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1 Introduction

In this paper, we consider two specific instances of minimizing a polynomial function over a single sphere

as

min
x∈Rn

f(x) s. t. ‖x‖ = 1, (1.1)

where f is a real-valued polynomial function and the norm is the Euclidean norm. The variable x may be

in the complex domain. This problem is widely used in tensor rank approximations and decompositions,

Bose-Einstein condensates (BECs) and many other problems. Moreover, it also plays an important role

in signal processing, speech mechanics, biomedical engineering and quantum mechanics [9, 20,23].

There are many generic methods for solving (1.1). Since it is a differentiable nonlinear programming

problem [21], the classic methods, such as the quadratic penalty method, the augmented Lagrangian

method and the sequential quadratic programming methods, can be applied to find stationary points or

even local minimizers of (1.1). On the other hand, noting that the collection of all vectors with unit norms

is a special form of the Stiefel manifold, problem (1.1) can be solved by the methods for optimization

on manifolds [1]. In particular, a feasible method is proposed in [14] for optimization with orthogonality
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constraints and it has been applied successfully in applications such as genus-0 surface mapping and

density functional theory.

When f is a homogeneous polynomial, problem (1.1) is closely related to the rank-1 tensor approxima-

tions and there are quite a few specialized methods. A higher-order power method (HOPM) is proposed

in [9]. Although it works well in many cases but may not converge in symmetric generalization. A sym-

metric HOPM is presented in [16] and its convergence can be guaranteed under certain conditions. It is

reported in [22] that the convergence to a stationary point of a shifted symmetric HOPM can be ensured.

In [20], the tensor relaxation methods and polynomial-time approximation algorithms with high approxi-

mation ratios are developed. The approximation ratios are further improved in [18,19]. The Z-eigenvalues

of tensors are studied in [17] and a method is designed by solving a sequence of semidefinite relaxations

based on sum of squares (SOS) representations. The local methods mentioned above are easy to be im-

plemented. Recently, Nie and Wang [7] propose a semidefinite programming (SDP) relaxation approach

based on SOS. Jiang, Ma and Zhang [8] provide another SDP relaxation by using the matricization of

the tensor. These two methods can identify the global solutions under certain conditions.

The BEC problem has been extensively studied in the atomic, molecule and optical (AMO) physics

community and condense matter community. Under a suitable discretization of the energy functional

and constraints, it can be formulated as (1.1). Specifically, the objection function f(x) is a summation

of a quadratic function and a simple quartic term. Although the BEC problem looks concise, solving it

efficiently is a numerical challenge since the total number of variables can easily be more than one million

and the Hessian matrix can be indefinite in the complex domain, in particular, when two parameters in

the energy functional are large. Various gradient projection methods have been developed for solving the

BEC problem. A normalized gradient flow method via the backward Euler finite difference or Fourier

(or sine) pseudospectral discretization method has been extended to compute ground states of spin-1

BEC [2,3], dipolar BEC [5] and spin-orbit coupled BEC [4]. A new Sobolev gradient method is developed

in [6]. Recently, a regularized Newton method is proposed in [15] by replacing the objective function by

its second-order Taylor expansion and adding a proximal term.

This paper is divided into two parts. The first part is to study the two SDP relaxations proposed

accordingly in [7] and [8] for the best rank-1 tensor approximation. Although their formulations look

quite different, by reviewing and comparing them carefully, we find that they are indeed equivalent in

the sense that the same object is represented in two different ways. Specifically, the size of matrix

variable in SDP from [7] is smaller than that of [8] since many redundant variables are removed in [7]

by exploiting certain symmetric property. It is worth mentioning that in the presence of some other

constraints, usually both aforementioned SDP relaxations may not work. Meanwhile, the nuclear norm

penalty approach in [8] can still provide a low-rank even rank-1 solution.

The second part of the paper focuses on the BEC problem. We prove that the BEC problem is NP-

Complete by establishing its connection to the partition problem. Since it can be formulated as a specific

instance of the best rank-1 tensor approximations, the above two generic SDP relaxation approaches

can be applied to the BEC problems directly. However, the size of the problem grows exponentially

with the increase of the dimension of the original variable. Consequently, solving these SDP relaxations

becomes practically intractable. Therefore, we propose a quadratic SDP relaxation with significantly

smaller size. Then approximate solutions to the BEC problem can be constructed by both deterministic

and randomized rounding procedures from the SDP solutions. The deterministic approach ensures an

approximation ratio less than r, where r is the rank of the SDP solution. The randomized approach

draw a random vector from the i.i.d Gaussian distribution. Although the numerical advantage of this

randomized version has not been observed, the probability of obtaining a solution with an assured quality

is dimensional free. Finally, preliminary numerical experiments are reported to verify our observation.

Notations. The symbol N denotes the set of nonnegative integers. Given the tensors X ,Y ∈
Rn1×n2×···×nm and Z ∈ Rnm+1×nm+2×···×nm+l , we define the inner product

〈X ,Y〉 =
∑

16i16n1,··· ,16im6nm

Xi1,··· ,imYi1,··· ,im
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and the outer product

(X ⊗ Z)i1,··· ,im+l
= Xi1,··· ,imZim+1,··· ,im+l

,

which is a tensor of order m + l. The trace of a matrix A is denoted by tr(A). For a vector of indices

α = (α1, · · · , αn) ∈ Nn, we define |α| = α1 + · · · + αn and Nnm = {α ∈ Nn : |α| = m}. Let π(i1, · · · , im)

be a permutation of the tuples (i1, · · · , im). A tensor F ∈ Rn1×···×nm is symmetric if n1 = · · · = nm and

Fπ(i1,··· ,im) = Fi1,··· ,im . We define the norm of F by ||F|| = (
n1∑
i1=1

· · ·
nm∑
im=1

|Fi1,··· ,im |2)1/2. For a tensor

F of order m, there exists tuples (ui,1, · · · , ui,m) (i = 1, · · · , r), where ui,j ∈ Cnj , such that F can be

expressed as

F =

r∑
i=1

ui,1 ⊗ · · · ⊗ ui,m.

The smallest r in the above equation is called the rank of F .

The rest of this paper is organized as follows. We introduce the best rank-1 tensor approximation,

review the two SDP relaxations and establish their equivalence in Section 2. The SDP relaxation based

approaches for the BEC problem are studied in section 3. Numerical results on the equivalence of the

two SDP relaxations and comparisons between different SDP relaxations for solving the BEC problem

are presented in Section 4.

2 The Equivalence Between Two SDP Relaxation Methods

Recently, there are two approaches based on semidefinite programming relaxation for finding the global

optimal solution of the best rank-1 tensor approximation problem. A lot of numerical results suggest

that both of these two relaxations are very likely to be tight. In fact, this is not a coincidence. In this

section, we review them and establish their equivalence.

2.1 Best Rank-1 Tensor Approximation

An mth-order tensor F ∈ Rn1×n2×···×nm is a multi-dimensional array whose indices (i1, i2, · · · , im) are

1 6 i1 6 n1, · · · , 1 6 im 6 nm. Obviously, the 1st-order and 2nd-order tensors are regular vectors and

matrices, respectively. If an mth-order tensor X is rank one, the definition of the rank of tensors yields

an expression X = λ ·x1⊗x2⊗· · ·⊗xm for some λ ∈ R and x1 ∈ Rn1 , · · · , xm ∈ Rnm . For a given tensor

F ∈ Rn1×n2×···×nm , finding the best rank-1 tensor approximations of F can be expressed as

min
X∈Rn1×n2×···×nm

‖F − X‖2 s. t. rank(X ) = 1, (2.1)

which is equivalent to

min
λ,x1,...,xm

‖F − λ · x1 ⊗ · · · ⊗ xm‖2 s. t. λ ∈ R, ||x1|| = · · · = ||xm|| = 1. (2.2)

The Lagrangian function of (2.2) is

L =
∑

i1i2···im

(Fi1i2···im − λx1i1x
2
i2 · · ·x

m
im)2 +

m∑
j=1

πj

 nj∑
ij=1

(xjij )2 − 1

 ,

where πi(1 6 i 6 m) are the Lagrangian multipliers corresponding to the constraints ‖xi‖ = 1, respec-

tively. Taking derivatives of L with respect to the variables xi and λ and setting them to zero leads to

the first-order optimality conditions. A simple linear algebraic calculation from these conditions gives∑
i1i2···im

Fi1i2···imx1i1x
2
i2 · · ·x

m
im = λ. (2.3)
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Then the objective function of (2.2) becomes

‖F − λ · x1 ⊗ · · · ⊗ xm‖2 = ||F||2 + λ2 − 2λ ·
∑

i1i2···im

Fi1i2···imx1i1x
2
i2 · · ·x

m
im = ||F ||2 − λ2.

Since ||F|| is a constant for a given F , the problem (2.3) is equivalent to max
x1∈Rn1 ,··· ,xm∈Rnm

|F (x1, · · · , xm)|

s. t. ‖x1‖ = · · · = ‖xm‖ = 1,
(2.4)

where F (x1, · · · , xm) =
∑

i1i2···im
Fi1i2···imx

(1)
i1
x
(2)
i2
· · ·x(m)

im
. Hence, a rank-1 tensor λ · (u1 ⊗ · · · ⊗ um) with

λ ∈ R and ‖ui‖ = 1 (i = 1, . . . ,m) is a best rank-1 approximation of the tensor F if and only if

(u1, · · · , um) is a global maximizer of (2.1) and λ = F (u1, · · · , um).

When F is symmetric, it is shown in [10] that (2.1) always has an optimal symmetric tensor solution.

In fact, (2.4) reduces to

max
x∈Rn

|f(x)| s. t. x>x = 1, (2.5)

where x = x1 = · · · = xm, and f(x) = F (x, · · · , x). It can verified that λ ·x⊗· · ·⊗x is the best symmetric

tensor if and only if x is a global maximizer of (2.5) and λ = f(x). Therefore, the best rank-1 tensor

approximation is converted to a polynomial function optimization problem over a single sphere as (1.1).

Suppose that F is an mth-order nonsymmetric tensor. One can construct a symmetric tensor T as

Gi1···im =


Fj1···jm , if 1 +

k−1∑
l=1

nl 6 ik 6
k∑
l=1

nl and jk = ik −
k−1∑
l=1

nl

0, otherwise,

,

Ti1···im :=
1

|π(i1, · · · , im)|
∑

j1···jm∈π(i1···im)

Gj1···jm , ∀1 6 i1, · · · , im 6
m∑
l=1

nl,

where G and T are m-order tensor of dimension n1 + · · ·+nm. Here, T is the symmetric form G. Hence,

we can obtain the best rank-1 approximation of T by using the symmetric tensor methods. Once we find

the best rank-1 tensor λ ·y ⊗ · · · ⊗ y︸ ︷︷ ︸
m

of T , then λ ·x1⊗· · ·⊗xm is the best rank-1 approximation of F , in

which x1, · · · , xm satisfying y = ((x1)>, · · · , (xm)>)>, with dimension n1, · · · , nm. Therefore, problems

on finding the best rank-1 tensor approximations of F and T are equivalent to some extent.

Suppose that F is an (2d+ 1)-order symmetric tensor. A 4d-th symmetric tensor G can be constructed

as

Gi1,··· ,i4d =
1

|π(i1, · · · , i4d)|

n∑
k=1

 ∑
j1···j4d∈π(i1···i4d)

Fi1···i2dkFi2d+1···i4dk

 .

Then (2.4) is equivalent to  max
x

G(x, · · · , x)

s. t. ‖x‖ = 1.

Another approach is to add a new variable xn+1 and define x̃ := (x1, · · · , xn, xn+1) and f̃(x̃) := f(x)xn+1.

Then f̃(x̃) is a form of even degree 2d+ 2, which yields the optimization problem:

f̃max := max
x̃∈Rn+1

f̃(x̃) s. t. ‖x̃‖ = 1. (2.6)

Using the relationship

fmax =
√

2d+ 1(1− 1

2(d+ 1)
)−d−1f̃max,

we can easily obtain the optimal solutions from (2.6).

Combining all facts above, we conclude the best rank-1 tensor approximations for both symmetric and

nonsymmetric tensors can be identified as long as the symmetric case is solvable.
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2.2 Nie-Wang’s SDP Relaxation Approach [7]

For an mth-order symmetric tensor F , Nie and Wang solve (2.5) by maximizing and minimizing f(x)

over the spherical constraint, respectively. Specifically, the maximizing problem is

fmax := max
x∈Rn

f(x) s. t. x>x = 1. (2.7)

Let m = 2d, c := {cα} and g := {gα} be the coefficients of the polynomial functions f(x) and (x>x)d

such that

f(x) :=
∑
α∈Nn

m

cαx
α, (x>x)d :=

∑
α∈Nn

m

gαx
α.

Introducing a vector [xd] := [xd1, xd−11 x2, · · · , xd−11 xn, · · · , xdn]> of length
(
n+d−1

d

)
, we obtain a square

matrix

M := [xd][xd]> =
∑
α∈Nn

m

Aαx
α, (2.8)

where Aα is a symmetric matrix with dimensions
(
n+d−1

d

)
×
(
n+d−1

d

)
.

For each moment function xα where α ∈ Nnm, we can assign a linear variable yα to replace xα. Given

y ∈ RNn
m , we define linear functions

〈c, y〉 =
∑
α∈Nn

m

cαyα, 〈g, y〉 :=
∑
α∈Nn

m

gαyα, M1(y) :=
∑
α∈Nn

m

Aαyα.

Therefore, problem (2.7) is equivalent to

max
y∈RNnm

〈c, y〉 s. t. M1(y) � 0, 〈g, y〉 = 1, rank(M1(y)) = 1.

Removing the rank-1 constraint yields a semidefinite programming relaxation to (2.7) as follows

f sdpmax := max
y∈RNnm

〈c, y〉 s. t. M1(y) � 0, 〈g, y〉 = 1. (2.9)

Since tr(M1(y)) 6 〈g, y〉 = 1, the optimal solution of (2.9) always exists. Suppose that y∗ is a maximizer.

An approximate solution can be constructed from y∗ as follows. We first find an index s such that

y∗2des = max
16i6n

y∗2dei , where ei is the vector whose ith entry equals to one and all other entries are equal

to zero. Then, we compute

x = û/‖û‖, λ = f(x). (2.10)

where û = (y(2d−1)es+e1 , · · · , y(2d−1)es+en). The vector x is an exact maximizer if M(y∗) = 1 and it

is usually a good approximation when M(y∗) > 1. The case on minimizing f(x) over the spherical

constraint can be obtained in the same fashion.

2.3 Jiang-Ma-Zhang’s SDP Relaxation Approach [8]

Jiang, Ma and Zhang [8] reformulated (2.5) by embedding the tensor to a square matrix. Let X =

x⊗ · · · ⊗ x. Then we have f(x) = 〈F , x⊗ · · · ⊗ x〉 = 〈F ,X〉 and

‖x‖2d = (x21 + · · ·+ x2n)d =
∑
k∈Nn

d

d!∏n
j=1 kj !

X12k122k2 ···n2kn = 1.

Therefore, problem (2.5) is expressed as
max 〈F ,X〉

s. t.
∑
k∈Nn

d

d!∏n
j=1 kj !

X12k122k2 ···n2kn = 1,

X ∈ Sn
2d

, rankX = 1,

(2.11)
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where Sn
m

is the set of n× n× · · · × n︸ ︷︷ ︸
m

symmetric tensors. A square matricization operation M2(F) ∈

Rnd×nd

of a symmetric 2d-order tensor F ∈ Sn2d

is further introduced by

M2(F)kl := Fi1···idid+1···i2d , 1 6 i1, · · · id, id+1, · · · i2d 6 n, (2.12)

where

k =

d∑
j=1

(ij − 1)nd−j + 1, and l =

2d∑
j=d+1

(ij − 1)n2d−j + 1.

It follows from the definition that

tr(M2(X )) =
∑
k∈Nn

d

d!∏n
j=1 kj !

X12k122k2 ···n2kn , and 〈M2(F),M2(X )〉 = 〈F ,X〉 .

Since rank(X ) = 1 is equivalent to rank(M2(X )) = 1, problem (2.11) can be converted into the following

equivalent matrix optimization problem:
max 〈F,X〉

s. t. tr(X) = 1, M−12 (X) ∈ Sn
2d

,

X ∈ Sn
d×nd

, rank(X) = 1,

(2.13)

where X = M2(X ), F = M2(F), and Sn
d×nd

denotes the set of nd × nd symmetric matrices. Removing

the rank-1 constraint yields the following SDP relaxation:
max 〈F,X〉
s. t. tr(X) = 1,

M−12 (X) ∈ Sn
2d

, X � 0.

(2.14)

2.4 Equivalence

In this subsection, we establish the equivalence between (2.9) and (2.14). The main concept is to clarify

the relationship between the two matrices M1(y) and M2(X ). Briefly speaking, the matricization (2.12)

leads to

X = M2(X ) = [x̂d][x̂d]T =
∑
α∈Nn

m

Bαx
α, (2.15)

where [x̂d] is a vector of length nd whose elements are all possible combinations of the form

{xi1xi2 · · ·xid | 1 6 ij 6 n, j = 1, . . . , d}

and Bα is a symmetric matrix with dimensions nd × nd. The main difference is that [xd] in (2.8) is a

sub-vector of [x̂d] in (2.15) by removing the duplicated elements. Hence, there are more redundancy in

M2(X ) than that in M1(y).

In fact, the entries of M in (2.8) can be expressed as

Mk,l = xi1 · · ·xidxid+1
· · ·xi2d , 1 6 i1 6 · · · 6 id 6 n, 1 6 id+1 6 · · · 6 i2d 6 n,

k =

d∑
j=1

n−ij−1+1∑
kd−j= n−ij+2

kd−j∑
kd−j−1= 1

· · ·
k1∑

k0= 1

1 + 1 (i0 := 1),

l =

2d∑
j=d+1

n−ij−1+1∑
k2d−j= n−ij+2

kd−j∑
k2d−j−1= 1

· · ·
k1∑

k0= 1

1 + 1 (id := 1).

(2.16)
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It can be verified that the entries of the matrix X in (2.15) are:

Xk,l = xi1 · · ·xidxid+1
· · ·xi2d , 1 6 i1, · · · , id, id+1, · · · , i2d 6 n.

where

k =

d∑
j=1

(ij − 1)nd−j + 1, and l =

2d∑
j=d+1

(ij − 1)n2d−j + 1. (2.17)

Both of the two SDP relaxations can obtain an optimal solution of the original problem when its SDP

solution is rank-1.

We next prove the equivalence between the two SDP problems. For convenience, we define two sets

Φ :=

Y ∈ S(n+d−1
d )×(n+d−1

d ) | Y =
∑
α∈Nn

m

yαAα, y ∈ R(n+2d−1
2d )

 ,

Ψ :=

Y ∈ Snd×nd

| Y =
∑
α∈Nn

m

yαBα, y ∈ R(n+2d−1
2d )

 .

Following the relationships between the matrices Aα and Bα, we establish mappings between the matrices

in the sets Φ and Ψ. Let n, d be two integers. A map τ : Φ −→ Ψ is defined as follows. For every matrix

X =
∑
α∈Nn

m
yαAα ∈ Ψ, we define X̄ = τ(X) =

∑
α∈Nn

m
yαBα. Based on the map τ , we can further

clarify the relationship between the optimization variables in (2.9) and (2.14). Let y ∈ RNn
m and Y ∈ Ψ.

For y ∈ RNn
m , we introduce a map σ : y −→ Y as:

Y = τ(M1(y)) = τ

 ∑
α∈Nn

m

yαAα

 .

It is easy to check that τ and σ are bijections and we can obtain the following lemma.

Lemma 2.1. For any SDP matrix X ∈ Φ, if X̄ = τ(X), then X̄ is positive semidefinite and rank(X̄) =

rank(X). For any matrix X̄, it holds τ−1(X̄) is semidefinite and rank(X̄) = rank(τ−1(X̄)).

Proof. A further examination the definition of τ shows that its inverse is the map that deletes some

specified columns and rows of the given matrix. Specifically, X is the matrix that X̄ deletes its specified

columns and rows. Consequently, the positive semidefiniteness property and the rank of the two matrices

are equivalent.

Theorem 2.2. Let y be an optimal solution of (2.9). Then Y = σ(y) is an optimal solution of (2.14).

Conversely, if Y is an optimal solution of (2.14), then y = σ−1(Y ) is an optimal solution of (2.9).

Proof. Due to the optimality of y, we have M1(y) � 0 and 〈g, y〉 = 1. Lemma 2.1 implies that Y =

σ(y) = τ(M1(y)) is positive semidefinite. It can be proved that the following relationship holds

〈g, y〉 =
∑
α∈Nn

d

d!∏n
j=1 αj !

y(2α1,...,2αn) =

nd∑
i=1

Yi,i = tr(Y ). (2.18)

Hence, Y is a feasible solution of (2.14). It also holds:

〈F, Y 〉 =
∑
α∈Nn

m

〈F, yαBα〉 =
∑
α∈Nn

m

cαyα = 〈c, y〉 . (2.19)

If Y is not optimal to (2.14), there exists another Ỹ such that
〈
F, Ỹ

〉
> 〈F, Y 〉. Then, based on the two

equations (2.18) and (2.19), we have ỹ = σ−1(Ỹ ) is a feasible solution of (2.9) and 〈f, ỹ〉 > 〈f, y〉. This

is a contradiction since y is an optimal solution of (2.9). Therefore, Y is an optimal solution of (2.14).

The other part, namely, the optimality of y = σ−1(Y ), can be proved in a similar fashion.
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3 The BEC Problem

In the BEC problem, the energy functional is defined as

E(φ) =

∫
Rd

[
1

2
|∇φ(x)|2 + V (x)|φ(x)|2 +

β

2
|φ(x)|4 − Ωφ̄(x)Lzφ(x)

]
dx, (3.1)

where x = (x, y, z)> ∈ R3 is the spatial coordinate vector, f̄ denotes the complex conjugate of f ,

Lz = −i(x∂y − y∂x), V (x) is an external trapping potential, and m, ~, N,Ω, U0 are all constants. The

ground state of a BEC is usually defined as the minimizer of the following nonconvex minimization

problem

φg = arg minφ∈S E(φ), (3.2)

where the spherical constraint S is defined as

S =

{
φ | E(φ) <∞,

∫
Rd

|φ(x)|2dx = 1

}
. (3.3)

Problem 3.2 is also related the Gross-Pitaevskii equation (GPE) in three dimensions (3D) [15] as

i~
∂ψ(x, t)

∂t
=

(
− ~2

2m
∇2 + V (x) +NU0|ψ(x, t)|2 − ΩLz

)
ψ(x, t), (3.4)

where t is time.

The energy functional (3.1) and constraint (3.3) in the infinite dimensional optimization problem (3.2)

can be discretized by methods such as the finite difference, sine pseudospectral and fourier pseudospectral

methods. After a suitable discretization, problem (3.2) becomes a homogeneous quadratic and quartic

polynomial with a single spherical constraint (HQQS) minimization problem:

min
x

f(x) :=
1

2
x>Ax+

β

2

n∑
i=1

x4i

s. t. ‖x‖2 = 1,

(3.5)

where β > 0, and A is an n by n symmetric real or complex matrix. In the setting of BEC, A can be

a Hermitian indefinite matrix. Considering to the structure and multiplying the quadratic term of the

objective function by x>x , we convert the HQQS problem into the following equivalent form: min
x

f(x) = 1
2x
>Axx>x+ β

2

∑n
i=1 x

4
i

s.t. ‖x‖2 = 1.
(3.6)

Clearly, problem (3.6) can be seen as the best rank-1 tensor approximation to a 4th-order symmetric

tensor F . Specifically, the entries of the tensor F are

Fπ(i,j,k,l) =



akl/4, i = j = k 6= l,

akl/12, i = j, i 6= k, i 6= l, k 6= l,

(aii + akk)/12, i = j 6= k = l,

aii/2 + β/4, i = j = k = l,

0, others.

(3.7)

Consequently, the BEC problem can be solved by algorithms on finding the best rank-1 tensor approxi-

mations.
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3.1 NP-hardness of HQQS

We prove in this subsection that HQQS is NP-complete by showing that the partition problem is a special

instance of HQQS. First, we review the NP-completeness of the partition problem [25].

Proposition 3.1. Given a set Ω := {a1, ..., an} with cardinality n, checking whether there exists a equal

partition of Ω is NP-complete.

The next theorem establish the connection between the partition problem and HQQS.

Theorem 3.2. Given a set Ω := {a1, ..., an}, the corresponding partition problem is an instance of

HQQS.

Proof. By letting θi =

n∑
j 6=i

a4j

(
n∑

k=1

a2k)
2
, γi =

 a2i

(
n∑

k=1

a2k)
− 1

2

(i = 1, 2, · · · , n), we construct the following

HQQS problem with

A =


θ1 + γ1 + 1 1 · · · 1

1 θ2 + γ2 + 1 · · · 1
...

...
. . .

...

1 1 · · · θn + γn + 1


and β = 1. Then, we have

2f(x) = xTAx+ β

n∑
i=1

x4i = xTAx+

n∑
i=1

x4i

=

n∑
i=1

(θi + γi)x
2
i +

(
n∑
i=1

xi

)2

+

n∑
i=1

x4i

=

n∑
i=1


n∑
j=1

a4j

(
n∑
k=1

a2k)2
+ 1

x2i −
2

n∑
i=1

a2ix
2
i

n∑
k=1

a2k

+

(
n∑
i=1

xi

)2

+

n∑
i=1

x4i

= 1 +

n∑
i=1

x2i − a2i
n∑
k=1

a2k


2

+

(
n∑
i=1

xi

)2

> 1. (3.8)

The last equality uses the spherical constraint. The equality holds in the last inequality, only if

xi = ±ai/

√√√√ n∑
k=1

a2k, (3.9)

0 =

n∑
i=1

xi,

holds at the same time. They actually imply that there exists a partition of Ω. On the other hand, if

(3.9) holds, the spherical constraint is satisfied. Therefore, this completes the proof.

3.2 Quadratic SDP Relaxation To HQQS

Since the BEC problem (3.5) can be formulated as a 4th-order symmetric tensor (3.7), the two SDP

relaxations in section 2 can be applied directly. The main limitation of using these two approaches to
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solve BEC problems is that the scales of these two SDP relaxations grow exponentially with the increase of

the size of the original problem (3.5). Hence, we propose an SDP relaxation based on the specific structure

of (3.5) with both deterministic and randomized rounding procedures in this section. Without loss of

generality, in the remaining of this subsection, we assume matrix A is positive semidefinite. Otherwise,

we can find a sufficiently large γ > 0 such that A+ γI � 0, and consider

min
x

f(x) :=
1

2
x>(A+ γI)x+

β

2

n∑
i=1

x4i

s. t. ‖x‖2 = 1,

(3.10)

Due to the constraint ‖x‖2 = 1, it is easy to see that (3.10) shares the same optimal solution with HQQS

problem (3.5).

3.2.1 A Deterministic Algorithm

Introducing a variable X = xx>, the HQQS problem is equivalent to min
X

1
2 〈A,X〉+ β

2

∑n
i=1X

2
ii

s. t. X � 0, tr(X) = 1, rank(X) = 1.
(3.11)

By ignoring the rank-one constraint, we obtain a convex quadratic SDP relaxation min
X

1
2 〈A,X〉+ β

2

∑n
i=1X

2
ii

s.t. tr(X) = 1, X � 0.
(3.12)

Let X∗ be a solution to (3.12) and rank(X∗) = r. It follows from [13] that there exists r vectors

x1, x2, · · · , xr such that X∗ =
∑r
k=1 x

k(xk)
>

and

tr(xk(xk)
>

) = (xk)>xk = tr(X∗)/r = 1/r, ∀ k = 1, . . . , r. (3.13)

Then we compute

x̂ = arg min
xk,k=1,...,r

1

2
(xk)

>
Axk +

β

2

n∑
i=1

(xki )4 and x∗ =
√
rx̂. (3.14)

Obviously (x∗)
>
x∗ = r(x̂)

>
x̂ = 1 which means that x∗ is feasible to the HQQS problem. The quality of

the approximate solution x∗ is summarized in the next theorem.

Theorem 3.3. Suppose that A is positive definite. Let X∗ be an optimal of (3.12) with rank(X∗) = r

and x∗ be constructed based on (3.13) and (3.14). Then x∗ is an approximate solution to the HQQS

problem with an approximation ratio r 6 n.

Proof. Since A is positive definite, it follows from the definition of x̂ that

1

2
(x∗)

>
Ax∗ +

β

2

n∑
i=1

(x∗i )
4 =

r

2
(x̂)
>
Ax̂+

β r2

2

n∑
i=1

(x̂i)
4

6
r2

2
(x̂)
>
Ax̂+

β r2

2

n∑
i=1

(x̂i)
4

6 r

r∑
k=1

(
1

2
(xk)

>
Axk +

β

2

n∑
i=1

(xki )4

)

= r

(
1

2
〈A,X∗〉+

β

2

r∑
k=1

n∑
i=1

(xki )4

)
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6 r

1

2
〈A,X∗〉+

β

2

n∑
i=1

(
r∑

k=1

(xki )2

)2


= r

(
1

2
〈A,X∗〉+

β

2

n∑
i=1

(X∗ii)
2

)
6 r fmin(HQQS),

where fmin(HQQS) is the objective function value of the global optimal solution of (3.5). The last

inequality holds because (3.12) is relaxation of (3.11). This completes the proof.

3.2.2 A Randomized Algorithm

We now consider the same SDP relaxation (3.12), and let X∗ be its global minimizer. Different to the

previous discussion, our goal is to recover a feasible solution of problem HQQS (3.5) with some quality

guarantee through a randomized procedure. In particular, recall that when ξ is a random vector drawn

from a Gaussian distribution N (0, X∗), we have that E[ξ>ξ] = tr(X∗) = 1 and (see for example [11])

E [f(ξ)] = E

[
1

2
ξ>Aξ +

β

2

n∑
i=1

ξ4i

]
=

1

2
〈A,X∗〉+

3β

2

n∑
i=1

(X∗ii)
2

6 3

(
1

2
〈A,X∗〉+

β

2

n∑
i=1

(X∗ii)
2

)

6 3

(
1

2
(x∗)

>
Ax∗ +

β

2

n∑
i=1

(x∗i )
4

)
= 3f(x∗),

where x∗ is an optimal solution to problem HQQS (3.5). Based on the above observations, we are

interested in the following event:{
f(ξ) < α E[f(ξ)], ξ>ξ > tr(X∗) > 1

}
.

This is because once the above event does occur, we can construct x̂ = ξ/‖ξ‖2 and obtain

f(x̂) =
1

2 ‖ξ‖22
ξ>Aξ +

β

2 ‖ξ‖42

n∑
i=1

ξ4i 6
1

2
ξ>Aξ +

β

2

n∑
i=1

ξ4i

6 α

(
1

2
〈A,X∗〉+

3β

2

n∑
i=1

(X∗ii)
2

)
6 3α f(x∗).

Thus x̂ is an approximate solution to problem HQQS with approximation ratio 3α. Therefore, the key is

to estimate how likely the above event happens. To this end, we first quote a useful result from [26].

Lemma 3.4. Let ξ be a random variable with bounded fourth order moment. Suppose that E[(ξ−E(ξ))4] 6
τ Var2(ξ), for some τ > 0. Then

Prob{ξ > E(ξ)} > 0.25/τ and Prob{ξ 6 E(ξ)} > 0.25/τ.

The key step of our argument is based on the following lemma.

Lemma 3.5. Let Q ∈ Sn×n+ . Suppose η ∈ Rn is a random vector generated from Gaussian distribution

N (0, I). Then,

Prob
(
η>Qη < E[η>Qη]

)
6 1− θ

where θ := 1/960.
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Proof. Recall that for a standard Gaussian ζ ∼ N (0, 1), its even order moments can be calculated

explicitly as

E[ζ2] = 1, E[ζ4] = 3, E[ζ6] = 15, E[ζ8] = 105.

To apply Lemma 3.4, we treat η>Qη as a random variable and compute its fourth order central moment

as well as the variance. To this end, we notice that

Var[η>Qη] = E[(η>Qη)2]− E[η>Qη]2

= E[(η>Qη)2]−
(
tr(Q)

)2
= E

 n∑
i=1

Q2
iiη

4
i + 2

∑
i6=j

Q2
ijη

2
i η

2
j +

∑
i6=j

QiiQjjη
2
i η

2
j

− (

n∑
i=1

Qii)
2

= 3

n∑
i=1

Q2
ii + 2

∑
i6=j

Q2
ij +

∑
i6=j

QiiQjj − (

n∑
i=1

Qii)
2

= 2

 n∑
i=1

Q2
ii +

∑
i 6=j

Q2
ij

 .

On the other hand,

E[(η>Qη − tr(Q))4] = E[(

n∑
i=1

Qii(η
2
i − 1) +

∑
i 6=j

Q2
ijηiηj)

4]

6 16

E
[( n∑

i=1

Qii(η
2
i − 1)

)4]
+ E

[(∑
i6=j

Q2
ijηiηj

)4] .

Moreover, a straight forward computation implies that

E
[( n∑

i=1

Qii(η
2
i − 1)

)4]
= E[(

n∑
i=1

Q4
ii(η

2
i − 1)4] + 3E[

∑
i 6=j

Q2
iiQ

2
jj(η

2
i − 1)2(η2j − 1)2]

6 60

n∑
i=1

Q4
ii + 12

∑
i 6=j

Q2
iiQ

2
jj

6 60

(
n∑
i=1

Q2
ii

)2

.

Similarly, we can show that

E
[(∑

i 6=j

Q2
ijηiηj

)4]
6 9

∑
i 6=j

Q2
ij

2

.

Combining the above two equalities yields that

E[(η>Qη − tr(Q))4] 6 16

60

(
n∑
i=1

Q2
ii

)2

+ 9

∑
i6=j

Q2
ij

2
 6 240Var[η>Qη]2.

Finally, invoking Lemma 3.4 gives that

Prob
(
η>Qη > E[η>Qη]

)
> 1/(240 ∗ 4),

which in term implies the desired inequality.
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When ξ is drawn from N (0, X̂), we can let η ∼ N (0, I) such that ξ = X∗1/2η. Then applying

Lemma 3.5 with Q = X∗ yields that

Prob
(
ξ>ξ < tr(X∗)

)
= Prob

(
η>X̂η < E[η>X̂η]

)
6 1− θ.

Moreover, we note that f(ξ) > 0 and by Markov’s inequality

Prob (f(ξ) > ρE[f(ξ)]) 6 1/ρ2.

Therefore, by union bound and letting ρ =
√

2/θ, we have that

Prob
(
f(ξ) <

√
2/θ E[f(ξ)], ξ>ξ > tr(X∗) > 1

)
> 1− Prob

(
f(ξ) >

√
2/θ E[f(ξ)]

)
− Prob

(
ξ>ξ < tr(X∗)

)
= 1− θ/2− (1− θ)
> θ/2 > 0.

Combining the above discussions leads to the following theorem.

Theorem 3.6. Suppose that A is positive definite, X∗ is a solution to (3.12) and random variable ξ is

drawn from N (0, X∗). Construct x̂ = ξ/‖ξ‖2, then we have

Prob
(
f(x̂) 6 3

√
2/θ fmin(HQQS)

)
> θ/2

with θ := 1/960.

As far as we know, the best approximation ratio for quartic polynomial optimization with a single

sphere constraint is O(n/ lnn) in [18,19], and the ratio under consideration is relative ratio. The merit of

our approximation scheme is that both approximation ratios obtained by our two algorithms are absolute

ones. In particular, the ratio associated with the deterministic algorithm depends on the rank of the

optimal solution of (3.12). Normally, we only know that dimension n is a trivial upper bound of this

rank. However, further information is not available in most cases. On the other hand, the randomized

algorithm provides us a constant approximation ratio, which is independent of the problem dimension n.

Moreover, the probability of obtaining a solution with the assured quality is dimensional free as well. To

our best knowledge, this is the first constant approximation ratio for polynomial optimization, although

this result relies on the special structure of our problem.

3.3 A Feasible Method For Solving the Quadratic SDP Relaxations

Note that (3.12) is a convex quadratic SDP. Many algorithms such as the alternating direction method

of multipliers can be applied to solve them. In this subsection, we briefly describe the feasible gradient

method proposed in [14].

Suppose that the solution X̄ of (3.12) is rank p. Then X̄ can be decomposed as X̄ = V >V with

V = [V1, · · · , Vn] ∈ Rp×n according to [14, 24]. Consequently, we convert (3.12) into an equivalent

problem

max
V=[V1,··· ,Vn]

f(V ) :=
1

2

〈
A, V >V

〉
+
β

2
‖diag(V >V )‖22, s. t. ‖V ‖F = 1, i = 1, · · · , n, (3.15)

where diag(V >V ) is the diagonals of V >V . Although (3.15) is again a nonconvex problem, it can be

solved by the feasible gradient method in [14]. In fact, it has been a common practice to solve a nonconvex

counterpart of the SDP relaxations when their size are huge.

We next briefly introduce the feasible gradient method. Let G = ∇f(V ) denote the gradient of f(V ).

A simple calculation yields:

G = V A+ 2βV diag(v),
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where v = [‖V1‖2, ‖V2‖2, · · · , ‖Vn‖2] and diag(v) is the diagonal matrix generated by v. Then the update

scheme of the feasible gradient method is

Y (τ) := V − τ(GV > − V G>)(V + Y (τ)), (3.16)

where τ is the step size. The spherical constraint is preserved, i.e., ‖Y (τ)‖F = 1, for any τ . The

convergence of the method can be fast when a nonmonotone curvilinear search with the Barzilar-Borwein

(BB) step size is used. Starting from an initial point V (0) and a step size τ0 and setting C(0) = f(V (0))

and Q(0) = 1, the new points are generated iteratively in the form V (k+1) := Y (k)(τ (k)) with τ (k) = τδm,

where τ is a BB step size. Here, m is the smallest nonnegative integer satisfying the descent condition

f(Y (k)(τ (k))) 6 C(k) − ρτ (k)‖(G(V (k))> − (V (k))>G)V (k)‖2, (3.17)

where each reference value C(k+1) is taken to be the convex combination of C(k) and f(V (k+1)) as

C(k+1) = (ηQ(k)C(k) + f(V (k+1)))/Q(k+1) and Q(k+1) = ηQ(k) + 1. A outline of the method is described

in Algorithm 1.

Algorithm 1: A feasible gradient method

1 Given V (0), set τ, ρ, η ∈ (0, 1), k = 0.

2 while stopping conditions are not met do

3 Compute V (k+1) ← Y (τδm), where m is the smallest nonnegative integer satisfying the descent

condition defined by (3.17).

4 Set Q(k+1) ← ηQ(k) + 1 and C(k+1) ← (ηQ(k)C(k) + f(V (k+1)))/Q(k+1).

5 Compute a BB step size τ .

6 Set k ← k + 1.

4 Numerical Results

In this section, we present numerical results on the semidefinite relaxations on best rank-1 tensor approx-

imation and the BEC problem. All of our numerical experiments are preformed on a workstation with

two twelve-core Intel Xeon E5-2697 CPUs and 128GB of memory running Ubuntu 12.04 and MATLAB

2013b.

4.1 Verification of the Equivalence between the two SDP Approaches [7] and [8]

In this subsection, we report numerical results on solving the SDP relaxations (2.9) and (2.14) using

different algorithms, including an interior point method SDPT31) , the alternating direction method of

multipliers (ADMM), the commercial software MOSEK2) and a semi-smooth Newton conjugate gradient

method SDPNAL3) . For simplicity of presentation, the former SDP relaxation is denoted by NW and

the latter is written as JMZ. The default parameters are used in each algorithm. We report the cpu time

measured in seconds (, the optimal value of (2.14) denoted by λ and the residual ‖F − λ · x⊗m‖ between

the computed solution λ ·x⊗m and the given tensor F . For a given matrix A, its numerical rank is set to

be the smallest r such that σr+1/σr < 10−6, where σ1 > σ2 > · · · > σt > 0 are the singular values of A.

Example 4.1 (Example 3.4 in [7]). Consider a tensor F ∈ S34 with entries:

F1111 = 0.2883, F1112 = −0.0031, F1113 = 0.1973, F1122 = −0.2485, F1123 = −0.2939,

F1133 = 0.3847, F1222 = 0.2972, F1223 = 0.1862, F1233 = 0.0919, F1333 = −0.3619,

F2222 = 0.1241, F2223 = −0.3420, F2233 = 0.2127, F2333 = 0.2727, F3333 = −0.3054.

1) Downloadable from http://www.math.nus.edu.sg/~mattohkc
2) Downloadable from https://www.mosek.com/
3) Downloadable from http://www.math.nus.edu.sg/~mattohkc
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We use SDPNAL to solve both SDPs NW and JMZ. They yield the same best rank-1 approximations of

F with λ = −1.0954 and 1.9683 as defined in [7].

Example 4.2 (Example 3.6 in [7]). Consider a tensor F ∈ Sn4

with entries:

Fi1···i4 = arctan

(
(−1)i1

i1
n

)
+ · · ·+ arctan

(
(−1)i4

i4
n

)
by varying the values of n from 10 to 30. We use SDPNAL to solve both SDPs NW and JMZ. They

return rank one solutions which are the best rank-1 approximation. A summary of numerical results are

presented in Table 1. This table shows that NW is more efficient because its problem size is smaller.

n
time λ residual

NW JMZ NW JMZ NW JMZ

10 1.8920 2.1132 77.0689 77.0689 72.8350 72.8350

15 5.0124 8.0642 -165.0695 -165.0695 164.6400 164.6400

20 14.8892 28.3321 282.9708 282.9708 295.9706 295.9706

25 7.2067 195.8824 -435.3512 -435.3512 463.0760 463.0760

30 14.4721 574.4781 617.5361 617.5361 669.7284 669.7284

Table 1 Computational results on tensor Fi1···i4 = arctan
(
(−1)i1 i1n

)
+ · · ·+ arctan

(
(−1)i4 i4n

)

Example 4.3 (Example 3.10 in [7]). Consider a tensor F ∈ Sn4

with entries:

Fi1···i4 = sin(i1 + · · ·+ i4)

by varying n from 10 to 30. We still apply SDPNAL to solve both SDPs. All the returned matrices are

rank one. The detailed numerical results are reported in Table 2. This table again shows that NW is

more efficient because its problem size is smaller.

n
time λ residual

NW JMZ NW JMZ NW JMZ

10 0.7699 1.0121 -27.2654 -27.2654 65.2419 65.2419

15 4.9850 8.4545 61.4169 61.4169 146.7665 146.7665

25 10.1289 72.0134 158.2156 158.2155 412.6504 412.6504

30 38.1121 254.3728 -241.6526 -241.6526 588.7309 588.7309

Table 2 Computational results on tensor Fi1···i4 = sin(i1 + · · ·+ i4)

Example 4.4. We generate five random examples for n = 10 and 12 similar to [8]. The performance

from different solvers SDPT3, ADMM, MOSEK and SDPNAL are reported in Table 3. We can see that

SDPNAL is the most efficient solver.

4.2 Numerical comparisons on the BEC Problem

In this subsection, we present numerical results on one dimensional BEC problems [15].

Example 4.5. Consider a BEC problem with d = 1, V (x) = 1
2x

2 and β = 400. The problems are

discretized by the finite difference scheme on a domain U = (−16, 16) with different mesh sizes h =
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Instance
time λ

SDPT3 ADMM MOSEK SDPNAL SDPT3 ADMM MOSEK SDPNAL

Dimension n = 10

1 18.3108 5.4023 20.2667 1.9938 4.8708 4.8708 4.8708 4.8708

2 18.7813 5.0224 18.3224 1.4156 4.4324 4.4324 4.4324 4.4324

3 23.2172 10.7752 19.9949 1.9375 4.6236 4.6237 4.6237 4.6236

4 14.0992 10.8524 21.6577 1.8614 4.6507 4.6508 4.6507 4.6507

5 15.8869 13.0126 18.8525 1.9756 4.5414 4.5414 4.5414 4.5414

Dimension n = 12

1 97.8172 10.3173 75.3220 2.1984 5.2555 5.2556 5.2556 5.2556

2 80.2766 10.7515 86.9155 2.7042 4.7151 4.7151 4.7151 4.7151

3 79.8950 10.9313 86.0055 1.8049 5.4132 5.4132 5.4132 5.4132

4 69.6030 12.3825 82.8964 1.9321 5.5616 5.5615 5.5615 5.5615

5 69.2047 13.0897 81.4128 2.3453 5.6417 5.6417 5.6417 5.6417

Table 3 Comparisons between different algorithms

2, 1, 12 ,
1
4 ,

1
6 ,

1
8 . We first compare solving these problems as the best rank-1 tensor approximation. A

summary of numerical results are presented in Table 4.

We next use the regularized Newton method in [15], denoted by RN, to solve the original BEC problem

and the feasible gradient method with default parameters to solve the quadratic SDP (3.12). The deter-

ministic and randomized versions are denoted by SDR1 and SDR2, respectively. We report the cpu time

measured in seconds, the objective function value corresponding to the original BEC problem denoted by

λ, the rank of the SDR1 and SDR2 solutions and the ratio is between λ and the best objective function

value for SDR1 and SDR2. Since SDR2 is a randomized algorithm, we repeat 50 random examples and

report the best λ but present the maximum, mean and minimum of the ratios. The numerical results are

reported in Table 5.

From the Table 5, we can see that the objective function value obtained by SDR1 is almost the same

as RN. The ratios of SDR2 show that the best objective function values do not exceed the
√

(2/θ) times

of the function value of SDR2. Although the computational costs of SDR1 and SDR2 are more expensive

than that of RN, they can provide certain theoretical guarantee on the solution qualities.

Example 4.6. Consider a BEC problem with d = 1, V (x) = 1
2x

2 + 25 sin2(πx4 ) and β = 250. We

discretize the problem by the finite difference scheme on a domain U = (−16, 16) with different mesh

sizes h = 2, 1, 12 ,
1
4 ,

1
6 ,

1
8 . A summary of numerical results of the best rank-1 tensor approximation is

presented in Table 6. The computational results for the case h = 1 are not reported because SDPNAL

encountered into numerical troubles and it did not solve the SDP generated by NW accurately. The

comparison between RN, SDR1 and SDR2 are shown in Table 7.

Conclusions

Minimizing a polynomial function over a single sphere is an important but challenging problem. In this

paper, we first compare recent two SDP relaxations in [7] and [8] for computing the best rank-one tensor

approximation. Although the appearance of these two SDP relaxations look quite different, they are

essentially equivalent. We then consider a specific example arising from Bose-Einstein condensates, whose
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h
time λ

NW JMZ NW JMZ

2 5.5782 22.3343 21.3773 21.3773

1 110.7321 1483.9856 21.3592 21.3592

1/2 — — — —

1/4 — — — —

1/6 — — — —

1/8 — — — —

Table 4. Computational results on Example 4.5. “—” means that the computational time is more than

30 minutes.

h
time λ rank (ratio)

RN SDR1 SDR2 RN SDR1 SDR2 SDR1 SDR2

2 0.0070 0.0702 0.0736 21.3773 21.5434 22.5696 5(1.0077) 5(18.3641,4.9596,1.0558)

1 0.0105 0.0864 0.0860 21.3592 21.3896 21.5076 5(1.0014) 5(43.2324,5.9762,1.0069)

1/2 0.0115 0.1704 0.1895 21.3598 21.3858 21.7901 5(1.0012) 5(22.6133,4.8358,1.0201)

1/4 0.0120 0.1029 0.1876 21.3600 21.3886 21.5701 5(1.0013) 5(35.6182,5.8311,1.0098)

1/6 0.0148 0.1963 0.2083 21.3600 21.3952 21.7423 5(1.0016) 5(21.3470,4.6358,1.0179)

1/8 0.0181 0.4024 0.6933 21.3601 21.3786 21.4868 5(1.0009) 5(41.1597,6.3262,1.0059)

Table 5 Computational results of RN and quadratic SDPs on Example 4.5

objective function is a summation of a quadratic and quartic function. Since the two SDP relaxations for

the best rank-1 tensor approximation usually are not suitable due to the large SDP matrix dimension, we

propose a much smaller quadratic SDP relaxation. Then both deterministic and randomized rounding

procedures are developed and approximation ratios between function values at the global minimum and

the solution constructed from rounding procedures are provided. Although the computational costs of

the SDP relaxations are usually more expensive, they can provide us a better understanding on finding

the global optimal solutions.
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