A Unified Primal-Dual Algorithm Framework for Inequality Constrained Problems

Zaiwen Wen

Beijing International Center For Mathematical Research
Peking University

Joint work with Zhenyuan Zhu, Fan Chen, Junyu Zhang https://arxiv.org/abs/2208.14196

Introduction

Consider the convex composite optimization problem:

$$\min_{x} \Phi(x) = f(x) + h(x),$$

s.t. $Ax - b \in \mathcal{K}$. (P)

- $f(x): \mathbb{R}^n \mapsto \mathbb{R}$ is a differentiable convex function whose gradient $\nabla f(\cdot)$ is L_f -Lipschitz continuous
- $h(x): \mathbb{R}^n \mapsto \mathbb{R}$ is a simple convex function whose proximal operator can be efficiently evaluated:

$$\operatorname{prox}_h(x) := \arg\min_{u} \{h(u) + \frac{1}{2} ||x - u||^2\}$$

• $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $\mathcal{K} \subset \mathbb{R}^m$ is either $\{0\}$ or a proper cone

Applications

- Compressive sensing
 - basis pursuit
 - LASSO
- Image processing
 - TV denoising
 - TVL1 denoising
 - globally convex segmentation
- Statistics and machine learning
 - latent variable Gaussian graphical model selection
 - robust principal component analysis
 - support vector machine

Outline

- Motivation
- 2 A Unified Algorithm Framework
- Convergence Analysis
 - Ergodic convergence
 - Non-ergodic convergence
- 4 Numerical Results

Saddle point formulation

Saddle point problem based on the Lagrangian function:

$$\min_{x} \max_{y \in \mathcal{K}^*} \mathcal{L}(x, y) := f(x) + h(x) - y^{\mathrm{T}}(Ax - b),$$
 (SP-L)

where \mathcal{K}^* is the dual cone of \mathcal{K} , i.e., $\mathcal{K}^* = \{x | \langle x, y \rangle \geq 0, \forall y \in \mathcal{K}\}.$

- Denote $\Psi(x, y) = f(x) y^{T}(Ax b)$, $s(y) = 1_{\mathcal{K}^{*}}(y)$.
- (SP-L) can be rewritten as

$$\min_{x} \max_{y} h(x) + \Psi(x, y) - s(y).$$

PDHG and CP

- Let $g_x^k = \nabla_x \Psi(x^k, y^k), g_y^k = \nabla_y \Psi(x^k, y^k) = -Ax^k + b$.
- One primal gradient-type step + one dual gradient-type step
- Primal-dual hybrid gradient (PDHG): "Gauss-Seidel iteration"

$$\begin{split} \mathbf{x}^{k+1} &= \mathbf{prox}_{\tau h} \left[\mathbf{x}^k - \tau \mathbf{g}_{\mathbf{x}}^k \right], \\ \mathbf{y}^{k+1} &= \mathbf{prox}_{\sigma s} \left[\mathbf{y}^k + \sigma \mathbf{g}_{\mathbf{y}}^{k+1} \right]. \end{split}$$

 The Chambolle-Pock method (CP): "Gauss-Seidel iteration" with an extrapolation step on the dual variable

$$\begin{split} &\boldsymbol{x}^{k+1} = \mathbf{prox}_{\tau h} \left[\boldsymbol{x}^k - \tau \boldsymbol{g}_{\boldsymbol{x}}^k \right], \\ &\boldsymbol{y}^{k+1} = \mathbf{prox}_{\sigma s} \left[\boldsymbol{y}^k + \sigma \left(2 \boldsymbol{g}_{\boldsymbol{y}}^{k+1} - \boldsymbol{g}_{\boldsymbol{y}}^k \right) \right]. \end{split}$$

GDA and OGDA

Gradient descent ascent (GDA): "Jacobian iteration"

$$\begin{split} \boldsymbol{x}^{k+1} &= \mathbf{prox}_{\tau h} \left[\boldsymbol{x}^k - \tau \boldsymbol{g}_{\boldsymbol{x}}^k \right], \\ \boldsymbol{y}^{k+1} &= \mathbf{prox}_{\sigma s} \left[\boldsymbol{y}^k + \sigma \boldsymbol{g}_{\boldsymbol{y}}^k \right]. \end{split}$$

 Optimistic gradient descent ascent (OGDA): "Jacobian iteration" with extrapolation steps on both primal and dual variables

$$\begin{split} x^{k+1} &= \mathbf{prox}_{\tau h} \left[x^k - \tau \left(2 g_x^k - g_x^{k-1} \right) \right], \\ y^{k+1} &= \mathbf{prox}_{\sigma s} \left[y^k + \sigma \left(2 g_y^k - g_y^{k-1} \right) \right]. \end{split}$$

Motivations

- Primal-dual algorithms: PDHG, CP, OGDA . . .
 - Existing ergodic convergence results are almost established on the duality gap of the Lagrangian function: for bounded $\mathcal X$ and $\mathcal Y$,

$$\mathsf{DualGap}(\bar{x}_{\mathsf{N}}, \bar{y}_{\mathsf{N}}) := \max_{y \in \mathcal{Y}} \ \mathcal{L}(\bar{x}_{\mathsf{N}}, y) - \min_{x \in \mathcal{X}} \ \mathcal{L}(x, \bar{y}_{\mathsf{N}}) \sim \mathcal{O}(1/N),$$

where
$$\bar{x}_N = \sum_{k=1}^{N} x_k / N$$
, $\bar{y}_N = \sum_{k=1}^{N} y_k / N$.

- If \mathcal{Y} is not bounded and $A\bar{x}_N b \notin \mathcal{K}$: DualGap $(\bar{x}_N, \bar{y}_N) = +\infty$.
- Dual ascent class algorithms: ALM, ADMM . . .
 - need to solve subproblems
 - multi-block ADMM may not necessarily converge

We aim to

- design a class of easy-to-implement algorithms with good convergence properties
- 2 give an error bound w.r.t constraint violation and function value gap without the boundedness assumption of $\mathcal Y$

Outline

- Motivation
- 2 A Unified Algorithm Framework
- Convergence Analysis
 - Ergodic convergence
 - Non-ergodic convergence
- Mumerical Results

Assumptions

- **1** The optimal solution of (P) is attainable. There exists $x^* \in \mathbb{R}^n$ such that $Ax^* b \in \mathcal{K}$ and $\Phi(x^*)$ equals to the optimal value Φ^* .
- Slater's condition:
 - There exists $x \in \operatorname{relint} \mathcal{D}$ such that $Ax b \in \operatorname{int} \mathcal{K}$, where $\mathcal{D} = \operatorname{dom} \Phi$, $\operatorname{relint} \mathcal{D}$ denotes the relative interior of \mathcal{D} and $\operatorname{int} \mathcal{K}$ denotes the interior of \mathcal{K} .
 - When \mathcal{K} is a polyhedral cone (including the case of $\mathcal{K} = \{0\}$), the condition can be relaxed to the existence of $x \in \operatorname{relint} \mathcal{D}$ such that $Ax b \in \mathcal{K}$.

Slater's condition guarantees (P) is equivalent to (SP-L).

Augmented Lagrangian duality

• Generalize the formulation to the *augmented* Lagrangian function:

Lemma

Suppose that K is $\{0\}$ or a proper cone. Given any penalty coefficient $\rho>0$, we define the augmented Lagrangian function as

$$\mathcal{L}_{\rho}(x,y) := f(x) + h(x) + \frac{\rho}{2} \left\| \mathcal{P}_{\mathcal{K}^{\circ}} \left(Ax - b - \frac{y}{\rho} \right) \right\|^2 - \frac{\|y\|^2}{2\rho},$$

where $K^{\circ} = -K^*$. The strong duality holds for $\mathcal{L}_{\rho}(x,y)$, that is,

$$\min_{x} \max_{y} \mathcal{L}_{\rho}(x, y) = \max_{y} \min_{x} \mathcal{L}_{\rho}(x, y),$$
 (SP-AL)

where both sides are equivalent to (P).

Proof: case of $\mathcal{K} = \{0\}$

• The augmented Lagrangian function degenerates into

$$\mathcal{L}_{\rho}(x,y) = f(x) + g(x) - y^{\mathrm{T}}(Ax - b) + \frac{\rho}{2}||Ax - b||^{2}.$$

Consider the following equivalent problem:

$$\min_{x} f(x) + g(x) + \frac{\rho}{2} ||Ax - b||^{2},$$

s.t. $Ax = b$,

whose Lagrangian function is $\mathcal{L}_{\rho}(x,y)$.

• By Slater's condition, the strong duality holds, that is,

$$\min_{x} \max_{y} \mathcal{L}_{\rho}(x, y) = \max_{y} \min_{x} \mathcal{L}_{\rho}(x, y).$$

Why augmented Lagrangian duality?

(SP-L):
$$\min_{x} \max_{y \in \mathcal{K}^*} \mathcal{L}(x, y)$$
 (SP-AL): $\min_{x} \max_{y} \mathcal{L}_{\rho}(x, y)$

- Make the constraint $y \in \mathcal{K}^*$ optional. Removing the constraint improves the flexibility of algorithm design since it may cause difficulty in solving subproblems.
- Make the framework more versatile. The framework based on (SP-AL) can cover a wider range of algorithms, e.g. linearized ALM.
- Make the objective function have better convexity. $\mathcal{L}_{\rho}(x,y)$ is a strongly convex function along at least one direction of x, which can bring the benefits of convergence.

A unified primal-dual algorithm framework

Define

$$s(y) = \begin{cases} 0, & \rho > 0, \\ \mathbb{1}_{\mathcal{K}^*}(y), & \rho = 0, \end{cases}$$

and

$$\Psi(x,y) = \begin{cases} f(x) + \frac{\rho}{2} \left\| \mathcal{P}_{\mathcal{K}^{\circ}} \left(Ax - b - \frac{y}{\rho} \right) \right\|^2 - \frac{\|y\|^2}{2\rho}, & \rho > 0, \\ f(x) - y^{\mathrm{T}} (Ax - b), & \rho = 0. \end{cases}$$

We can rewrite both problem (SP-L) and (SP-AL) as

$$\min_{x} \max_{y} \mathcal{L}_{\rho}(x,y) := h(x) + \Psi(x,y) - s(y).$$
 (SP)

A unified primal-dual algorithm framework

$$\begin{aligned} x^{k+1} &= \mathbf{prox}_{\tau h} \left[x^k - \tau \left((1+\alpha) g_x^k - \alpha g_x^{k-1} \right) \right] \\ y^{k+1} &= \mathbf{prox}_{\sigma s} \left[y^k + \sigma \mu \left((1+\beta) g_y^k - \beta g_y^{k-1} \right) \right. \\ &\left. + \sigma (1-\mu) \left((1+\beta) g_y^{k+1} - \beta g_y^k \right) \right] \end{aligned} \tag{PD}$$

- $g_x^k = \nabla_x \Psi(x^k, y^k), g_y^k = \nabla_y \Psi(x^k, y^k)$
- $\tau, \sigma > 0$: primal and dual step sizes
- $\alpha \in [0,1], \beta \geq 0$: gradient extrapolation coefficients
- $\mu \in [0,1]$: the ratio of "Gauss-Seidel iteration" versus "Jacobian iteration"

A unified primal-dual algorithm framework

- When $\rho = 0$, $g_y^{k+1} = -Ax^{k+1} b$, the scheme is an explicit update.
- When $\rho > 0$, $g_y^{k+1} = -(Ax^{k+1} b) + \mathcal{P}_{\mathcal{K}}(w^{k+1})$ where $w^{k+1} = Ax^{k+1} b \frac{y^{k+1}}{\rho}$. The y^{k+1} update is an implicit scheme.

Lemma (Explicit form of dual update)

Let $\rho > 0$ and s(y) = 0, the dual update rule of (PD) can be written as

$$y^{k+1} = \omega + \frac{\kappa}{\kappa + 1} \mathcal{P}_{\mathcal{K}} (\nu - \omega),$$

where
$$\omega =$$

$$y^{k} + \sigma \mu \left((1 + \beta) g_{y}^{k} - \beta g_{y}^{k-1} \right) - \sigma (1 - \mu) \left((1 + \beta) (A x^{k+1} - b) + \beta g_{y}^{k} \right),$$

 $\kappa = \sigma (1 - \mu) (1 + \beta) / \rho \ge 0$, and $\nu = \rho (A x^{k+1} - b)$.

Consequences of the unified framework

Well-known algorithms:

• PDHG:
$$\mu = 0, \alpha = 0, \beta = 0, \rho \ge 0$$

• CP:
$$\mu = 0, \alpha = 0, \beta = 1, \rho \ge 0$$

• GDA:
$$\mu = 1, \alpha = 0, \beta = 0, \rho \ge 0$$

• OGDA:
$$\mu=1, \alpha=1, \beta=1, \rho\geq 0$$

• Linearized ALM:
$$\mu=0, \alpha=0, \beta=0, \rho>0$$

• New algorithms: e.g. SOGDA: $\mu=1, \alpha=0, \beta=1, \rho\geq 0$

$$\begin{aligned} \mathbf{x}^{k+1} &= \mathbf{prox}_{\tau h} \left[\mathbf{x}^k - \tau \mathbf{g}_{\mathbf{x}}^k \right], \\ \mathbf{y}^{k+1} &= \mathbf{prox}_{\sigma s} \left[\mathbf{y}^k + \sigma \left(2 \mathbf{g}_{\mathbf{y}}^k - \mathbf{g}_{\mathbf{y}}^{k-1} \right) \right]. \end{aligned}$$

Interpertation: Jacobian-type of CP based on AL or OGDA with only dual variables extrapolated

Outline

- Motivation
- 2 A Unified Algorithm Framework
- Convergence Analysis
 - Ergodic convergence
 - Non-ergodic convergence
- 4 Numerical Results

Ergodic convergence: affine equality constrained problem

We first consider the case of $K = \{0\}$.

• In this case, we define the weight c as

$$c = \textit{\textit{C}}_{\alpha,\beta,\mu}^{\operatorname{affine}}(\tau,\sigma,\rho) := \alpha \tau \textit{\textit{L}}_{\textit{f}_{\rho}} + \max\{\left|\mu\beta\right|\sqrt{\sigma\tau}\left\|\textit{\textit{A}}\right\|,\alpha\sqrt{\sigma\tau}\left\|\textit{\textit{A}}\right\|\},$$

where $f_{\rho}(x) := f(x) + \frac{\rho}{2} ||Ax - b||^2$ and $L_{f_{\rho}} := L_f + \rho ||A||^2$ is the Lipschitz constant of $\nabla f_{\rho}(x)$.

• Given any coefficient c, we define the matrix P_c as

$$P_c := \begin{bmatrix} \rho I_m & 0_{m \times n} & \frac{1 - \alpha - \beta + \mu}{2} I_m \\ 0_{n \times m} & \left(\frac{1 - 2c}{2\tau} - \frac{(1 - \alpha)L_{f_\rho}}{2}\right) I_n & \frac{\beta - \mu}{2} A^{\mathrm{T}} \\ \frac{1 - \alpha - \beta + \mu}{2} I_m & \frac{\beta - \mu}{2} A & \frac{1 - 2c}{2\sigma} I_m \end{bmatrix}.$$

Ergodic convergence: affine equality constrained problem

Theorem

If the parameters $\tau, \sigma, \rho, \alpha, \beta$ and μ are properly chosen so that $P_c \succeq \mathbf{0}$, then for $\forall N > 1$ and $\forall \gamma > 0$, we have

$$\Phi(\bar{x}_{N}) - \Phi(x^{*}) + \gamma ||A\bar{x}_{N} - b|| \leq \frac{1}{N} \left(\frac{||x^{0} - x^{*}||^{2}}{\tau} + \frac{\gamma^{2}}{\sigma} \right),$$

where $\bar{x}_N = \frac{1}{N} \sum_{k=1}^{N} x^k$. Moreover, it holds that

$$|\Phi(\bar{x}_N) - \Phi(x^*)| \leq \frac{4}{N} \left(\frac{\left\| x^0 - x^* \right\|^2}{\tau} + \frac{\left\| y^* \right\|^2}{\sigma} \right),$$
$$\|A\bar{x}_N - b\| \leq \frac{3}{N} \left(\frac{\left\| x^0 - x^* \right\|}{\sqrt{\tau \sigma}} + \frac{\left\| y^* \right\|}{\sigma} \right).$$

Proof sketch

- Denote z = [x; y], define $\Lambda = \operatorname{diag}(\tau I_n, \sigma I_m)$, $\Xi = \operatorname{diag}(I_n, \mu I_m)$, $\Theta = \operatorname{diag}(\alpha I_n, \beta I_m)$, $F(z) = [\nabla_x \Psi(x, y); -\nabla_y \Psi(x, y)]$.
- Define the discrete Lyapunov function:

$$\Delta_{k}(z) := \frac{1}{2} \|z^{k} - z\|_{\Lambda^{-1}}^{2} + \frac{c}{2} \|z^{k} - z^{k-1}\|_{\Lambda^{-1}}^{2} + \langle F(z^{k}) - F(z^{k-1}), z - z^{k} \rangle_{\Xi\Theta} + (\mu - \beta) \left\langle \nabla_{y} \Psi(z^{k}), y^{k} - y \right\rangle,$$

• Fix $x = x^*$ and denote $\tilde{z} = [x^*, y]$ for arbitrary y. Due to $P_c \succeq 0$, we obtain (one-step descent): $\Delta_k(\tilde{z}) - \Delta_{k+1}(\tilde{z}) > \Phi(x^{k+1}) - \Phi(x^*) - \langle Ax^{k+1} - b, v \rangle$.

(upper and lower bound):
$$0 \le \Delta_k(\tilde{z}) \le \left\|z^k - \tilde{z}\right\|_{\Lambda^{-1}}^2 + c \left\|z^k - z^{k-1}\right\|_{\Lambda^{-1}}^2$$
.

• Let $\hat{y} = \gamma (A\bar{x}_N - b)/\|A\bar{x}_N - b\|$ and $\hat{z} = [x^*, \hat{y}]$, combining the convexity yields $\Phi(\bar{x}_N) - \Phi(x^*) + \gamma \|A\bar{x}_N - b\| = \Phi(\bar{x}_N) - \Phi(x^*) - \langle A\bar{x}_N - b, \hat{y} \rangle$

$$\leq \frac{1}{N} \sum_{k=0}^{N-1} \left(\Phi(x^{k+1}) - \Phi(x^*) - \langle A\bar{x}^{k+1} - b, \hat{y} \rangle \right)$$

$$\leq \frac{\Delta_0(\hat{z}) - \Delta_N(\hat{z})}{N} \leq \frac{1}{N} \left(\frac{\left\| x^0 - x^* \right\|^2}{1 + \left\| x^0 - x^* \right\|^2} + \frac{\gamma^2}{\sigma} \right).$$

Step size conditions

• **SOGDA** Set $\mu=1, \alpha=0, \beta=1.$ For any $\rho>0, P_c\succeq 0$ is guaranteed if

$$2\sqrt{\sigma au}\,\|A\|+\max\left(rac{\sigma}{2
ho}, au L_{f_
ho}
ight)\leq 1.$$

When $\rho=0$, SOGDA has no convergence guarantee, which is also observed numerically.

• **PDHG** Set $\mu=0, \alpha=0, \beta=0$. For any $\rho>0, P_c\succeq 0$ is guaranteed if

$$\sigma \leq 2\rho, \quad \frac{1}{\tau} \geq L_f + \rho \|A\|^2.$$

When $\rho=0$, PDHG is potentially non-convergent. When $\rho>0$, the algorithm becomes the linearized ALM, which is proved to be convergent.

Step size conditions

• **CP** Set $\mu=0, \alpha=0, \beta=1$. For any $\rho\geq 0$, $P_c\succeq 0$ is guaranteed if

$$\frac{1}{\tau} \geq L_f + (\rho + \sigma) \|A\|^2.$$

• **GDA** Set $\mu=1, \alpha=0, \beta=0$. For any $\rho>0, P_c\succeq 0$ is guaranteed if

$$\sigma < \frac{\rho}{2}, \quad \frac{1}{\tau} \ge L_f + \rho \|A\|^2 \frac{\rho - \sigma}{\rho - 2\sigma}.$$

• **OGDA** Set $\mu=1, \alpha=1, \beta=1.$ For any $\rho\geq 0$, $P_c\succeq 0$ is guaranteed if

$$\tau L_{f_{\rho}} + \sqrt{\sigma \tau} \|A\| \leq \frac{1}{2}.$$

Remark: The above analysis is also feasible to the case of general cone with $\rho = 0$. We only need to set $s(y) = \mathbb{1}_{\mathcal{K}^*}(y)$.

Ergodic convergence: conic inequality constrained problem

Next, we only need to consider general problems with $\rho > 0$.

• In this case, we define

$$c = \mathit{C}_{\alpha,\beta,\mu}^{\mathrm{conic}}(\tau,\sigma,\rho) := \max \big\{ \alpha \tau \mathit{L}_{\mathit{f}_{\rho}}, |\mu\beta| \, \frac{\sigma}{\rho} \big\} + \max \big\{ \alpha, |\mu\beta| \, \big\} \, \|A\| \, \sqrt{\sigma \tau}.$$

• Define $\gamma_y = (\mu - \beta)^2 + (1 + \alpha)|\mu - \beta| + 4(\mu - \beta)$, $\gamma_w = t(2 - 2\alpha, (1 - \alpha)^2 + (1 + \alpha)|\mu - \beta|)$ where the function $t(\cdot, \cdot)$ is given by

$$t(a,b) := \begin{cases} b + \frac{(a-b)^2}{2a-b}, & a > b, \\ b, & a \leq b. \end{cases}$$

• Then we define the matrix P'_c for any given c > 0 as

$$P_c' = \begin{bmatrix} \left(\frac{1-2c}{2\tau} - \frac{(1-\alpha)L_f}{2}\right)I_n - \frac{\rho\gamma_w}{4}A^TA & \frac{\gamma_w}{4}A^T \\ \frac{\gamma_w}{4}A & \left(\frac{1-2c}{2\sigma} - \frac{\gamma_w+\gamma_y}{4\rho}\right)I_m \end{bmatrix}.$$

Ergodic convergence: conic inequality constrained problem

Theorem

If the parameters $au, \sigma, \rho, \alpha, \beta$ and μ are properly chosen such that $\mathbf{P'_c} \succeq \mathbf{0}$ and $\mathbf{P'_c} + \mathbf{c} \mathbf{\Lambda}^{-1} \succ \mathbf{0}$. Then for $\bar{\mathbf{x}}_N = \frac{1}{N} \sum_{k=1}^N \mathbf{x}^k$, it holds that

$$|\Phi(\bar{x}_N) - \Phi(x^*)| \leq \mathcal{O}\left(\frac{1}{N}\right), \qquad \|\mathcal{P}_{\mathcal{K}^\circ}\left(A\bar{x}_N - b\right)\| \leq \mathcal{O}\left(\frac{1}{N}\right),$$

where $\mathcal{O}\left(\cdot\right)$ hides constants that depend on $\left\|x^*-x^0\right\|, \left\|y^*\right\|$ and the parameters.

The proof is similar to the case of affine equality constrained problem.

Step size conditions

• **SOGDA** Set $\mu=1, \alpha=0, \beta=1.$ For any $\rho>0$, $P_c'\succeq 0$ can be guaranteed if

$$\sqrt{\sigma\tau}\left\|A\right\|+\frac{\sigma}{\rho}\leq\frac{3}{8},\quad\frac{1}{\tau}\geq4L_{f}+\rho\left\|A\right\|^{2}\frac{\rho}{\frac{3}{8}\rho-\sigma}.$$

• PDHG Set $\mu=0, \alpha=0, \beta=0$. For any $\rho>0$, $P_c'\succeq 0$ can be guaranteed if

$$\sigma < \frac{3}{2}\rho, \quad \frac{1}{\tau} \geq L_f + \rho \left\|A\right\|^2 \frac{\rho}{\frac{3}{2}\rho - \sigma}.$$

• CP Set $\mu=0, \alpha=0, \beta=1$. For any $\rho>0$, $P_c'\succeq 0$ can be guaranteed if

$$\frac{1}{\tau} \geq L_f + (\rho + \sigma) \|A\|^2.$$

• GDA Set $\mu=1, \alpha=0, \beta=0$. For any $\rho>0, P_c'\succeq 0$ can be guaranteed if

$$\sigma < \frac{\rho}{4}, \quad \frac{1}{\tau} \geq L_f + \rho \|A\|^2 \frac{\rho - 3\sigma}{\rho - 4\sigma}.$$

• OGDA Set $\mu=1, \alpha=1, \beta=1.$ For any $\rho>0, P_c'\succeq 0$ can be guaranteed if

$$\max\left\{ au L_{f_
ho}, rac{\sigma}{
ho}
ight\} + \sqrt{\sigma au} \left\|A
ight\| \leq rac{1}{2}.$$

Some observations

The penalty term brings the benefits of convergence.

- For example, PDHG, OGDA and SOGDA based on (SP-L) have no convergence guarantee generally, while these methods based on (SP-AL) are guaranteed to converge.
- Possible interpretation: the penalty term makes the convex objective function into a strongly convex function along at least one direction.

Non-ergodic convergence

• We only consider the affine equality constrained problem:

$$\min_{x} \Phi(x) = f(x) + h(x), \quad \text{s.t. } Ax = b.$$

• Denote $z = [x; y] \in \mathbb{R}^{n+m}$ and define a set-valued operator T as

$$T: z = [x; y]^{\top} \mapsto [\partial \Phi(x) - A^{\top}y; Ax - b]^{\top},$$

• Optimality condition: Let \mathcal{Z}^* be the set of all KKT pairs of (P), then for any $z^* \in \mathcal{Z}^*$, we have $0 \in T(z^*)$.

Definition (Local error bound condition)

The operator T satisfies (LEB) if for every $z^* \in \mathcal{Z}^*$, there exists $\epsilon > 0, M > 0$ such that

$$\operatorname{dist}(z, \mathcal{Z}^*) \leq M \operatorname{dist}(T(z), 0), \quad \forall z \text{ s.t. } \operatorname{dist}(z, z^*) \leq \epsilon.$$

Some examples of (LEB)

Example (affinely constrained strongly convex problem)

$$\min_{x} f(x), \quad \text{s.t. } Ax = b. \tag{1}$$

(LEB) is satisfied if f is L_f -smooth and μ_f -strongly convex.

Example (two-block affinely constrained convex problem)

$$\min_{x_1,x_2} f(x_1) + h(x_2), \quad \text{s.t. } A_1 x_1 + A_2 x_2 = b.$$

(LEB) holds if the following assumptions are satisfied

- A_1 has full row rank, A_2 has full column rank.
- $f(x_1) = g(Lx_1) + \langle q, x_1 \rangle$ with g being smooth and strongly convex.
- h is either a convex piecewise linear-quadratic function, or a $\ell_{1,q}$ -norm regularizer with $q \in [1,2]$, or a sparse-group LASSO regularizer.

Non-ergodic convergence

We can obtain the linear convergence of the unified algorithm framework:

Theorem

Suppose that (LEB) condition holds. If the parameters are chosen so that $P_c \succ 0$, then there $\exists \kappa, R > 0$ and an integer K, s.t. for all $k \geq K$, it holds that

$$\operatorname{dist}\left(x^{k}, \mathcal{X}^{*}\right) \leq Re^{-\kappa(k-K)},$$
$$\operatorname{dist}\left(\partial \Phi(x^{k}) - A^{\mathrm{T}}y^{k}, 0\right) \leq Re^{-\kappa(k-K)}.$$

Non-ergodic convergence: strongly convex case

For the affinely constrained strongly convex problem, the optimal solution x^* is unique, and

$$\mathcal{Z}^* = \{x^*\} \times \mathcal{Y}^*, \qquad \mathcal{Y}^* = \{y : A^\top y = \nabla f(x^*)\}.$$

Theorem

Let the step sizes be suitably chosen as $\tau = \frac{c_{\tau}}{L_f}$, $\sigma = c_{\sigma} \frac{L_f}{\|A\|^2}$, $\rho = c_{\rho} \frac{L_f}{\|A\|^2}$, where the constants c_{τ} , c_{σ} , c_{ρ} are chosen to ensure $\mathbf{P_c} \succ \mathbf{0}$. Then there exists constant c_{κ} such that for all $k \geq 0$,

$$||x^k - x^*|| \le \mathcal{O}\left(\exp(-c_\kappa (\kappa_f + \kappa_A^2)k)\right),$$

where $\mathcal{O}(\cdot)$ hides constants that depend on x^0, y^0 only.

$$\text{SOGDA: } \rho = \sigma = \frac{\mathit{L_f}}{4\|A\|^2}, \tau = \frac{1}{8\mathit{L_f}}, \quad \text{LALM: } \rho = \sigma = \frac{\mathit{L_f}}{2\|A\|^2}, \tau = \frac{1}{2\mathit{L_f}}.$$

A byproduct: proximal OGDA for nonsmooth problems

Since the existing works of OGDA mainly focus on differentiable problems, the proximal OGDA method covered in (PD) is a direct extension of OGDA on the non-differentiable saddle point problems.

Theorem

The sequence $\{z^n\}_{n=0}^{+\infty}$ is generated by proximal OGDA with the step sizes satisfying $\tau \leq \frac{1}{2L_{xx}}, \sigma \leq \frac{1}{2L_{yy}}$ and $(\frac{1}{\tau} - 2L_{xx})(\frac{1}{\sigma} - 2L_{yy}) > 4 \max\{L_{xy}, L_{yx}\}^2$. Then the sequence $\{z^n\}_{n=0}^{+\infty}$ converges to a saddle point of problem (SP). Furthermore, let $(\bar{x}_N, \bar{y}_N) = (\frac{1}{N} \sum_{k=1}^N x^k, \frac{1}{N} \sum_{k=1}^N y^k)$, then for any $R_x, R_y > 0$, it holds

$$\max_{y \in \mathcal{Y} \cap \mathbb{B}(y_0, R_y)} \mathcal{L}(\overline{x}_N, y) - \min_{x \in \mathcal{X} \cap \mathbb{B}(x_0, R_x)} \mathcal{L}(x, \overline{y}_N) \leq \frac{1}{N} \left(\frac{R_x^2}{\tau} + \frac{R_y^2}{\sigma} \right).$$

Outline

- Motivation
- 2 A Unified Algorithm Framework
- Convergence Analysis
 - Ergodic convergence
 - Non-ergodic convergence
- Mumerical Results

Linear programming

Consider the following linear programming problem:

$$\min_{x} r^{\mathrm{T}} x$$
, s.t. $Ax \leq b$, $Cx = d$, $l \leq x \leq u$.

• When $ho_1=
ho_2=0$, the Lagrangian function is

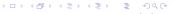
$$\mathcal{L}(x,y,z) = r^{\mathrm{T}}x - y^{\mathrm{T}}(Cx - d) - z^{\mathrm{T}}(Ax - b).$$

Let
$$f(x) = 0$$
, $h(x) = \mathbb{1}_{[l,u]}(x)$, $\Psi(x,y,z) = \mathcal{L}(x,y,z)$ and $s(y,z) = \mathbb{1}_{[-\infty,0]}(z)$.

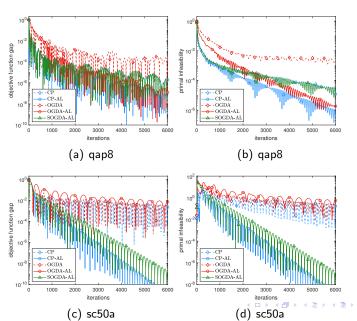
• When $\rho_1, \rho_2 > 0$, the augmented Lagrangian function is

$$\mathcal{L}_{\rho}(x, y, z) = r^{\mathrm{T}}x - y^{\mathrm{T}}(Cx - d) + \rho_{1} \|Cx - d\|^{2} + \frac{\rho_{2}}{2} \| \left[Ax - b - \frac{z}{\rho_{2}} \right]_{+} \|^{2} - \frac{\|z\|^{2}}{2\rho_{2}}.$$

Let
$$f(x) = 0$$
, $h(x) = \mathbb{1}_{[I,u]}(x)$, $\Psi(x,y,z) = \mathcal{L}_{\rho}(x,y,z)$ and $s(y,z) = 0$.



Linear programming



35 / 44

Basis pursuit

• Consider the following problem:

$$\min_{x} ||x||_1$$
, s.t. $Ax = b$.

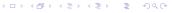
The augmented Lagrangian function can be written as

$$\mathcal{L}_{\rho}(x,y) = \|x\|_1 - y^{\mathrm{T}}(Ax - b) + \frac{\rho}{2}\|Ax - b\|_2^2.$$

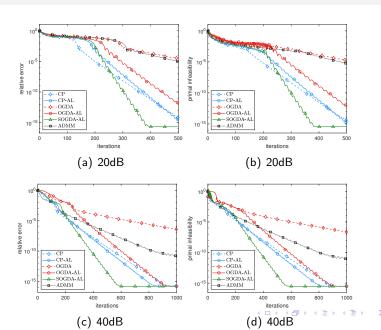
Let
$$f(x) = 0$$
, $h(x) = ||x||_1$, $\Psi(x, y) = -y^{\mathrm{T}}(Ax - b) + \frac{\rho}{2}||Ax - b||^2$ and $s(y) = 0$.

Relative error and primal infeasibility:

$$\mathsf{RelErr} = \frac{\|x - x^*\|_2}{\mathsf{max}(\|x^*\|_2, 1)}, \qquad \mathsf{Pinf} = \frac{\|Ax - b\|_2}{\|b\|_2}.$$



Basis pursuit



37 / 44

L1L1

• Consider the following problem:

$$\min_{x} \zeta \|x\|_{1} + \|Ax - b\|_{1}.$$

• Introduce r := b - Ax and the problem becomes

$$\min_{x,r} \zeta ||x||_1 + ||r||_1, \quad \text{s.t. } Ax - b + r = 0.$$

The augmented Lagrangian function is

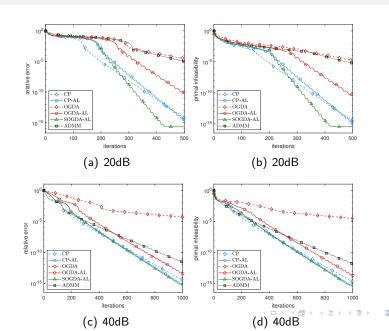
$$\mathcal{L}_{\rho}(x,r,y) = \zeta \|x\|_{1} + \|r\|_{1} - y^{\mathrm{T}}(Ax - b + r) + \frac{\rho}{2} \|Ax - b + r\|_{2}^{2}.$$

Let
$$f(x,r) = 0$$
, $h(x,r) = \zeta ||x||_1 + ||r||_1$,
 $\Psi(x,r,y) = -y^{\mathrm{T}}(Ax - b + r) + \frac{\rho}{2}||Ax - b + r||_2^2$ and $s(y) = 0$.

Relative error and primal infeasibility:

RelErr =
$$\frac{\|x - x^*\|_2}{\max(\|x^*\|_2, 1)}$$
, Pinf = $\frac{\|Ax - b + r\|_2}{\|b\|_2}$.

L1L1



39 / 44

Multi-block basis pursuit

Consider the problem:

$$\min_{x_1, x_2, \dots, x_N} \sum_{i=1}^N ||x_i||_1, \quad \text{s.t. } \sum_{i=1}^N A_i x_i = b.$$

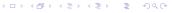
The augmented Lagrangian function is

$$\mathcal{L}_{\rho}(x_1, x_2, \cdots, x_N, y) = \sum_{i=1}^{N} \|x_i\|_1 - y^{\mathrm{T}} \left(\sum_{i=1}^{N} A_i x_i - b \right) + \frac{\rho}{2} \left\| \sum_{i=1}^{N} A_i x_i - b \right\|_2^2.$$

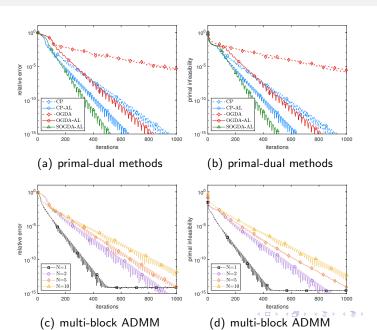
- The derived multi-block algorithm is equivalent to the one-block algorithm.
- For the multi-block ADMM, the subproblem $\min_{x_i} \mathcal{L}_p(x_1, \dots, x_N, y)$ has no explicit solution. We introduce $u_i = x_i$ to get an equivalent form:

$$\min_{\substack{x_1, x_2, \dots, x_N \\ u_1, u_2, \dots, u_N}} \sum_{i=1}^N ||x_i||_1, \quad \text{s.t. } \sum_{i=1}^N A_i u_i = b, \quad x_i = u_i, \ i = 1, \dots, N.$$

Then all the subproblems of multi-block ADMM have explicit solutions.



Multi-block basis pursuit



41 / 44

Non-convergent example for the multi-block ADMM

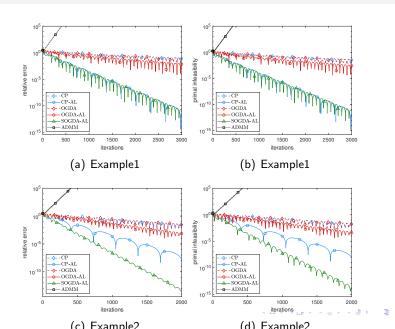
• Example 1:

$$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} x_1 + \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} x_2 + \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} x_3 = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

• Example 2:

min
$$\frac{1}{2}x_1^2$$
,
s.t. $\begin{pmatrix} 1\\1\\1 \end{pmatrix} x_1 + \begin{pmatrix} 1\\1\\1 \end{pmatrix} x_2 + \begin{pmatrix} 1\\1\\2 \end{pmatrix} x_3 + \begin{pmatrix} 1\\2\\2 \end{pmatrix} x_4 = \begin{pmatrix} 0\\0\\0 \end{pmatrix}$,

Non-convergent example for the multi-block ADMM



43 / 44

Many Thanks For Your Attention!

• 教材: 刘浩洋, 户将, 李勇锋, 文再文, 最优化: 建模、算法与理论; http://bicmr.pku.edu.cn/~wenzw/optbook.html

