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Introduction

Consider the convex composite optimization problem:

min ®(x) = f(x) + h(x),
) (P)
st. Ax —be K.

e f(x):R"+— R is a differentiable convex function whose gradient
V£(-) is L¢-Lipschitz continuous

e h(x):R"— R is a simple convex function whose proximal operator
can be efficiently evaluated:

1
prox,(x) := argmin{h(u) + §||x —ul|?}

@ AcR™" beR™ K CR™is either {0} or a proper cone
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Applications

@ Compressive sensing

e basis pursuit

o LASSO
@ Image processing

e TV denoising
e TVL1 denoising

o globally convex segmentation
@ Statistics and machine learning

o latent variable Gaussian graphical model selection
@ robust principal component analysis

@ support vector machine
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Outline

@ Motivation
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Saddle point formulation

@ Saddle point problem based on the Lagrangian function:

min U L(x,y) = f(x) + h(x) — yT(Ax — b), (SP-L)

where IC* is the dual cone of IC, i.e., £* = {x|(x,y) > 0,Vy € K}.
e Denote W(x,y) = f(x) — yT(Ax — b), s(y) = 1x+(y).
@ (SP-L) can be rewritten as

mXin max h(x) +WV(x,y) —s(y).
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PDHG and CP

o Let gk = VX\U(Xk,yk),g}’,‘ =V, W(xk yk) = —Axk + b.
@ One primal gradient-type step + one dual gradient-type step

e Primal-dual hybrid gradient (PDHG): " Gauss-Seidel iteration”

YA+ = prox,,, [yk i ag}’,‘“} ‘

@ The Chambolle-Pock method (CP): " Gauss-Seidel iteration”
with an extrapolation step on the dual variable

k+1

e

y**! = prox,, [yk +o <2gy"“ - gykﬂ :
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GDA and OGDA

e Gradient descent ascent (GDA): " Jacobian iteration”

k+1

X = Prox., [Xk - Tg)f:| 3

Y = prox,, [yk + Ug}ﬂ :

e Optimistic gradient descent ascent (OGDA): " Jacobian
iteration” with extrapolation steps on both primal and dual variables

XK1 = prox,, [X" -7 (2ng - gxk’l)} :

y ! = prox,, [yk +o <2gy" — gyk’l)} :
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Motivations

@ Primal-dual algorithms: PDHG, CP, OGDA ...
e Existing ergodic convergence results are almost established on the
duality gap of the Lagrangian function: for bounded X and ),

DualGap(Xn, yn) := max L(Xn,y) — min L(x,yy) ~ O(1/N),
yey xeX

where )_<N = Zszl Xk/N, )7/\/ = Zszl yk/N.
o If Y is not bounded and Axy — b ¢ K: DualGap(Xy, yn) = +o0
@ Dual ascent class algorithms: ALM, ADMM . ..
e need to solve subproblems

e multi-block ADMM may not necessarily converge

We aim to

@ design a class of easy-to-implement algorithms with good
convergence properties
@ give an error bound w.r.t constraint violation and function value gap

without the boundedness assumption of )
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© A Unified Algorithm Framework
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Assumptions

@ The optimal solution of (P) is attainable. There exists x* € R”"
such that Ax* — b € K and ®(x*) equals to the optimal value ®*.

@ Slater’s condition:

o There exists x € relint D such that Ax — b € int I, where
D = dom &, relint D denotes the relative interior of D and int
denotes the interior of /.

e When K is a polyhedral cone (including the case of K = {0}), the
condition can be relaxed to the existence of x € relint D such that
Ax—be K.

Slater’s condition guarantees (P) is equivalent to (SP-L).
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Augmented Lagrangian duality

@ Generalize the formulation to the augmented Lagrangian function:

Lemma

Suppose that KC is {0} or a proper cone. Given any penalty coefficient
p > 0, we define the augmented Lagrangian function as

L,(x,y) = f(x) + h(x) + g ’

Preo <Ax—b—y

)

)

2 2
Iy

2p

)

where K° = —K*. The strong duality holds for L,(x,y), that is,

minmax L,(x,y) = maxmin L,(x,y),
X y y X

where both sides are equivalent to (P).

(SP-AL)
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Proof: case of K = {0}

@ The augmented Lagrangian function degenerates into
_ T P 2
Lp(x,y) = F(x) +g(x) =y (Ax = b) + Z[|Ax — b||".
@ Consider the following equivalent problem:
. P 2
min £(x) + g(x) + 51 Ax — b|1%
s.t. Ax = b,

whose Lagrangian function is £,(x, y).

@ By Slater’s condition, the strong duality holds, that is,

minmax L,(x,y) = maxmin L,(x,y).
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Why augmented Lagrangian duality?

(SP-L): min max L(x,y) (SP-AL): minmax L,(x,y)
X yek* X y

@ Make the constraint y € K* optional. Removing the constraint
improves the flexibility of algorithm design since it may cause
difficulty in solving subproblems.

@ Make the framework more versatile. The framework based on
(SP-AL) can cover a wider range of algorithms, e.g. linearized ALM.

e Make the objective function have better convexity. £,(x,y) is
a strongly convex function along at least one direction of x, which
can bring the benefits of convergence.
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A unified primal-dual algorithm framework

Define
p >0,

0,
)= {lec*(y), p=0,

and

W(x,y) = f(XHgHP’“(Ax_b_%))r—%a p>0,
7 f(x) — yT(Ax — b), p=0.

We can rewrite both problem (SP-L) and (SP-AL) as

min I35 Ly(x,y) = h(x) + V(x,y) — s(y). (SP)

X
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A unified primal-dual algorithm framework

XK1 = prox.., [Xk -7 ((1 + a)gs — agxk‘l)]
y**! = prox,, [yk +o ((1 + B)gy — ﬁgyk‘l) (PD)

+o ((1 +B)g ™ - ﬁgy")}

° g = ViV(x*,y"), gy = V,W(x",y)
@ 7,0 > 0: primal and dual step sizes
e o €0,1], 8 > 0: gradient extrapolation coefficients

@ /. € [0,1]: the ratio of " Gauss-Seidel iteration” versus " Jacobian
iteration”
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A unified primal-dual algorithm framework

@ When p =0, gff“ = —Axk*tl — b, the scheme is an explicit update.
o When p >0, gft! = —(Ax*™ — b) + Pic(w*T1) where

k+1 . . ..
whktl = Axk+l _ p — % The y**1 update is an implicit scheme.

Lemma (Explicit form of dual update)

Let p > 0 and s(y) = 0, the dual update rule of (PD) can be written as

yk+1:w+ RIPIC(V—w),

K+

where w =
v +ou((L+B)gy — Bey™) — ol — p) (1 + B)(AXKH — b) + Bgy),
k=0c(l—p)(1+B)/p>0,and v = p(AxKtl —b).
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Consequences of the unified framework

o Well-known algorithms:

o PDHG: w=0,a=0,8=0p>0
o CP: p=0a=0,=1p>0
o GDA: u=1a=0,6=0p>0
o OGDA: p=1La=1=1p>0

o Linearized ALM: p=0,a=08=0p>0
o New algorithms: e.g. SOGDA: p=1,a=0,6=1,p>0

k+1 k

X0 = prox,, {x — Tg)ﬂ ,

y*t! = prox,, [yk +o <2gyk - gyk‘l)} :

Interpertation: Jacobian-type of CP based on AL
or OGDA with only dual variables extrapolated
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Outline

© Convergence Analysis
@ Ergodic convergence
@ Non-ergodic convergence
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Ergodic convergence: affine equality constrained problem

We first consider the case of K = {0}.
@ In this case, we define the weight ¢ as
c= Cf:fgff(r, o,p) = atle + max{|up| Vot [|All, /ot [|All},

where f,(x) := f(x) 4+ §||Ax — b||? and L¢, := L¢ + p||A||? is the
Lipschitz constant of Vf,(x).

@ Given any coefficient ¢, we define the matrix P, as

plm Omxn %/m
1-a)L _

O A T P
1—a—f+ B— 1-2

O‘2 Hlm THA 20’C/m
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Ergodic convergence: affine equality constrained problem

If the parameters 7,0, p,«, B and . are properly chosen so that P. > 0,
then for VN > 1 and Vv > 0, we have

T g

0 _ x 2 2
d(xn) — O(x*) +[|Axy — b < % (HXXH + 7) 7

where Xy = 4; STN_, x¥. Moreover, it holds that

0_ *2 *2
(Hx “IF, Iyl )
T g

4

N
_ 3 (X0 =x*| | Iyl
HAXN—bHsN< Vil

[®(xn) — (x| <
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Proof sketch

@ Denote z = [x; y], define A = diag(7 /s, olm), = = diag(/n, ptlm),
© =diag(al, Bln), F(z) = [VxV¥(x,y); =V, V(x,y)].
@ Define the discrete Lyapunov function:

1 2 Cik  _k—1y2
Aulz) = 2112 = 2l + Sl — 2

+(FE) = F(@ ),z = 2z + (= ) (VW) v - y),
@ Fix x = x™ and denote Z = [x*, y] for arbitrary y. Due to P. > 0, we obtain

(one-step descent): Ay(2) — Api1(2) > (X)) — d(x*) — (AT — b, y),
2 2
(upper and lower bound): 0 < A,(2) < sz -z
Am

k k—1
el ==

AL
@ Let y = v(Axv — b)/||AXn — b|| and 2 = [x™, §], combining the yields
O(xw) — (x7) + vl|Axn — bl| = ®(xn) — O(x7) — (Axv — b, )
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Step size conditions

@ SOGDA Set u=1,a=0,8=1. Forany p>0, P. = 0is
guaranteed if

2o ||A]| + max i,TLf <1
2p ?

When p = 0, SOGDA has no convergence guarantee, which is also
observed numerically.

@ PDHG Set 4t =0,aa=0,6=0. Forany p >0, P. =0is
guaranteed if
1
o <2, —=Litp|Al.
When p = 0, PDHG is potentially non-convergent. When p > 0, the

algorithm becomes the linearized ALM, which is proved to be
convergent.
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Step size conditions

@ CP Set y=0,a0a=0,8=1. Forany p >0, P. > 0 is guaranteed if
1
~ 2 Let (p+ o) AP

@ GDA Set pu=1,a=0,8=0. Forany p >0, P. = 0 is guaranteed
if

o

]_ _
o<? Z>litplalP L=
T p—

NI

20"

@ OGDA Setu=1,aa=1,6=1. Forany p>0, P. = 0is

guaranteed if
1
TLs, + /o1 A < 5

Remark: The above analysis is also feasible to the case of general cone
with p=0. We only need to set s(y) = Li-(y).
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Ergodic convergence: conic inequality constrained problem

Next, we only need to consider general problems with p > 0.
@ In this case, we define

. ag
c = C°p(r,0,p) := max {arLy,, || ;}eraX{oz, Bl } Al Vo

o Define v, = (u—B)2+(1+a)|u—B|+4(u—B),
Yw=1t(2—20, (1—a)?+(1+a)|u—pB|) where the function t(-,-) is

given by
—b)?
t(a b) — b+ (;a—l)) , a> ba
’ b, a<b.

@ Then we define the matrix P. for any given ¢ > 0 as

2T 2

o <lf2c - (1—06)Lf> I, — ;WTWATA ’YTWAT
B Iw A <172C . ’Yw'f"Yy) /
4 20 4p m
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Ergodic convergence: conic inequality constrained problem

If the parameters T, 0, p, o, 5 and p are properly chosen such that
P! =0 and P. + cN=! = 0. Then for iy = & Sp_1 x*, it holds that

o) - o6 <0 (). P s -0 ().

where O (-) hides constants that depend on ||x* — XOH ,|ly*|| and the
parameters.

The proof is similar to the case of affine equality constrained problem.
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Step size conditions

@ SOGDA Set =1, =0,8=1. For any p > 0, P, = 0 can be guaranteed if

<3 P
Vo [|A] + <3 3

1
= >l +p| AP ——.
T sp—0

@ PDHG Set u=0,aa=0,8=0. For any p > 0, P. = 0 can be guaranteed if
7<3e rzlolAl
@ CP Set t=0,a0=0,8=1. Forany p >0, P. = 0 can be guaranteed if
% > Li+ (p+0) A%

@ GDA Set u=1,a=0,8=0. For any p >0, P, = 0 can be guaranteed if

2 p— 30 30
— 40’

o<, 7>Lf+p||A||

@ OGDA Set u=1,aa=1,8=1. Forany p >0, P. = 0 can be guaranteed if
max {Tpr, } + Vo ||A| < =
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Some observations

The penalty term brings the benefits of convergence.

e For example, PDHG, OGDA and SOGDA based on (SP-L) have no
convergence guarantee generally, while these methods based on
(SP-AL) are guaranteed to converge.

@ Possible interpretation: the penalty term makes the convex objective
function into a strongly convex function along at least one direction.
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Non-ergodic convergence

@ We only consider the affine equality constrained problem:

min ®(x) = f(x) + h(x), s.t.Ax =b.

X

e Denote z = [x; y] € R"™™ and define a set-valued operator T as
T:z=[xy]" —[0d(x)—ATy;Ax —b]",

e Optimality condition: Let Z* be the set of all KKT pairs of (P),
then for any z* € Z*, we have 0 € T(z*).

Definition (Local error bound condition)

The operator T satisfies (LEB) if for every z* € Z*, there exists
€ >0, M > 0 such that

dist (z, 2*) < Mdist (T(z),0), Vz s.t.dist(z,z%) <e.
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Some examples of (LEB)

Example (affinely constrained strongly convex problem)

min f(x), s.t. Ax=b. (1)

X

(LEB) is satisfied if f is Lg-smooth and ps-strongly convex.

Example (two-block affinely constrained convex problem)

min f(x1)+h(x2), s.t.Aixi+Axxa = b.

x1,%
(LEB) holds if the following assumptions are satisfied
@ A;p has full row rank, As has full column rank.
o f(x1) = g(Lx1) + (q, x1) with g being smooth and strongly convex.

@ h is either a convex piecewise linear-quadratic function, or a
{1 q-norm regularizer with q € [1,2], or a sparse-group LASSO
regularizer.




Non-ergodic convergence

We can obtain the linear convergence of the unified algorithm framework:

Theorem

Suppose that (LEB) condition holds. If the parameters are chosen so

that Pc > 0, then there dx, R > 0 and an integer K, s.t. for all k > K,

it holds that

dist (xk , X*) < Re—H(k=K),

dist <8¢(xk) - ATyk,0> < Re~Hk=K),
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Non-ergodic convergence: strongly convex case

For the affinely constrained strongly convex problem, the optimal solution
x* is unique, and

ZF={x"} x Y, y*:{y:ATy:Vf(x*)}.

Theorem

. . __ Cr . Lf _ Lf
Let the step sizes be suitably chosen as T = [:0=Cs AL p==c, AR

where the constants c;, c,, ¢, are chosen to ensure Pc = 0. Then there
exists constant c,, such that for all k > 0,

k_X*

Hx < O (exp(—ci (rr + hﬁ‘)k)) ,

where O (-) hides constants that depend on x°,y° only.

SOGDA: p=0 = 4”LA’“”2,T = 8%{, LALM: p=0 = 2HLAfH2’T = %
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A byproduct: proximal OGDA for nonsmooth problems

Since the existing works of OGDA mainly focus on differentiable
problems, the proximal OGDA method covered in (PD) is a direct
extension of OGDA on the non-differentiable saddle point problems.

Theorem

The sequence {z" +f° is generated by proximal OGDA with the step

sizes satisfying T < 2L ,0 < Lly and
(2 —2L4) (L —2Lyy) > 4max{Lyy, L,x}?. Then the sequence {z"}}°
converges to a saddle pomt of problem (SP). Furthermore, let

(Xn, Yn) = ( Zk XK, Zk 1Yy ) then for any R, R, > 0, it holds

Ly = min L < b (e
max XN, = min X, <—|—+—].
yEYNB(yo,Ry) e XEXNB(x0,Rx) YN N T o
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@ Numerical Results

33/44



Linear programming

@ Consider the following linear programming problem:

min rix, st. Ax<b, Cx=d, | <x<u.

X

@ When p; = pp = 0, the Lagrangian function is
E(X,y,Z) = rTX - )/T(CX - d) - ZT(AX — b)

Let f(x) = 0, h(x) = 1 ,(x), V(x,y,2) = L(x,y,z) and
s(y,2) = T 0)(2)-

@ When p1, po > 0, the augmented Lagrangian function is
Lp(x,y,2) = 'x = y"(Cx — d) + pr| Cx — d|?

p2 A
2| |ax-n- 2] |-

p2] 4 2[)2

Let £(x) = 0, h(x) = Lyuy(x), W(x,y. 2) = Ly(x,y, 2) and

s(y,z) = 0.

34/44



Linear programming
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Basis pursuit

@ Consider the following problem:

min ||x|l1, s.t. Ax=b.
X

@ The augmented Lagrangian function can be written as

p
Lo(x,y) = lIxlls = y" (Ax = b) + S| Ax — b]3.

Let f(x)
and s(y)

@ Relative error and primal infeasibility:

RelErr — X X2 e 14— blla,
max([|x*|[2,1)

16112

0, h(x) = [Ix]l1, W(x,y) = —y"(Ax — b) + §||Ax —
0.

b|*
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Basis pursuit
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L1L1

@ Consider the following problem:
min C[lx]l + [ Ax — bl
@ Introduce r := b — Ax and the problem becomes
r)rlirn Clixlle + [Irlli,  st. Ax—b+r=0.
@ The augmented Lagrangian function is
Lo(xr,y) = Clixl + lirlls =y (Ax = b+ ) + ZllAx = b+ r]3.

Let f(x,r) =0, h(x,r) =lx|l1 + ||z,
V(x,r,y) =y (Ax — b+ r)+ 2llAx — b+ rl|3 and s(y) = 0.
@ Relative error and primal infeasibility:

be—xl g MAx—btrls

RelErr = 1=~~~ 12
max(|[x*]|2,1) 16|2
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L1L1

relative error
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Multi-block basis pursuit

@ Consider the problem:

N N
n Z”XiHlv s.t. ZA,’X,' = b.
XN
i=1 i=1

@ The augmented Lagrangian function is

N N
LP(X17X27"'7XN7y):ZHX’-||1_.yT (ZA'-X"_b> g ZAX'
i=1 i=1

@ The derived multi-block algorithm is equivalent to the one-block algorithm.

2

2

@ For the multi-block ADMM, the subproblem miny; £,(x1,- -, xn,y) has no
explicit solution. We introduce u; = x; to get an equivalent form:

min ZHX,||1, s.t. ZAu,fb xi=u, i=1--- N.
X13X25° " XN

up,u,ce Uy =1

@ Then all the subproblems of multi-block ADMM have explicit solutions.
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Multi-block basis pursuit
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Non-convergent example for the multi-block ADMM

@ Example 1:

()= () (2)

@ Example 2:

1
; 2
min —x{,
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Non-convergent example for the multi-block ADMM

relative error

10710

107°

relative error
3

10710

10
%
Qo 10°
=
T
£
—e—CP-AL & g0 f|—e—CP-AL
- - -OGDA - - -OGDA
—o—OGDA-AL —e—OGDA-AL
—A—SOGDA-AL —A—SOGDA-AL
o ADMM 15 [ LeADMM
500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
iterations iterations
(a) Examplel (b) Examplel
f 10°
f( 0!
R 10
Sguy >
AR 3
8
£ 10°
T
% -CP £ -0 -CP
—e—CP-AL s ol|—e—craL
- - -OGDA 10771 1- o -0GDA
—e—OGDA-AL —e—OGDA-AL
—A—SOGDA-AL —A—SOGDA-AL
& ADMM &~ ADMM
10718
500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations

(c) Exampble?

(d) Examnple?

43 /44



Many Thanks For Your Attention!

o M. XEF, F¥ FHEHE, LAHL, RGN BE. HKEHE
% http://bicmr.pku.edu.cn/~wenzw/optbook.html

f il
i fl|  rmm—
H 1
£ l
j '
§ [
g it
; 1
» 5
- #
Bt AL : BB B e
Al i I
AT i N N
= L HEAR
naE A8
FaE XWX
wE
ATHAERE
g ¥ HTRAZRR

44/44


http://bicmr.pku.edu.cn/~wenzw/optbook.html

	Motivation
	A Unified Algorithm Framework
	Convergence Analysis
	Ergodic convergence
	Non-ergodic convergence

	Numerical Results

