converges to 9, (X), it follows (37) that ¥, (X) < 1 (X +
tyD') < 1y (X), which implies that ¢, (X) = ¢y (X 4 t3D') for all ¢ € [0,1].
Since ¥D! # 0, this contradicts the fact that 1, (X) is strictly convex; hence

Xkl — XFi converges to zero and X*i'! converges to X.
From the definition (34), we have 1, (X*'1) < 4, (X) for all

(NG ()= )
rev ._{(yXfcj,lc) Y <R Ly = Y = Uicr) |-

Taking the limit as j tends to infinity, we obtain that ¢, (X) < v, (X) for all

1) |G (5) < () = ()}
Xevl= . e R", 1) < < 7 ;
{(yxlc,lc Yy Lici) = \y) ~ \Uien
which implies that, for any p € {1,--- ,n},

1%(5() < s (X)a VX € Vl and ch,l = jzp“,lv

i.e., all components of the first row and column [;y] other than the p-th are
fixed. Since X lies in the open convex set S, , we obtain from the optimality
conditions that, for any p € {1,--- ,n},

(Vio(X), X = X) >0, ¥X € V' and Xpe = Xpe s,
which further gives that, for any p € {1,--- ,n},

(Voo (X)) 1 (Xp1 = 1) = 0,9, such that Ly1 < X, < Up. (38)

)

Repeating the above argument shows that for i = 2,--- ,n, the points Xkt
also converges to X and
(Vo (X)) (Xpi=Kpi) 20, VL < X0 <Upii  (39)
i

for any p € {1,--- ,n}. Therefore, for any X € X, it follows from (38) and
(39) that

<V¢a()~(),X - 5(> = Z (V%(}?))m (Xl,j - )?i,j) >0,

which implies that Xisa global minimizer.
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4 A RBR method for SDP with general linear
constraints

We now consider SDP problem (3) with general linear constraints. Unfortu-
nately, in this case, the RBR method may not converge to an optimal solution.
This is similar to the fact that the BCD method may not converge to an op-
timal solution for a linearly constrained convex problem [33]. It has long been
known in [51] that the coordinate descent method for general nonlinear pro-
gramming may not converge. Here is a 2-dimensional example that shows that
for general linear constraints the RBR method may not converge to a global
minimizer. Consider the SDP

min X11 + X22 — IOg det(X)

(40)
st. X1+ Xe22>4, X >0.

Starting from a point X, where X7; = 1, X152 = 0 and X9y = 3, the RBR
subproblems are

min  X;; —log(3X 11 — X3), s.t. X11 > 1,

and
min X22 — 10g(X22 — X122), s.t. X22 > 3,

since det(X) = X171 X2z — X%. It is readily verified that optimal solutions to
these subproblems are, respectively, X717, = 1, X12 = 0 and X715 = 0, X952 = 3;
hence, the RBR method remains at the initial point, while the true optimal
20
02)°
To overcome this type of failure, the coordinate descent method is usu-
ally applied to a sequence of unconstrained problems obtained by penalizing
the constraints in the objective function. We adopt a similar approach here
by embedding the pure RBR method in an augmented Lagrangian function
framework. We then introduce specialized versions of this algorithm for the
SDP relaxation of the maxcut problem (7) and the minimum nuclear norm
matrix completion problem.

solution is X =

4.1 A RBR augmented Lagrangian method

In this subsection, we first introduce an augmented Lagrangian method and
then combine it with the RBR method for solving the standard form SDP (3).

The augmented Lagrangian function for problem (3) taking into consider-
ation only the general linear constraints A(X) = b is defined as:

£(X, 1) = (C, X) — 7 (A(X) = b) + inA(X) —bz ()

where 7 € R™ and p > 0. Starting from 7! = 0, p! € (0,4+00) and 0 <7 < 1,
our augmented Lagrangian method iteratively solves
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Xk .= argrr}}nﬁ(X, 7", ,uk), s.t. X =0, (42)

chooses p*1 € [nu*, 4] and then updates the vector of Lagrange multipliers
by
A(XF) —b
il = gk %, (43)
7
for the next iteration k -+ 1. It is important to note that our algorithm does
not incorporate the positive semidefinite constraint into the augmented La-
grangian function, and therefore, it is different from the methods in [47, 78].
As is well known (see chapter 12.2 in [25]), (42) is equivalent to minimizing
a quadratic penalty function:

1
X* .= arg min F(X, Ve k) = (C, X)) + ﬁHA(X) —b¥)|3, s.t. X =0, (44)

where b¥ = b+ p*7* and the difference between £(X, 7%, u*) and F(X, b*, 1u¥)

k
is the constant —4-||7"||3. Hence, we consider an alternative version of the
augmented Lagrangian method which solves (44) and updates b* by

Pt g (b" — A(X")) (45)
=b+ :

where b! := b. We now apply the RBR method to minimize (44). Starting from
the point X* = 0 at the k-th iteration, the RBR subproblem corresponding
to the quadratic SDP (44) that is obtained by fixing all elements of X* other
than those in the i-th row and column results in a minimization problem
with two conic constraints. Specifically, we fix the n(n — 1)/2 variables in the
(n —1) x (n — 1) submatrix B := X[ ;. of X* and let ¢ and y denote the
remaining unknown variables X, ; and X;e ; (i.e., row i/column ), respectively.
Hence, the quadratic SDP problem (44) becomes, after, replacing the zero on
the right hand side of the Schur complement constraint by v > 0 to ensure
positive definiteness of X*,
i (5) 5
Y

min ol (§> + L
(&;y)€Rn y 2k

st. -y B ly>u,

2

2 (46)

where ¢, A and b are given by (6) with b; for i = 1,--- ,m replaced by b¥.
If we let LL" = B be the Cholesky factorization of B and introduce a new
variable z = L~ 1y, problem (46) can be written as:

. (& 1
min ¢ + —7
(&257) <L2> 2u

(¢ |2
A(LZ>_b

<T (47)
2[5 < & —v.

s.t.

2
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Therefore, each step of our RBR augmented Lagrangian method involves solv-
ing a SOCP with two rotated second-order cone constraints. We plan to show
how advantage can be taken of the particular form of these SOCPs in a fu-
ture paper. If B is only positive semidefinite, we can derive a similar SOCP
by using the spectral decomposition of B. For references on solving SOCPs,
see [1] for example. Our combined RBR augmented Lagrangian method for
minimizing (3) is presented in Algorithm 2.

Algorithm 2: Row-by-row augmented Lagrangian method
Set X' =0,b' =b,1¢€(0,1), v >0, u* >0, ¢¢,¢p >0and k:=1.
Set F° := 400 and compute F! := <C,X1>.

. k—1_ pk
while m > e or [JA(X") = b2 > e do

Compute f':=(C,X*) + 2HL,CH.A(X’“) —b"||3 and set f° := +oo0.
. k—1_ ¢k
while m Z €f do
fori=1,--- ,ndo
S1 Set B := X,gcc‘iu and compute ¢, A and b from (6) with b = b*.
S2 Solve the SOCP (46) and denote its solution by £ and y.
S3 Set Xik,i =&, Xikeﬂ- =y and Xf;,-c =y,
Compute F* := (C, X*) and f*:= F* + ﬁHA(Xk) — b3
s4 | Update b= b+ L (b8 — A(XY)).
| Choose pF ™ € [nu®, u*] and set X ™' .= X* and k := &k + 1.

The RBR method applied to problem (44) converges by Theorem 3 since
solving the RBR subproblem (46) essentially corresponds to minimizing the
unconstrained function obtained by subtracting o log(¢ — y " B~1y) from the
objective function in (46) using an argument analogous to the one made in
section 3.4. It is well known that an augmented Lagrangian method applied
to minimizing a strictly convex function subject to linear equality constraints,
where the minimization of the augmented Lagrangian for each value of the
multiplier \* (b* in Algorithm 2) is either done exactly or is asymptotically
exact, converges to an optimal solution [4, 5, 52]. Hence, it is clear that a
slightly modified version of Algorithm 2 converges to such a solution. For
more details for the exact minimization case, we refer the reader to [66].

4.2 Application to Maxcut SDP

Since the constraints in problem (7) are X; ; = 1 fori = 1,--- , n, the quadratic
term in the objective function of the RBR subproblem simplifies to

1G)-

2

= (6—1)5)2’
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and problem (46) reduces to

1
i +ely+ —(E—b)?
S A (& —b5)

st. &—y B ly>u,

(48)

where ¢ := C; ;, ¢ := 2C;c ; and b} = 1. The first-order optimality conditions
for (48) are

1
= b\ = = __—_B¢
E=bi+u"(A—c) oy B¢
>y B ly+v, A>0 and (6—y B ly—v)A=0.

If ¢ =0, then y = 0 and £ = max{v, b¥ — p*c}. Otherwise, \ is the unique real
root of the cubic equation:

() = 4 XY+ 4(F — pFe— )N =y = 0, (49)

which is positive. This follows from the continuity of ¢(\) and the facts that
©(0) = —¢"Be < 0, limy_ oo ¢(\) = +00 and

@' (N) = 120" N2+ 8(bF — pFe — v)N > 4pF\?
since & = b — pkFe+ pk\ > v, which implies that ¢'(0) = 0 and ¢’()\) > 0 for

A # 0. The RBR augmented Lagrangian method for problem (7) is denoted
by ALAG-RBR-M.

4.3 Application to Matrix Completion SDP

Using the notation from section 3.2, the norm of the constraint residual of

each RBR subproblem (46) is || A (g) —b|| = HXa’i *EH =: |7 — b], where

P e &
oi—po =N,
and M* = M. Therefore, the SOCP (46) becomes
. 1o~ 72
i sl .

st. £—y B ly>u,

X Xb s
The optimal solution [¢;y] = [£;7; 7] of (51) must satisfy £ =y " B~y +v.

Hence, (51) is equivalent to an unconstrained quadratic minimization problem

Xk Xk
where the matrix B = ( o “’5)
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1 2
. T -1 ~
miny B + — H — bH , 52
liny vt 5w |17 (52)

whose optimality conditions are

Xk oxk N /g 1 (5-3
o, a,f3 Yy - Yy —
(ioxi?) () ram(57)=0 &

which implies that

P\, L (XN 1 (XES

(5) e (i) o5 (327
Solving for 7 and 7 we obtain 7 = M%nga(g_ 7), where 7 can be computed
from the system of linear equations (2u*1 + Xfw) y= ngaﬂl;. Then, it follows
from ¢ =y B~y + v and (53) that ¢ = ﬁﬂT@— 9) +v.

The above specialized augmented Lagrangian RBR method for minimizing
(20) is denoted by RBR-MC. As in the pure RBR method for the matrix
completion problem, we only need to solve a single system of linear equations,
whose size is expected to be small for each RBR subproblem (51).

We note that the subproblems that arise when the augmented Lagrangian
version of the RBR method is applied to other SDP problems is also solvable
in closed form as in the computation of the Lovasz theta function. We did not
include a discussion of this or of other SDPs, such as the theta plus problem,
that result in subproblems that are rather special quadratic programs, and
hence efficiently solvable, to keep the length of this chapter reasonable.

5 An extension of RBR using rank-two updates

In this section, we propose a generalization of the RBR scheme that uses
rank-two updates besides those that correspond to modifying a single row
and column. This results in a method that also requires solving a sequence
of SOCPs. Specifically, given a positive definite matrix X > 0 and vectors
u,v € R™, we consider the rank-two update:

X, :X—i—%(uvT—i-vuT). (54)
The RBR scheme is a special case of (54), corresponding to u = e;, where ¢;
is the i-th column of the identity matrix.

By allowing the algorithm to consider different vectors u we significantly
increase the flexibility of the BCD scheme to exploit the problem structure.
For instance, if u = (e; + e;)/2 then the BCD will modify the (4, j)-th pair
of rows and columns simultaneously. This can be useful, for instance, when
the linear constraints are of the form X;; + X;; — 2X;; = d;; as occurs in
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SDP relaxations of sensor network localization problems. More generally, one
might want to update a whole block of columns and rows at a time because
the variables defined in the blocks are closely related to each other via some
constraints. For instance, in sparse inverse covariance selection some of the
random variables may be known to be directly correlated, hence it makes
sense to update the corresponding rows and columns of the covariance matrix
in a related manner. In the case of the sensor network localization problem
the network may consist of several loosely connected small clusters, for each of
which the distance structure is highly constrained. In this case it also makes
sense to update the rows and columns related to the whole cluster rather
than to individual sensors, while preserving the constraints for the cluster by
choosing an appropriate v which keeps the step uv” + vu' in the nullspace
of the chosen subset of constraints.

Alternatively, one may choose u to be the leading eigenvector of the objec-
tive function gradient, hence including the steepest descent rank-two direction
into the range of possible BCD steps. While a numerically efficient choice of
u is likely to be tailored to the specific SDP problem being solved, here we
consider the general case.

The positive definiteness of X in (54) can be expressed as a second-order
cone constraint for any fixed vector u, given that X is positive definite. To
see this, let X = LL" be the Cholesky factorization of X, where L is a lower
triangular matrix. If we define y = L~'u and 2 = L~ 'v, then the matrix
X can be factorized as X, = LVLT, where V := T+ L(yz" + ay"). It
can be easily verified that z; := ||y|2x — [|z|l2y and z9 := ||y|l22 + ||z||2y are
eigenvectors of V' corresponding to the eigenvalues

1 1 1 1
M= 14 gy o= Slyllel: and o= 1+ Sy et syl (55)

respectively. The eigenvalues other than A; and A\ are equal to 1 since V' is a

rank-two update of the identity. Hence, the matrix V is positive definite if

1 1
Mo=1+gy e = sllylllzls >0, (56)

which is equivalent to 2 +u' X tv — \/(uT X 1u)(vT X ~1v) > 0. Since Xy
in (54) can be written as X, = X +au' — v0', where & = $(u + v) and
v = 3(u — v), the Cholesky factorization of X can be obtained in O(n?)
operations from two rank-1 updates to the Cholesky factorization of X.

As in the augmented Lagrangian RBR approach for solving (3) described
in subsection 4.1, we can incorporate the rank-two update in an augmented
Lagrangian framework. Our goal is to solve (44) by iteratively solving subprob-
lems generated by our rank-two updating technique. Given a matrix X > 0
and a vector u, substituting X, for X in (44) and using (54) and (56), we
obtain the subproblem
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1
. T 2

min r):=c x+ —|Bxr—d

min () 5|1 = dl} -

st 24+y'z—|ylallzls > o,

where
ul AW
y=L"'u, c¢:=L"Cu, B:= d=0b"—A(X), (58)

ul A,

for finding v = L. Note that the subproblem (57) can be formulated as an
SOCP with two second-order cone constraints.

In general the matrix B has m rows. The [-th row of B is u' ADL and
hence is equal to 0 if uT A® = 0. As discussed above, u can be chosen to
contain only a few nonzeros. For instance, when u = e; + e, the only rows of
B that are nonzero are those corresponding to A®") that have nonzero elements
in row ¢ or j. In particular, in sensor network localization problems the number
of rows in B will equal the number of links that involve nodes i or j; hence,
the size of the SOCP cone in the objective function in the subproblem (57)
will often be much smaller than the total number of constraints.

We can extend the convergence result stated in Theorem 3 for optimizing
the log det analog of Problem (57) to the case of rank-two updates. The theory
easily extends if the set of rank-two updates is defined by a finite set of
directions w;, which span R™ and through which the algorithm cycles (as in
the case of RBR, where u; = ¢;). More generally we can allow an infinite set
of directions, but only under some additional restrictions. For instance one
such restriction is that the set of limit points of the set of directions is finite
and spans R™. A suitable choice for the set of possible directions is likely to
depend on the particular application and is subject to further study.

6 Numerical Results

Although the numerical results that we present in this section are limited to
two special classes of SDP problems, they illustrate the effectiveness of our
RBR algorithmic framework when it gives rise to easily solved subproblems.
Specifically, they show that in these cases, large scale SDPs can be solved in a
moderate amount of time using only moderate amount of memory. Moreover,
our tests show that the number of cycles taken by our algorithm grows very
slowly with the size of the problem.

6.1 The maxcut SDP relaxation

In this subsection, we demonstrate the effectiveness of the RBR methods
PURE-RBR-M and ALAG-RBR-M on a set of maxcut SDP relaxation prob-
lems and compare them with the general solver DSDP (version 5.8) [3] and a
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routine in SDPLR (version 0.130301) [13] developed especially for the max-
cut SDP. The DSDP code implements a dual interior point method that is
designed to take advantage of the structure of such problems. The SDPLR
code implements a low-rank factorization approach. The main parts of our
code were written in C Language MEX-files in MATLAB (Release 7.3.0), and
all experiments were performed on a Dell Precision 670 workstation with an
Intel Xeon 3.4GHZ CPU and 6GB of RAM.

The test problems are based on graphs generated by “rudy”, a machine
independent graph generator written by G.Rinaldi. Details of the generation
including the arguments of “rudy” are provided in [67]. The parameters of
DSDP were set to their default values. The tolerance in the code SDPLR was
set to 2e-5 and the parameter file “p.maxcutb” was used. The parameter v in
the RBR methods was set to 107%. We ran PURE-RBR-M with two differ-
ent tolerances, i.e., € was set to 1073 (moderately accurate) and 10=6 (highly
accurate), respectively. Similarly, we ran ALAG-RBR-M with two different
tolerance settings, that is, €, €., €y were all set to 10~ and 104, respectively.
For practical considerations, we terminated minimizing each augmented La-
grangian function if the number of cycles was greater than 5. The initial
penalty parameter p' in ALAG-RBR-M was set to 5 and was updated by
pFtl = max(0.5u%,1071).

A summary of the computational results obtained by DSDP, SDPLR and
PURE-RBR-M is presented in Table 1. In the table, “obj” denotes the ob-
jective function of the dual problem computed by DSDP, “rel-obj” denotes
the relative error between “obj” and the objective function value computed
by either the RBR methods or SDPLR, “CPU” denotes CPU time measured
in seconds, and “cycle” denotes the total number of RBR cycles. From Table
1, we can see that our RBR code is able to solve the maxcut SDP relaxation
very efficiently. The number of cycles required was almost the same for all of
the problems, no matter what their size was. The RBR method was also quite
competitive with SDPLR in achieving a relative accuracy of roughly 5 x 107>
in the objective function value.

To illustrate the relationship between the computational cost of the RBR
methods and the dimension of the SDP matrices, we plot the average of the
CPU time versus the dimension in Figure 1 (a) and the average of the number
of cycles versus the dimension in Figure 1 (b). Somewhat surprisingly, these
plots show that the augmented Lagrangian RBR algorithm solved the maxcut
SDP problems almost as efficiently as the pure RBR algorithm for a given
relative error. Consequently we did not include test results for ALAG-RBR-
M in Table 1.

6.2 Matrix Completion

In this subsection, we evaluate the augmented Lagrangian version of the RBR
method (RBR-MC) for the matrix completion problem (20). While the pure
RBR method can be directly applied to this problem, preliminary numerical
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Table 1. Computational results for the maxcut SDP relaxation.

DSDP SDPLR PURE-RBR-M

e=10"" [ e=10"°
Name obj CPU | rel-obj CPU |rel-obj CPU cycle [ rel-obj CPU cycle
random graphs

R1000-1 |-1.4e+3 52.6 |1.6e-05 4.0 | 4.9e-3 0.6 13 | 3.0e-5 3.9 90
R1000-2 |-1.4e+3 57.0 | 6.5e-06 6.0 | 5.0e-3 0.6 13 | 3.6e-5 4.1 96
R2000-1 [-4.1e+3 607.6|5.1e-05 18.8 | 5.0e-3 3.9 14 | 3.7e-5 26.5 97
R2000-2 [ -4.1e+3 602.3]5.8¢-05 19.4 | 5.2¢-3 3.9 14 | 3.6e-5 27.5 101
R3000-1 [-7.7e+3 2576 | 4.2e-05 38.2 | 5.0e-3 12.8 15 | 4.1le-5 90.0 103
R3000-2 | -7.7e+3 2606 | 4.3e-05 42.2 | 5.2e-3 13.2 15 | 3.7e-5 89.4 105
R4000-1 | -1.2e4+4 6274 | 6.9e-05 64.3 | 5.9e-3 36.5 15 4.0e-5 261.1 108
R4000-2 | -1.2e+4 6310 | 6.6e-05 63.4 | 5.7e-3 36.3 15 | 3.9e-5 265.7 108
random planar graphs
P1000-1 | -1.4e+3 45.1 [1.5e-05 6.3 | 5.0e-3 0.6 13 | 4.0e-5 4.9 102
P1000-2 | -1.4e+3 45.5 [8.9e-06 4.6 | 4.4e-3 0.6 13 [ 2.9e-5 4.2 89
P2000-1 | -2.9e+3 386.1|4.4e-06 43.9 | 5.5e-3 3.0 14 [ 3.7e-5 21.6 102
P2000-2 | -2.8e+3 362.8|5.7e-05 19.2 | 5.8¢-3 2.9 14 3.9e-5 22.1 109
P3000-1 | -4.3e+3 1400 | 1.1e-05 49.9 | 6.0e-3 7.3 15 | 4.0e-5 56.3 117
P3000-2 | -4.3e+3 1394 | 1.4e-05 62.3 | 6.5e-3 7.0 14 | 4.7e-5 57.2 119
P4000-1 | -5.7e+3 3688 | 1.5e-05 122.7| 6.5e-3 14.3 15 | 4.3e-5 114.2 124
P4000-2 | -5.9e+3 3253 | 9.9e-06 123.9| 6.5e-3 14.4 15 | 4.9e-5 116.7 126
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Fig. 1. Relationship between the computational cost and SDP matrix dimension
for the maxcut SDP relaxation

testing showed that this approach is much slower (i.e., converges much more
slowly) than using RBR-MC, which requires only a small amount of addi-
tional work to solve each subproblem than the pure method. It seems that
the pure RBR method gets trapped close to the boundary of the semidefinite
cone. To overcome this we also tried starting with a very large value of v
(say v = 100), reducing v every 20 cycles by a factor of 4 until it reached
a value of 1076, While this improved the performance of the method, the
augmented Lagrangian version was still two to four times faster. Hence, we
only present results for the latter method. Although we compare RBR-MC
with the specialized algorithms, such as SVT [40] and FPCA [46], for the
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matrix completion problem (19), our main purpose here is to demonstrate
that the RBR method can efficiently solve the SDP problem (20) rather than
to compete with those latter algorithms. In fact, the solver LMaFit [69] was
consistently much faster than all the methods mentioned above. DSDP is not
included in this comparison because it takes too long to solve all problems.

Random matrices M € RP*? with rank r were created by the procedure in
[46]. The ratio m/(pq) between the number of measurements and the number
of entries in M is denoted by “SR” (sampling ratio). The ratio r(p+q—r)/m
of the dimension of a rank r matrix to the number of samples is denoted by
“FR”. In our tests, the rank r and the number of sampling entries m were
taken consistently so that according to the theory in [16] the matrix M is
the optimal solution of problem (20). Specifically, FR was set to 0.2 and 0.3
and r was set to 10. We tested five square matrices M with dimensions p =
q € {200,---,500} and set the number m to r(p + ¢ — r)/FR. All parameters
p,q,r,m and the random seeds “seed” used by the random number generators
“rand” and “randn” in MATLAB are reported in Tables 2 and 3.

We ran RBR-MC with two different tolerance settings, i.e., ¢, €,, €y were all
set to 107! and 1073, respectively. All other parameters of RBR-MC were set
to the same values as those used in ALAG-RBR-M. The tolerance parameter
“xtol” of FPCA was set to 1076 and all other parameters were set to their
default values. We tried many different parameter settings but could not get
SVT to work well on all problems. Hence, we only report the results of SVT
for the “best” parameter setting that we found, i.e., the parameters “tau” and
“delta” and “tol” were set to 5n, min(max(1.2n2/p,1),3) and 107>, respec-

tively. Summaries of the computational results for FR=0.2 and FR = 0.3 are
IX—Mlr
. . ~ IM[e

gives the relative error between the true and the recovered matrices. From

these tables, we can see that the RBR method can be faster than FPCA
when the SDP matrix dimension is small, although usually FPCA is some-
what to as much as twice as fast. However, there is an exception to this in
that FPCA took from 20 to 35 times as much CPU time to solve the exam-
ples with p = ¢ = 500 when FR=0.3 as did the RBR method. To illustrate
the relationship between the computational cost of the RBR method and the
dimension of the matrices, we plot the average of the CPU time versus the
dimension of the SDP matrix (i.e., p + ¢) in Figure 2 (a) and the average of
the number of cycles versus this dimension in Figure 2 (b).

presented in Tables 2 and 3, respectively. In these tables, rel-X :=

7 Summary

In this chapter, we have shown that RBR block coordinate descent methods
can be very effective for solving certain SDPs. In particular, they work ex-
tremely well when the subproblem that needs to be solved for each block of
variables can be given in closed form, as in SDPs that arise as relaxations of
maxcut, matrix completion and Lovasz theta function problems. The RBR
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Table 2. Computational results for the matrix completion problem with FR=0.2

[RBR-MC (e = 10 ") [RBR-MC (¢ = 10" ) FPCA | SVT
seed [ rel-X CPU cycle [ rel-X CPU cycle | rel-X CPU[ rel-X CPU
p=q=200; r=10; m=19500; SR=0.49
68521 [7.5e-05 1.8 9 [9.4e-07 3.6 17 [1.6e-06 2.7 [1.6e-05 20.4
56479 [6.0e-05 1.9 9 |[74e-07 34 17 [1.5e-06 2.7 |1.6e-05 13.6
p=q=300; r=10; m=29500; SR=0.33
68521 [1.0e-04 3.9 9 [1.5e-06 7.2 17 [2.2e-06 4.6 [1.7e-05 28.2
56479 [1.0e-04 4.0 9 [1.7¢-06 7.5 17 ]2.1e-06 4.6 [1.7e-05 39.0
p=q=400; r=10; m=39500; SR=0.25
68521 [1.0e-04 7.6 9 [2.1e-06 14.3 17 [2.8e-06 6.0 |1.8e-05 28.8
56479[9.9e-05_ 5.7 9 [1.9e-06 10.9 17 [2.9e-06 6.0 |1.7e-05 28.1
p=q=500; r=10; m=49500; SR=0.20
68521 [2.4e-04_ 8.8 9 [1.8e-06 186 19 [3.6e-06 10.0 [1.9e-05 49.0
56479 [1.1e-04 9.0 9 [1.5e06 19.0 19 [3.8¢-06 10.0 |1.8e-05 45.9

Table 3. Computational results for the matrix completion problem with FR=0.3

CPU (seconds)

1

ot
200

[RBR-MC (e =10 ))[RBR-MC (¢ =10 )] FPCA | SVT
seed | rel-X  CPU cycle [ rel-X  CPU cycle | rel-X CPU][ rel-X CPU
p=q=200; r=10; m=13000; SR=0.33
68521[1.0e-03 1.0 10 [4.4e-06 2.3 24 [3.3e-06 8.4 [5.9¢-04 96.7
56479 [1.5e-03 1.0 10 [6.8e-06 2.3 24 [3.0e-06 8.5 |1.3e-03 88.7
p=q=300; r=10; m=19666; SR=0.22
68521[1.0e-03 2.4 11 [3.7e-06 5.5 26 [3.4e-06 4.9 [2.7¢-03 180.6
56479 [3.3e-04 2.6 12 [2.2e-06 5.9 27 [3.6e-06 4.5 |2.5e-03 230.8
p=q=400; r=10; m=26333; SR=0.16
68521[9.8¢-03 6.1 15 [9.9e-04 16.2 40 [4.8¢-06 10.4 [2.8¢-02 418.8
56479[3.0e-03 5.6 14 [4.6e-06 11.2 28 [4.0e-06 16.1 [1.5¢-02 374.7
p=q=>500; r=10; m=33000; SR=0.13
68521[5.3¢-03 11.4 16 [6.9e-06 20.1 29 [6.1e-06 223.4[2.7¢-02 675.0
56479 |5.4e-03 11.0 16 [5.9e-06 21.3 32 [6.2e-06 212.8[2.8e-02 667.4
10 T T T T T 45 T T T T T T T
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Fig. 2. Relationship between the computational cost and SDP matrix dimension
for SDP matrix completion
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method is also effective when the RBR subproblems can be formulated as
simple quadratic programming problems, as in sparse inverse covariance es-
timation, the computation of the Lovasz theta plus function, and relaxations
of the maximum k-cut and bisection problems.

Like all first-order methods, they are best suited to situations where highly
accurate solutions are not required. As is the case for BCD and coordinate de-
scent methods in general, only constraints that do not couple different variable
blocks can be handled directly. For more general linear constraints, the RBR
approach has to be incorporated into an augmented Lagrangian framework.
Our numerical testing has shown that even problems in which the constraints
do not couple variables from different blocks, it still may be advantageous to
employ an augmented Lagrangian approach, since this gives the method more
freedom of movement. In addition, starting very close to the boundary of the
semidefinite cone, especially when combined with linear constraints that very
tightly limit the size of steps that the RBR method can take, can result in
very slow rates of convergence.

Finally, we have shown that the RBR approach can be generalized to ac-
commodate rank-two updates other than those that correspond to modifying
a single row and column.
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