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Abstract. In this paper, we consider a nonlinear least squares model for the phase retrieval problem. Since the
Hessian matrix may not be positive definite and the Gauss-Newton (GN) matrix is singular at any optimal solution,
we propose a modified Levenberg-Marquardt (LM) method, where the Hessian is substituted by a summation of
the GN matrix and a regularization term. Similar to the well-known Wirtinger flow (WF) algorithm under certain
assumptions, we start from an initial point provably close to the set of the global optimal solutions. Global linear
convergence and local quadratic convergence to the global solution set are proved by estimating the smallest nonzero
eigenvalues of the GN matrix, establishing local error bound properties and constructing a modified regularization
condition. The computational cost becomes tractable if a preconditioned conjugate gradient (PCG) method is applied
to solve the LM equation inexactly. Specifically, the pre-conditioner is constructed from the expectation of the
LM coefficient matrix by assuming the independence between the measurements and iteration point. Preliminary
numerical experiments show that our algorithm is robust and it is often faster than the WF method on both random
examples and natural image recovery.
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1. Introduction. One popular formulation of the phase retrieval problem is solving a
system of quadratic equations in the form

yr = |〈ar, z〉|2 , r = 1, 2, ...,m,(1.1)

where z ∈ Cn is the decision variable, ar ∈ Cn are known sampling vectors, 〈ar, z〉 is the
inner product between ar and z in Cn, |a| is the magnitude of a ∈ C, and yr ∈ R are the
observed measurements. This problem arises from many areas of science and engineering
such as X-ray crystallography [25, 35], microscopy [34], astronomy [19], diffraction and
array imaging [8, 10], and optics [43]. It also appears in a few other important fields, including
acoustics [2, 3], blind channel estimation in wireless communications [1, 20], interferometry
[13], quantum mechanics [11, 39] and quantum information [26].

Many algorithms have been developed to solve (1.1). One of the most widely used
method is the error reduction algorithm derived by Gerchberg and Saxton [24] and Fienup [20,
21]. This approach has been extended as the hybrid input-output (HIO) algorithm proposed
by Fienup [21]. Bauschke et. al. established a few connections between the ER and HIO
algorithms and classical convex optimization methods in [4]. Based on these connections,
they proposed the hybrid projection-refection (HPR) method in [5]. Luke further developed
in [31] the relaxed averaged alternating reflection (RAAR) method which can often be more
efficient and reliable than the HIO and HPR methods. The quadratic system (1.1) can be
formulated as the following nonlinear least squares (NLS) problem:

min
z∈Cn

f(z) =
1

2m

m∑
r=1

(
|a∗rz|2 − yr

)2
.(1.2)
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Wen et. al. introduced an alternating direction method of multipliers (ADMM) to solve (1.2)
in [44] and showed that the ADMM is usually comparable to many existing methods for both
classical and ptychographic phase retrieval problems. In [40], Yoav Shechtman et. al. pro-
posed a damped Gauss-Newton scheme. Other approaches include the difference map (DF)
algorithm developed by Elser [15] and the so-called saddle-point optimization algorithms de-
veloped by Machesini [32]. Netrapalli et. al designed alternating minimization methods in
[37]. Although the methods mentioned above often perform well numerically, their conver-
gence to the global optimal solutions is not clear, yet.

Recently, there are a few important progress on achieving the global optimality for solv-
ing nonconvex optimization problems. Minimizing a composite function with nonconvex
sparse regularization term is studied in [46, 30, 17]. Sun and Luo proved in [42] that a first-
order method converges to global optimality on a matrix completion problem. Candes et. al.
proposed a so-called Wirtinger flow (WF) algorithm for solving the model (1.2) in [9]. The
WF algorithm is consisted of two parts. An initial point z0 is obtained from the leading eigen-
vector of a certain matrix, and the point is refined by a gradient descent scheme in the sense
of Wirtinger calculus iteratively. When there are no noise involved in the measurements of
(1.1), it is proved in [9] that the initialization step yields an initial point z0 very close to the set
of global optimal solutions with a high probability. Then it is showed that the WF algorithm
converges to the global minimizer in a global linear rate. Since the computational cost of the
each step of the WF algorithm is cheap, the numerical results seem to be practically useful.

In this paper, we propose a modified LM approach for solving the NLS model (1.2).
In fact, numerical methods for the general NLS problems min ‖r(z)‖2, where r(z) are the
residual functions, have been well studied for decades. The Gauss-Newton (GN) method
calculates a search direction determined by a so-called GN matrix through the first-order
information. Global convergence to a stationary point can be guaranteed after combining
certain line search techniques. If the NLS has a zero residual at the global optimal solutions,
the GN matrix equals to the Hessian at these points, which ensures the quadratic local con-
vergence rate of the GN method. However, when the Hessian is singular at the solutions, the
GN method may fail. Another widely used approach is the LM method [29, 33] by adding a
regularization term to the GN matrix. The regularization parameter is usually updated adap-
tively in a fashion similar to the trust-region scheme [22]. The regularization term makes the
LM method to conquer the singularity issue. Yamashita and Fukushima established quadratic
convergence for singular problems satisfying certain error bound conditions when the regular-
ization parameter is chosen to be ||r(z)||2 in [45]. Fan and Yuan [18] provided a more general
analysis and extended the applicable regularization parameters to be a family µk = ||r(zk)||δ
with δ ∈ [1, 2]. The readers are referred to [14, 28, 23, 36, 12, 7] and the reference therein,
for other algorithms for NLS, including the structured quasi-Newton method.

Our main contribution is a practical linearly convergent LM method with a provable
second-order local convergence rate. Our approach is divided into two stages. The first stage
is an initialization procedure exactly the same as the WF method in [9]. The second stage
is to update the iterate by an LM method where the regularization parameter is based on
the residual norm, i.e., the objective function value f(z) in (1.2). Since the Hessian is in-
definite and calculating a positive definite correction to the Hessian may be expensive, it is
reasonable to use the LM method rather than the modified Newton method. By estimating
the smallest nonzero eigenvalues of the GN matrix, and establishing local error bound prop-
erties and a modified regularization condition, we are able to prove that our approach can
achieve a globally linear convergence to the global solution set and attain a locally quadratic
convergence rate with high probability. In particular, the region of quadratic convergence is
estimated explicitly. In order to reduce the computational cost, the LM equation is solved

2



inexactly by the PCG method. The globally linear convergence to the global solution set is
still ensured if the accuracy is proportional to the residual. We further construct a simple
practical pre-conditioner using the expectation of the LM coefficient matrix by assuming that
the measurements and iteration point are independent. Although the LM coefficient matrix
tends to be singular close to the optimal solution, the PCG method still runs smoothly since
all iterations are performed in an invariant subspace. Because the condition number of the
preconditioned coefficient matrix in this subspace is small, the number of iterations of the
PCG method can be controlled reasonably small. Consequently, the total computational cost
becomes at least competitive to the WF method. Our numerical experiments illustrate that
the inexact LM method indeed outperforms the WF method on both random examples and
natural image recovery.

We notice that the authors of [16] show local quadratic convergence rate of the modified
LM method under certain deterministic local error bound conditions. However, it is not clear
how to verify if the original NLS problem (1.2) satisfies these local error bound conditions,
and how to estimate an explicit neighborhood around the solution set where these local error
bound holds. The difference is that we can prove the existence of certain local error bound
condition in a neighborhood close to the solution set with high probability. Although this
theoretically neighborhood may be quite small when the dimension n is large, our analysis is
still meaningful for a second-type algorithm.

In the rest of this paper, we first give a brief description of the WF approach and its
convergence properties in Section 2. Our proposed LM approach for the Gaussian model
is introduced in Section 3. The theoretical analysis on the exact LM method is presented
in Section 4. In Section 5, we establish the convergence of the inexact LM framework and
construct a preconditioner for computing the LM direction. The algorithm is extended to the
coded diffraction model and is analyzed in Section 6. Numerical experiments are reported in
Section 7 to demonstrate the effectiveness and efficiency of our LM method.

2. Preliminary.

2.1. Problem Statement. We first introduce the Gaussian model for the choices of the
sampling vectors.

ASSUMPTION 2.1. A problem is called the Gaussian model if the sample vectors ar ∈
Cn ∼ N (0, I/2) + iN (0, I/2), where N (µ,Σ) denotes a Gaussian distribution with mean
µ and covariance Σ. It holds ‖ar‖ ≤

√
6n for r = 1, 2, ...,m. There is no noise in the

observation measurements. Namely, the global minimum of (1.2) is zero.
Similar to the analysis in [9], the event ‖ar‖ ≤

√
6n holds with probability no less than

1 − me−1.5n in Assumption 2.1. During the theoretical analysis in this paper, we always
make this assumption. Hence, −me−1.5n will always be a term of the probabilities in the
main theorems.

Since the decision variable z of (1.2) is complex, we use the Wirtinger derivatives [38]
to calculate the derivatives of the objective function. For any z ∈ Cn, the complex conjugate
of z is written as z̄. For ease of notation, we define two augmented vectors in bold face as

(2.1) z =

[
z
z̄

]
and z̃ =

[
z
−z̄

]
.

Then the objective function of (1.2) can be viewed as a function with respect to the variable
z, i.e.,

f(z) =
1

2m

m∑
r=1

(z∗(ara
∗
r)z̄ − yr)

2
.
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It follows from the calculation rules of the Wirtinger derivatives that the gradient is

g(z) := ∇f(z) =
1

m

m∑
r=1

(
|a∗rz|2 − yr

) [ (ara
∗
r)z

(āra
>
r )z̄

]
.(2.2)

For convenience, we denote ∇f(z) := 1
m

m∑
r=1

(
|a∗rz|2 − yr

)
(ara

∗
r)z.

2.2. The WF Algorithm. We briefly review the WF algorithm in [9] in this subsection.
The initial point is constructed from the eigenvector corresponding to the largest eigenvalue

of a matrix Y = 1
m

m∑
r=1

yrara
∗
r . The detailed procedure is outlined in Algorithm 1. It is

shown in [9] that the initialization procedure can generate a good approximation to the set of
optimal solutions. In fact, let x ∈ Cn be an optimal solution to (1.2) and assume that x is
independent of ar. The expectation of Y is EY = xx∗ + ‖x‖2I , whose leading eigenvector
is parallel to x. When m is sufficiently large, Y is close to its expectation so that the angle
between x and the leading eigenvector of Y is small, and n

∑
r yr∑

r ‖ar‖2
is close to ‖x‖2.

Algorithm 1: Initialization in the WF method

1 Input measurements {ar} and observations {yr} (r = 1, 2, . . . ,m).

2 Calculate z0 to be the leading eigenvector of Y = 1
m

m∑
r=1

yrara
∗
r .

3 Normalize z0 such that ‖z0‖2 = n

∑
r yr∑

r ‖ar‖2
.

Once an initial point z0 is obtained, the WF method executes gradient descent steps via
Wirtinger derivative using a restricted step size µk

||z0||2 :

zk+1 = zk −
µk
||z0||2

∇f(zk).(2.3)

The update of the conjugates {z̄k} is omitted since it is equivalent to the calculation of {zk}.
Let x ∈ Cn be an optimal solution to (1.2). For each z ∈ Cn, the distance between x

and z is measured as

dist(z, x) = min
φ∈[0,2π]

‖z − eiφx‖ = ‖z‖2 + ‖x‖2 − 2|z∗x|.

The next theorem shows the property of the initialization Algorithm 1 and the global linear
convergence of the WF algorithm (2.3). When the number of measurements is sufficiently
large, the spectral initialization can produce a good initial point. Consequently, by initiating
from this point, a linear convergence can be achieved with high probability.

THEOREM 2.2. (Theorem 3.3 of [9]) Suppose that Assumption 2.1 holds. Let x ∈ Cn
be any solution of (1.2), m ≥ c0n log n, where c0 is a sufficiently large constant. Then the
initial estimate z0 normalized to have a squared Euclidean norm equal to m−1

∑
r yr, obeys

dist(z0, x) ≤ 1

8
‖x‖(2.4)

with probability at least 1 − 10e−γn − 8/n2 (γ is a fixed positive constant). Let {zk} be
a sequence generated by (2.3) starting from any initial solution z0 obeying (2.4) with µk =
µ ≤ c1/n for all k and some fixed constant c1. Then there is an event of probability at least
1− 13e−γn −me−1.5m − 8/n2, such that on this event, we have

dist(zk, x) ≤ 1

8

(
1− µ

4

)k/2
||x||.(2.5)
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3. A Modified LM Method. The WF algorithm is essentially a gradient descent method
with a restricted step size. Since the model (1.2) is a NLS problem, it is natural to consider
the LM method for a faster local convergence rate than the WF method. Using the calculation
rules of the Wirtinger derivatives, we obtain the Jacobian and GN matrix of f(z):

J(z) :=
1√
m

[
|a∗1z|a1, |a∗2z|a2, · · · , |a∗mz|am
|a∗1z|ā1, |a∗2z|ā2, · · · , |a∗mz|ām

]∗
,(3.1)

Ψ(z) := J(z)∗J(z) =
1

m

m∑
r=1

[
|a∗rz|2ara∗r (a∗rz)

2ara
>
r

( ¯a∗rz)
2āra

∗
r |a∗rz|2āra>r

]
.(3.2)

The LM direction sk is calculated by solving the following linear system

Ψµk
zk
sk = −g(zk),(3.3)

where µk ≥ 0 and Ψµ
z = Ψ(z) + µI . Then the iteration scheme of the LM algorithm is

(3.4) zk+1 = zk + sk.

The role of the parameter µk is important. It can be updated similar as the strategies in
the classic trust-region type algorithms. For the sake of theoretical analysis, we propose the
following updating rules for the Gaussian model:

µk =

{
70000n

√
nf(zk), if f(zk) ≥ 1

900n‖zk‖
2;√

f(zk), otherwise.
(3.5)

Roughly speaking, when the residual is large and the iteration is far away from the opti-
mal solution set, the larger parameter µk = 70000n

√
nf(zk) can guarantee a global linear

convergence. As long as the residual becomes small enough, the choice of µk =
√
f(zk)

adapted from [45, 18] ensures a fast local convergence rate.
To further improve the efficiency of the LM algorithm in practice, the equation (3.3) can

be solved inexactly after reaching certain criterion, such as

(3.6) ‖Ψµk
zk
sk + g(zk)‖ ≤ ηk‖g(zk)‖

for some constant ηk ≥ 0. With a suitably chosen parameter ηk, a global linear convergence
rate of the LM method can be guaranteed while a better numerical performance than the exact
LM method can be achieved.

The framework of the exact and inexact LM method are unified in Algorithm 2.

Algorithm 2: An Modified LM method for Phase Retrieval

1 Input: Measurements {ar}, observations {yr}. Set ε ≥ 0.
2 Construct an initial guess z0 using Algorithm 1. Set k := 0.
3 while ||g(zk)|| ≥ ε do
4 Compute sk by solving (3.3) with µk specified in (3.5) until (3.6) is satisfied.
5 Set zk+1 by (3.4) and k := k + 1.

6 Output: zk.

Similar to the WF method, the calculation involving the conjugates of {zk} is not nec-
essary. As we will describe later in Section 5.2, the LM equation (3.3) can be solved by
the PCG method which only consists of a series of vector summations and matrix-vector
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multiplications. It allows us to calculate sk without considering its conjugate. Therefore,
the computational cost and storage are reduced. Nevertheless, for convenience of theoretical
analysis, we still deal with matrices in C2n×2n and treat variables in C2n.

We should mention that the GN and Newton methods are not used because of singularity
issues. Note that the NLS (1.2) admits a zero residual at an optimal solution under Assump-
tion 2.1. The GN matrix Ψ(z) equals to the Hessian at this solution and they are mostly
singular. Consequently, Newton and GN methods cannot be employed directly. The mod-
ified Newton method is not practical either because the Hessian is indefinite and it is often
intractable to calculate a suitable regularization parameter. Our modified LM method whose
parameter µk tending to zero conquers the singularity issue and ensures a local quadratic
convergence.

4. Analysis of the Exact LM Method. In this section, we analyze the convergence of
our LM algorithm with ηk = 0 in (3.6). The main result consists of two parts. When f(zk) ≥

1
900n‖zk‖

2 holds, our modified LM algorithm can achieve a globally linear convergence with
high probability. Otherwise, it implies dist(zk, x) ≤ 1

14
√
n
||x|| and guarantees a quadratic

convergence rate with high probability.
Our main result on Gaussian model is stated as follows.
THEOREM 4.1. Suppose that Assumption 2.1 holds. Let x ∈ Cn be any solution of

(1.2) and m ≥ c0n log n, where c0 is a sufficiently large constant. Let {zk} be a sequence
generated by Algorithm 2 where the LM equation exactly solved. Then, starting from any
initial solution z0 satisfying dist(z0, x) ≤ 1

8‖x‖, there is an event of probability at least
1− 15e−γn − 8/n2 −me−1.5n (γ is a fixed positive constant), such that on this event,

dist(zk+1, x) < c1dist(zk, x), for all k = 0, 1, ...(4.1)

where

c1 :=


(

1− ||x||4µk

)
, if f(zk) ≥ 1

900n‖zk‖
2;

4.28+5.56
√
n

9.89
√
n

, otherwise.
(4.2)

Furthermore, there exists a sufficiently large integer l satisfying f(zl) <
1

900n‖zl‖
2. Conse-

quently, it holds for all k ≥ l that

dist(zk+1, x) < c2dist(zk, x)2,(4.3)

where

c2 :=
4.28 + 5.56

√
n

‖x‖
.(4.4)

The lower bound of the probability of convergence in Theorem 4.1 is of the same order
as that of Theorem 2.2 although the constant γ is different. When n is sufficiently large,
e−γn and me−1.5n becomes negligible compared to the term 1/n2. Then the probabilities in
Theorems 2.2 and 4.1 tend to be equal. Since the method is monotone, and according to the
selection of the parameter µk, the coefficient c1 is uniformly bounded above by 1 − ||x||4µ0

=

1− ||x||
2.8×105n

√
nf(z0)

and tends to 4.28+5.56
√
n

9.89
√
n

, which is a constant less than 1. In this sense,

our linear convergence rate is no worse than the WF method.
One advantage of our modified LM method is its locally quadratic convergence property.

It cannot be derived directly from the analysis for the deterministic problems in [18] from two
main perspectives: i) we admit a more relaxed region where the local error bound properties
hold; ii) the neighborhood of provable quadratic convergence can be estimated specifically.

6



4.1. Lemmas for the Proof. Let X∗ ⊂ Cn be the set of optimal solutions of (1.2) and
the letter x ∈ Cn be reserved for a solution of (1.2). We first prove Theorem 4.1 in the case
‖x‖ = 1. In the end, we complete the proof by showing that the case ‖x‖ 6= 1 can be reduced
to the case ‖x‖ = 1.

When z is independent to {ar}, it is easily verified that EΨ(z) = Φ(z), where

(4.5) Φ(z) =

[
zz∗ + z∗zI 2zz>

2z̄z∗ z̄z> + z>z̄I

]
.

Although the LM iterates {zk} are not independent to the measurements {ar}, the relation-
ship between Ψ(z) and Φ(z) still plays an important role in our theoretical analysis. For
convenience of notation, we also use Φµz = Φ(z) + µI hereafter.

The first lemma describes the concentration of the GN matrix at a solution x.
LEMMA 4.2. For any z ∈ Cn and δ > 0, there exists a sufficiently large number

c = c(δ). If m > cn log n, then

‖Ψ(z)− Φ(z)‖ ≤ δ‖z‖2

holds with probability at least 1− 10e−γn − 8/n2.
Lemma 4.2 can be verified in the same manner of Lemma 4.7 in [9]. The next lemma is

on the sample covariance matrix which can be proved in a similar fashion.
LEMMA 4.3. Assume ‖Ψ(x)− Φ(x)‖ ≤ δ, then∥∥∥∥∥In − 1

m

m∑
r=1

ara
∗
r

∥∥∥∥∥ ≤ δ
with probability no less than 1− 2e−γm. On this event, it holds

(4.6) (1− δ)‖u‖2 ≤ 1

m

m∑
r=1

|a∗ru|2 ≤ (1 + δ)‖u‖2, ∀u ∈ Cn.

The next lemma reveals the distribution of the eigenvalues of Ψ(x).
LEMMA 4.4. Suppose that ‖x‖ = 1. Then Φ(x) has one eigenvalue of 4, one eigenvalue

of 0, and all other eigenvalues are 1. If ‖Ψ(x) − Φ(x)‖ ≤ δ, then the largest eigenvalue of
Ψ(x) is less than 4 + δ.

The above lemma is straightforward and hence its proof is omitted. Our proof also uses
the following lemma from [6].

LEMMA 4.5. Suppose X1, X2, ..., Xm are i.i.d. real-valued random variables obeying
Xr ≤ b for some nonrandom b > 0, EXr = 0, and EX2

r = v2. Set σ2 = mmax(b2, v2),
then

P(X1 + ...+Xm ≥ y) ≤ exp

(
− y2

2σ2

)
.

For any z ∈ Cn, we define xz to be the vector in X∗ nearest to z, i.e.,

xz = arg min
x∈X∗

‖z − x‖.

Then, we denote hz = z−xz . We now describe a few essential characteristics of Ψ(z), f(z),
and g(z) near the global solution. The so-called “local error bound property” is an instinctive
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property of the objective function. Since its proof is different from that of [9], the detailed
analysis is included. The other two properties highly depend on our modified LM method.
These three properties are the foundation of our analysis. We emphasize that the bold face
letters z,u,v,h are the augmented vectors defined as (2.1) for z, u, v, h, respectively.

LEMMA 4.6. Suppose that Assumption 2.1 holds, m ≥ cn log n where c is sufficiently
large, and ‖Ψ(x) − Φ(x)‖ ≤ δ holds with δ = 0.01. Let µ be determined by (3.5). Then,
with probability at least 1− e−3γn, we have the following properties.

1. Estimate of the smallest nonzero eigenvalues:

v∗Ψ(u)v ≥ ‖u‖2‖v‖2(4.7)

holds for all u, v ∈ Cn, such that ‖u‖ = ‖v‖ = 1 and Im(u∗v) = 0;
2. Local error bound property:

1

4
dist(z, x)2 ≤ f(z) ≤ 8.04dist(z, x)2 + 6.06ndist(z, x)4,(4.8)

holds for any z satisfying dist(z, x) ≤ 1
8 ;

3. Regularization condition:

µ(z)h∗ (Ψµ
z )
−1
g(z) ≥ 1

16
‖h‖2 +

1

66000n‖h‖
‖g(z)‖2(4.9)

holds for any z = x+ h, ‖h‖ ≤ 1
8 , and f(z) ≥ ‖z‖

2

900n .
Proof. 1) To prove (4.7), we first prove that for any u, v ∈ Cn,

(4.10) v∗Ψ(u)v ≥ v∗Φ(u)v − ‖u‖‖v‖,

by employing Lemma 4.5. Then, by the condition Im(u∗v) = 0, we have v∗Φ(u)v ≥
2‖u‖‖v‖, which completes the proof.

We first consider the case when u and v are fixed. Define Xr(u, v) = 2|a∗ru|2|a∗rv|2 +
2Re((a∗ru)2(a>r v̄)2), Er(u, v) = EXr(u, v), then

v∗Ψ(u)v =
1

m

m∑
r=1

Xr(u, v), v∗Φ(u)v =
1

m

m∑
r=1

Er(u, v).

Let Yr(u, v) = Er(u, v)−Xr(u, v), we obtain

v∗Φ(u)v − v∗Ψ(u)v =
1

m

m∑
r=1

Yr(u, v).

Since Re((a∗ru)2(a>r v̄)2) ≤ |a∗ru|2|a∗rv|2, we have Xr(u, v) ≥ 0. In addition, considering
‖u‖ = ‖v‖ = 1, it is easy to know Er(u, v) = 2|u∗v|2 + 2 + 4Re(v∗u)2 ≤ 8. Hence, we
know Yr(u, v) ≤ 8. Meanwhile, it follows from the inequalities E((E(X)−X)2) ≤ E(X2)
and |Xr| ≤ 4|a∗ru|2|a∗rv|2 that

EYr(u, v)2 ≤ EXr(u, v)2 ≤ 16E|a∗ru|4|a∗rv|4 ≤ 16
√

E|a∗ru|8E|a∗rv|8 = 384.

By choosing σ2 = 384m and y = m/2, Lemma 4.5 implies

P(v∗Φ(u)v − v∗Ψ(u)v ≥ 0.5) ≤ e− m
1536 .
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Choosing γ to be a sufficiently small positive number, such as 1
3072 , we obtain

P(v∗Ψ(u)v − v∗Φ(u)v ≥ −0.5) ≥ 1− e−2γm.

We have verified (4.10) when u and v are a fixed pair of vectors. We next extend the
result to any pair of u and v. To achieve this goal, we prove that 1

mYr will not change too
much when the variation of u and v are small, and use a net on Sn × Sn to complete the
extension. We next define

g(u, v) =
1

m
Yr(u, v) = v∗Φ(u)v − v∗Ψ(u)v.

Then for any u, v, v′ ∈ Cn, we have

|g(u, v)− g(u, v′)|

≤
∣∣∣∣ 1

m
Er(u, v)− 1

m
Er(u, v

′)

∣∣∣∣+

∣∣∣∣ 1

m
Xr(u, v)− 1

m
Xr(u, v

′)

∣∣∣∣
≤ 2

∣∣|u∗v|2 − |u∗v′|2∣∣+ 4|Re
(
(v∗u)2 − (v′∗u)2

)
|

+
1

m

m∑
r=1

2|a∗ru|2
∣∣|a∗rv|2 − |a∗rv′|2∣∣+ 2

∣∣Re ((a>r ū)2
(
(a∗rv)2 − (a∗rv

′)2
))∣∣ .(4.11)

For the first two parts of (4.11), we have∣∣|u∗v|2 − |u∗v′|2∣∣ = |(v − v′)∗uu∗v + v′∗uu ∗ (v − v′)| ≤ 2‖v − v′‖,(4.12)

|Re
(
(v∗u)2 − (v′∗u)2

)
| ≤ 2‖v − v′‖.(4.13)

For the third part of (4.11), we can derive

1

m

m∑
r=1

|a∗ru|2
∣∣|a∗rv|2 − |a∗rv′|2∣∣ ≤ 1

m

m∑
r=1

|a∗ru|2 |(v − v′)∗ara∗rv + v′∗ara
∗
r(v − v′)|

≤ 2 · 6n‖v − v′‖ · 1

m

m∑
r=1

|a∗ru|2

≤ 12(1 + δ)n‖v − v′‖.(4.14)

A similar derivation on the fourth part of (4.11) gives

(4.15)
1

m

m∑
r=1

∣∣Re ((a>r ū)2
(
(a∗rv)2 − (a∗rv

′)2
))∣∣ ≤ 12(1 + δ)n‖v − v′‖.

Substituting (4.12)-(4.15) into (4.11) yields

|g(u, v)− g(u, v′)| ≤ (12 + 48(1 + δ)n) ‖v − v′‖.

Similarly, for any u, u′, v ∈ Cn, we obtain

|g(u, v)− g(u′, v)| ≤ (12 + 48(1 + δ)n) ‖u− u′‖.

Hence, for any u, u′, v, v′ ∈ Cn, it holds

|g(u, v)− g(u′, v′)| ≤ (12 + 48(1 + δ)n) (‖u− u′‖+ ‖v − v′‖) .
9



Choose ε ≤ 1
48+192(1+δ)n , such as ε = 1

250n , and let Nε be an ε-net of Sn. Then for any
(u, v) ∈ Sn×Sn, we can find u′, v′ ∈ Nε×Nε, satisfying ‖u−u′‖+‖v−v′‖ ≤ 1

24+96(1+δ)n .
Hence,

|g(u, v)− g(u′, v′)| ≤ 1

2
.

We can choose an Nε obeying |Nε| ≤ (1 + 2
ε )2n. Therefore, with probability larger than

1−
(

1 +
2

ε

)4n

e−2γm,

we have for any (u′, v′) ∈ Nε ×Nε, g(u′, v′) ≤ 0.5. In this occasion, for any u, v ∈ Sn, we
have

g(u, v) ≤ g(u′, v′) + |g(u, v)− g(u′, v′)| ≤ 1,

which means

v∗Ψ(u)v ≥ v∗Φ(u)v − 1 = 2|u∗v|2 + 4Re((v∗u)2) + 1.

This completes the proof of (4.10). When Im(u∗v) = 0, we have Re((v∗u)2) ≥ 0. There-
fore, v∗Ψ(u)v ≥ 1. In addition, when m ≥ cn log n and c is sufficiently large, we have

1−
(

1 +
2

ε

)4n

e−2γm = 1− (1 + 500n)
4n
n−cγne−γm ≤ 1− e−γm.

This completes the proof of (4.7).
2) We now prove the left hand side of (4.8). Recalling that z = x + h, what we want to

prove is that with high probability,

(4.16)
1

2m

m∑
r=1

(
|a∗r(x+ h)|2 − |a∗rx|2

)2 ≥ 1

4
‖h‖2

holds for any ‖h‖ ≤ 1
8 . Note that |a∗r(x + h)|2 − |a∗rx|2 = 2Re(x∗ara

∗
rh) + |a∗rh|2. Let

h = sy, where s = ‖h‖ ∈ R, y ∈ Cn and ‖y‖ = 1. Then, it suffices to prove

(4.17)
1

m

m∑
r=1

(
2Re(x∗ara

∗
ry) + s|a∗ry|2

)2 ≥ 1

2
,

for 0 ≤ s ≤ 1
8 . We first prove the inequality for a fixed y, then extend the result to any y by

using a covering argument. Since the technique is nearly the same as what is done in (VII.F)
of [9], we only summarize the main steps here.

Let Xr(y, s) :=
(
2Re(x∗ara

∗
ry) + s|a∗ry|2

)2
and Yr(y, s) := EXr(y, s) − Xr(y, s).

Then, by (VII.5-7) of [9] and the fact that Im(x∗y) = 0, we can easily calculate:

(4.18) EXr(y, s) = 2s2 + 8sRe(x∗y) + 6Re(x∗y)2 + 2.

10



Using 0 ≤ s ≤ 1
8 and Xr(y, s) ≥ 0, we obtain the following estimations

Yr(y, s) ≤ EXr(y, s) ≤ 2s2 + 8s+ 8 < 10,

EYr(y, s)2 ≤ EXr(y, s)
2

= s4E|a∗ry|8 + 8s3E|a∗ry|6Re(x∗ara∗ry) + 24s2E|a∗ry|4Re(x∗ara∗ry)2

+32sE|a∗ry|2Re(x∗ara∗ry)3 + 16ERe(x∗ara∗ry)4

≤ s4E|a∗ry|8 + 8s3
√
E|a∗rx|2E|a∗ry|14 + 24s2

√
E|a∗rx|4E|a∗ry|12

+32s
√

E|a∗rx|6E|a∗ry|10 + 16
√
E|a∗rx|8E|a∗ry|8

≤ 24s4 + 568s3 + 911s2 + 859s+ 384

< 510.

Applying Lemma 4.5 with σ2 = mmax(510, 102) = 510m and y = m/4 yields

P

(
m∑
r=1

Yr(y, s) ≥
m

4

)
≤ e−2γm

with γ = 1/8160. It further implies

P

(
1

m

m∑
r=1

Xr(y, s) ≤ EXr(y, s)−
1

4

)
≤ e−2γm.

Since EXr(y, s) = 2s2 + 8sRe(x∗y) + 6Re(x∗y)2 + 2 ≥ 2− 8s‖x‖‖y‖ ≥ 1, we have

(4.19) P

(
1

m

m∑
r=1

Xr(y, s) ≤
3

4

)
≤ e−2γm.

This completes the proof of (4.19) for a fixed y.
In order to extend the result to all y ∈ Cn, we only need to estimate∣∣∣∣∣ 1

m

m∑
r=1

Xr(y, s)−
1

m

m∑
r=1

Xr(y
′, s)

∣∣∣∣∣ ≤ L‖y − y′‖,
for any y, y′ ∈ Cn, and find an ε-net Nε with ε ≤ 1/(4L). Then, with probability no less
than 1 − e−γm, for all y ∈ Nε, (4.19) holds for 0 ≤ s ≤ 1/8. Under this circumstance, for
any y ∈ Cn, we can find a y′ ∈ Nε, and have

1

m

m∑
r=1

Xr(y, s) ≥
1

m

m∑
r=1

Xr(y
′, s)−

∣∣∣∣∣ 1

m

m∑
r=1

Xr(y, s)−
1

m

m∑
r=1

Xr(y
′, s)

∣∣∣∣∣
≥ 3

4
− 1

4
=

1

2
.

This completes the proof of (4.17) and thus the left side of (4.8).
We next prove the right hand side of (4.8). By some simple calculation, we have

f =
1

2m

m∑
r=1

(
2Re(h∗ara

∗
rx) + |a∗rh|2

)2
≤ 4

m

m∑
r=1

Re(h∗ara
∗
rx)2 +

1

m

m∑
r=1

|a∗rh|4 ≤
4

m

m∑
r=1

|a∗rh|2|a∗rx|2 +
1

m

m∑
r=1

|a∗rh|4.
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Together with the inequalities (4.6), Corollary 7.6 of [9] and (VII.19) of [9], we can further
obtain

f ≤ 4(2 + δ)‖h‖2 + 6(1 + δ)n‖h‖4.

Recall the fact δ = 0.01, f can be bounded as

f ≤ 8.04‖h‖2 + 6.06n‖h‖4.

This completes the proof of (4.8).
3) Finally, we verify (4.9). The right side of (4.8) implies ‖h‖ ≥ 1

100
√
n

when f(z) ≥
‖z‖2
900n holds. We notice that

µh∗ (Ψµ
z )
−1
g = h∗g − h∗ (Ψµ

z )
−1

Ψzg.(4.20)

Therefore, we estimate the two terms in the right hand side of (4.20), respectively. Similar to
what is done in (VII.G) of [9], we obtain

h∗g ≥ 1

8
‖h‖2 +

1

11000n‖h‖
‖g‖2.(4.21)

Let λi and wi, i = 1, ..., 2n be the i-th smallest eigenvalue and associated eigenvector

of Ψz , respectively. Suppose that g has the following decomposition g =
2n∑
s=1

csws, where cs

are complex numbers. Then, we obtain

(Ψµ
z )
−1

Ψg =

2n∑
s=1

λs
λs + µ

csxs,

which gives

‖h∗ (Ψµ
z )
−1

Ψg‖ ≤ ‖|h‖‖ (Ψµ
z )
−1

Ψg‖ ≤ λ2n
λ2n + µ

‖h‖‖g‖.(4.22)

On the other hand, for any y ∈ Cn, ‖y‖ = 1, we have

y∗ (Ψ(z)−Ψ(x))y =
2

m

m∑
r=1

(
|a∗rz|2 − |a∗rx|2

)
|a∗ry|2 +

2

m

m∑
r=1

Re
((

(a∗rz)
2 − (a∗rx)2

)
(a∗ry)2

)
≤ 2

m

m∑
r=1

(
|a∗rz|2 − |a∗rx|2

)
|a∗ry|2 +

2

m

m∑
r=1

∣∣((a∗rz)2 − (a∗rx)2
)∣∣ |a∗ry|2

≤ 2

√√√√( 2

m

m∑
r=1

|a∗ry|4
)(

1

m

m∑
r=1

||a∗rz|2 − |a∗rx|2|
2

+ |(a∗rz)2 − (a∗rx)2|2
)
.(4.23)

Similar to the proof of the right side of (4.8), we can get

1

m

m∑
r=1

∣∣|a∗rz|2 − |a∗rx|2∣∣2 +
∣∣(a∗rz)2 − (a∗rx)2

∣∣2 ≤ 16.08‖h‖2 + 12.12n‖h‖4,

which gives

(4.24) y∗ (Ψ(z)−Ψ(x))y ≤ 2
√

12.12n ·
√

16.08‖h‖2 + 12.12n‖h‖4 ≤ 28.09n‖h‖,
12



where the last inequality uses ‖h‖ ≤ 1/8. Together with Lemma 4.4, we obtain

λ2n ≤ 4.01 + 28.09n‖h‖.

Substituting the above eigenvalue evaluation to (4.22) and together with µ = 70000n
√
nf(z) ≥

35000n
√
n‖h‖, we have

‖h∗ (Ψµ
z )
−1

Ψg‖ ≤ 4.01 + 28.09n‖h‖
4.01 + 28.09n‖h‖+ 35000n

√
n‖h‖

‖h‖‖g‖

≤ 4.01 + 28.09
√
n/100

4.01 + 28.09
√
n/100 + 35000n/100

‖h‖‖g‖

≤ 859

70000
√
n
‖h‖‖g‖

≤ 1

16
‖h‖2 +

1

13200n‖h‖
‖g‖2,(4.25)

where the second inequality uses that ‖h‖ ≥ 1
100
√
n

, and a+bz
a+cz decreases on z when b < c,

and the last inequality uses the relationship ‖h‖ ≤ 1
8 . Substituting (4.21) and (4.25) into

(4.20), we immediately obtain (4.9). This completes the proof of Lemma 4.6.

4.2. Proof of Theorem 4.1. By abuse of the notation, we simply denote z as the current
iterate and z+ determined by z+ = z − (Ψµ

z )−1g(z). Subtracting x from this equation, we
have

(4.26) ‖hz+‖ ≤ ‖z+ − xz‖ = ‖hz − (Ψµ
z )−1g(z)‖.

For the sake of simplicity, we omit the letter z in f(z), µ(z), hz and hz+ , and omit the letter
z in g(z), Ψ(z) and Φ(z), when it causes no ambiguity.

We divide the proof of Theorem 4.1 into two parts. 1) We verify (4.1) and (4.3) under
the condition f(z) < ‖z‖2

900n . The updating formula for µ gives µ =
√
f(z). Using the left

hand side of (4.8) of Lemma 4.6, we have

‖hz‖ ≤ 2
√
f = 2

√
‖z‖2
900n

≤ 1 + ||hz||
15
√
n

,

which implies

‖h‖ ≤ 1

14
√
n
.

By the definition of h, we know that Im(z∗h) = 0, which means z̃∗h = 0. On the other
hand, it is easy to verify that

hz − (Ψµ
z )−1g(z) = (Ψµ

z )−1 (Ψµ
zhz − g(z))

= (Ψµ
z )−1

(
µh +

1

m

m∑
r=1

h∗ara
∗
rh

[
(ara

∗
r)z

(āra
>
r )z̄

])
,

and

z̃∗

(
µh +

1

m

m∑
r=1

h∗ara
∗
rh

[
(ara

∗
r)z

(āra
>
r )z̄

])
= 0,

13



which further gives Im
(
z∗(h+ 1

m

m∑
r=1

h∗ara
∗
rh(ara

∗
r)z)

)
= 0. Hence, the eigenvalue

estimate (4.7) implies that the smallest eigenvalue of Ψ restricted in the subspace S := {v |
Im(z∗v) = 0} is 1

2 ||z||
2. Therefore, the largest eigenvalue of (Ψµ

z )−1 restricted in S is
2

||z||2+2µ . Then, we can obtain

‖h+‖ ≤

∥∥∥∥∥(Ψµ
z )−1

(
µh +

1

m

m∑
r=1

h∗ara
∗
rh

[
(ara

∗
r)z

(āra
>
r )z̄

])∥∥∥∥∥(4.27)

≤ 2

‖z‖2 + 2µ

∥∥∥∥∥
(
µh +

1

m

m∑
r=1

h∗ara
∗
rh

[
(ara

∗
r)z

(āra
>
r )z̄

])∥∥∥∥∥ .(4.28)

Denote v := 1
m

m∑
r=1

h∗ara
∗
rh(ara

∗
r)z, we obtain

(4.29) ‖h+‖ ≤
2

‖z‖2 + 2µ
‖µh + v‖ ≤ 2µ

‖z‖2 + 2µ
‖h‖+

2

‖z‖2 + 2µ
‖v‖.

By using the definition of µ and the local error bound condition (4.8), it holds that

‖z‖2 + 2µ = ‖x− h‖2 + 2
√
f ≥ 1− 2‖h‖+ ‖h‖2 + ‖h‖ ≥ 1,(4.30)

µ =
√
f ≤
√

8.04||h||+
√

6.06
√
n||h||2 ≤ 2.01||h||+ 1.24

√
n||h||2(4.31)

We next estimate ‖v‖. For any u ∈ Cn and ‖u‖ = 1, using (4.6), Corollary 7.6 of [9]
and (VII.19) of [9], we have

|u∗v| ≤ 1

m

m∑
r=1

|a∗rh|2|a∗rz||a∗ru| =
1

m

m∑
r=1

|a∗rh|2|a∗r(x+ h)||a∗ru|

≤ 1

m

m∑
r=1

|a∗rh|3|a∗ru|+
1

m

m∑
r=1

|a∗rh|2|a∗rx||a∗ru|

≤ 6n‖h‖ 1

m

m∑
r=1

|a∗rh|2 +

√√√√(2 + δ)
1

m

m∑
r=1

|a∗rh|4

≤ 6n(1 + δ)‖h‖3 +
√

6n(1 + δ)(2 + δ)‖h‖2.

Therefore, the norm of v can be bounded by

‖v‖ =
√

2‖v‖ ≤
√

2
(

6n(1 + δ)‖h‖3 +
√

6n(1 + δ)(2 + δ)‖h‖2
)

= 3.03n‖h‖3 + 2.47
√
n‖h‖2.(4.32)

Substituting (4.30)-(4.32) into (4.29) yields

‖h+‖ ≤ 2µ‖h‖+ 2‖v‖
≤ 4.02‖h‖2 + 2.48

√
n‖h‖3 + 6.06n‖h‖3 + 4.94

√
n‖h‖2.

Using the fact that |h| =
√

2‖h‖ ≤ 1
7
√
2n

, we further have

‖h+‖ < (4.28 + 5.56
√
n)‖h‖2 < 4.28 + 5.56

√
n

9.89
√
n

‖h‖,
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which guarantees the inequalities (4.1) and (4.3) under the situation that f(zk) < ‖z‖2
900n .

2) We next consider the case under the conditions f(z) ≥ ‖z‖
2

900n and ‖h‖ ≤ 1
8 . Recalling

the inequality (4.8) and (4.9) in Lemma 4.6, and the positive definiteness of Ψz , we obtain

‖h+‖2 ≤ ‖h− (Ψµ
z )−1g‖2 ≤ ‖h‖2 − 2h∗(Ψµ

z )−1g +
1

µ2
‖g‖2

≤
(

1− 1

8µ

)
‖h‖2 +

(
1

µ2
− 2

66000n‖h‖µ

)
‖g‖2

≤
(

1− 1

8µ

)
‖h‖2 +

1

µ

(
1

35000n
√
n‖h‖

− 2

66000n‖h‖

)
‖g‖2 ≤

(
1− 1

8µ

)
‖h‖2,

which implies

(4.33) ‖h+‖ ≤
(

1− 1

4µ

)
‖h‖.

Therefore, we finish the proof for the special case ||x|| = 1.
3) Finally, we consider ‖x‖ 6= 1. By observing the iteration scheme (3.4), it is not

difficult to verify that starting from z0
‖x‖ , the kth LM iteration for a problem with a solution

x
‖x‖ is

zk+1

‖x‖
=

zk
‖x‖

+
sk
‖x‖

.

Therefore, by the previous proof for the case ‖x‖ = 1, we have

dist

(
zk+1

‖x‖
,
x

‖x‖

)
<

1− 1

4
(
µk
‖x‖

)
dist

(
zk
‖x‖

,
x

‖x‖

)
,

dist
(
zk+1

‖x‖ ,
x
‖x‖

)
dist

(
zk
‖x‖ ,

x
‖x‖

)2 < 4.28 + 5.56
√
n,

which yields (4.1) and (4.3). This completes the proof for all x.

5. Analysis of the Inexact LM Method. In this section, we first establish the conver-
gence result for the inexact LM framework, then present a pre-conditioned conjugate gradient
(PCG) method for solving the LM system inexactly and provide a practically useful choice
of the pre-conditioner.

5.1. Convergence of the Inexact LM Method. The following theorem describes the
global linear convergence of the inexact LM method.

THEOREM 5.1. Suppose that Assumption 2.1 holds. Let x ∈ Cn be any solution of (1.2),
and m ≥ c0n log n, where c0 is a sufficiently large constant. Assume that {zk} is a sequence
generated by Algorithm 2 with the parameter

ηk :=

{
(1−c1)
22.35n ·

µk
||x|| , if f(zk) ≥ 1

900n‖zk‖
2;

9.89
√
n−c2||x||

249.57n2||x|| ·
µk‖g(zk)‖
||x||2 , otherwise.

(5.1)
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Then, starting from any initial solution z0 satisfying dist(z0, x) ≤ ‖x‖/8, there is an event
of probability at least 1− 15e−γn − 8/n2 −me−1.5n, such that on this event, it holds that

dist(zk+1, x) <
1 + c1

2
dist(zk, x), for all k = 0, 1, ...(5.2)

dist(zk+1, x) <
9.89
√
n+ c2||x||
2||x||

dist(zk, x)2, for all k ≥ l,

where c1, c2 are defined by (4.2) and (4.4), respectively, and l satisfying f(zl) <
1

900n‖zl‖
2.

Proof. We only prove the result when ‖x‖ = 1 and f(zk) ≥ 1
900n‖zk‖

2. The other part
can be proved in the same manner and hence omitted. Let

z′k+1 := zk − (Ψµk
zk

)−1g(zk)

be the exactly LM step at the k-th iteration. By using Theorem 4.1, we have

dist(z′k+1, x) < c1dist(zk, x),(5.3)

and

dist(zk+1, x) ≤ dist(z′k+1, x) + ‖z′k+1 − zk+1‖

= dist(z′k+1, x) +
1√
2
‖sk +

(
Ψµk
zk

)−1
g(zk)‖

= dist(z′k+1, x) +
1√
2
‖
(
Ψµk
zk

)−1
(Ψµk

zk
sk + g(zk))‖

≤ dist(z′k+1, x) +
η√
2µk
‖g(zk)‖.(5.4)

By using Lemma 4.3, Lemma 4.6 and Cauchy-Schwarz inequality, we obtain

‖g(zk)‖ =
√

2

∥∥∥∥∥ 1

m

m∑
r=1

(
|a∗rzk|2 − |a∗rx|2

)
ara
∗
rzk

∥∥∥∥∥
≤

√√√√24n‖zk‖2(1 + δ)
1

m

2m∑
r=1

(|a∗rz|2 − |a∗rx|2)
2

≤
√

2

2
· 22.35n‖hk‖.(5.5)

Substituting (5.3), (5.5) and the updating formula (5.1) into (5.4), we immediately obtain the
relationship (5.2).

Theorem 5.1 tells us that if ηk takes the order of ‖f(zk)‖, the inexactly LM method
guarantees a global linear convergence to a global solution. When ηk takes the order of
‖f(zk)‖ 3

2 , the inexactly LM method achieves a local quadratic convergence rate.

5.2. Solve the LM Equation by PCG. In this subsection, we discuss the PCG method
for solving the LM equation (3.3). The CG methods admits a global linear convergence rate
which depends on the condition number of the coefficient matrix (see [41, 27]). However, the
linear system matrix Ψµ

z tends to be singular as the parameter µk decreases, which takes place
when the iteration is close enough to the solution set. Our recipe is using the PCG method
with a suitable pre-conditioner M . Therefore, the original linear system (3.3) is replaced by

M−1Ψµ
z s = M−1g(z).(5.6)
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Since EΨ(z) = Φ(z) if z is independent to {ar}, we suggest to use a pre-conditioner

Φµz := Φz + µzI2n(5.7)

and −(Φµz )−1g(z) as the initial point of the PCG method. A simple verification shows that
Φµz is positive definite and its inverse has an explicit formulation:

(5.8) (Φµz )−1 = aI2n + bzz∗ + cz̃z̃∗,

where

a =
1

‖z‖2 + µ
, b = − 3

2(‖z‖2 + µ)(4‖z‖2 + µ)
, c =

1

2(‖z‖2 + µ)µ
.

Hence, the linear system (Φµz )−1s = b can be calculated in O(n) arithmetic operations.
The remaining task is to analyze the condition number of (Φµz )−1Ψµ

z . Similar to Ψµ
z ,

Φµz is also nearly singular once µ is small. Therefore, the condition number of (Φµz )−1Ψµ
z is

likely to be huge. Fortunately, the subspace

V :=

{
x | x =

[
s
s̄

]
,∀ s ∈ Cn

}
is a common range space of Φz and Ψz . It can be easily verified that any iteration z is in V
and (Φµz )−1Ψµ

z z ∈ V if z ∈ V . It is easy to establish the following convergence property of
the CG method.

LEMMA 5.2. Assume that A is a positive semidefinite matrix and V is its range space.
Denote Aµ := A+ µI . Let y∗ ∈ V be the solution of the linear system

Aµy = b,

and {yk} be the sequence generated by the CG method from an initial point y0 ∈ V . Then,
for any k ≥ 1, it holds

‖yk − y∗‖Aµ ≤ 2

(√
κV (Aµ)− 1√
κV (Aµ) + 1

)k
‖y0 − y∗‖Aµ ,

where ‖y‖Aµ = (y∗Aµy)1/2 and κV (Aµ) refers to the restricted condition number

κV (Aµ) :=

max
y∈V,||y||2=1

y∗Aµy

min
y∈V,||y||2=1

y∗Aµy
.

Lemma 5.2 shows that one only need to evaluate the restricted condition number of
(Φµz )−1Ψµ

z . Without loss of generality, we assume ||x|| = 1. Let λ be an eigenvalue of
(Φµz )−1Ψµ

z , and yλ be the corresponding eigenvector. Firstly, we have

||(Φµz )−1Ψµ
zyλ − yλ|| = |λ− 1|.(5.9)

Using the relationship (4.7) and (4.24) and the fact that ‖h‖ ≤ 1
8 , we obtain

||(Φµz )−1Ψµ
zyλ − yλ|| = ||((Φµz )−1)(Ψµ

z − Φµz )yλ||

≤ 2

||z||+ 2µ
||Ψµ

z − Φµz ||||yλ||

≤ 2(
7
8

)2
+ 2µ

(||Ψz −Ψx||+ ||Ψx − Φx||+ ||Φx − Φz||)

≤ 2(
7
8

)2
+ 2µ

(37.09n‖h‖+ 0.01).
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Assume µ = Kn
√
nf(z), then

|λ− 1| ≤ 74.18n‖h‖+ 0.02(
7
8

)2
+ 2Kn

√
nf(z)

<
75

K
√
n

+ 0.03.

Hence, we have

κV ((Φµz )−1Ψµ
z ) ≤ 1.03K

√
n+ 75

0.97K
√
n− 75

,

which means the condition number is close to 1 if either K or n is large.
In each PCG iteration, the computational cost of the gradient evaluation is O(mn), and

the cost of the matrix-vector multiplications for calculating (Φµz )−1s is also O(mn). Lemma
5.2 shows that the upper bound of the number of iterations is related to the restricted condition
number and the distance between the initial guess and the solution set. Since the restricted
condition number of (Φµz )−1Ψµ

z is small, the PCG method often takes just a few iterations to
achieve a good accuracy. Therefore, the computational cost at a single iteration of our PCG
method is not too expensive than that of the WF method.

6. Extensions to the Coded Diffraction (CD) Model. We make the following assump-
tion in this section.

ASSUMPTION 6.1. A problem is called the CD model if

(6.1) yr =

∣∣∣∣∣
n−1∑
t=0

x(t)d̄l(t)e
−i2πkt/n

∣∣∣∣∣
2

, r = (l, k), 0 ≤ k ≤ n− 1, 1 ≤ l ≤ L,

where x(t) and dl(t) denote the t-th element of x and dl, respectively. Assume that L ≥
c(log n)4, where c is a sufficiently large numerical constant, and dl are i.i.d sampled from a
distribution d, which is symmetric and satisfies |d| ≤M and

Ed = 0, Ed2 = 0, E|d|4 = 2(E|d|2)2.

For the CD model, an initialization via resampled Wirtinger Flow is introduced in [9] as
Algorithm 3. By conducting a resampled gradient descent steps, this initialization scheme
can provide a better initial guess than that of Algorithm 1.

Algorithm 3: Initialization via the resampled WF method

1 Input measurements {ar} and observations {yr} (r = 1, 2, . . . ,m).
2 Divide the measurements and observations into B + 1 groups of size
m′ = bm/(B + 1)c. The measurements and observations in group b are denoted as
a
(b)
r and y(b)r for b = 0, 1, ..., B.

3 Obtain u0 by conducting Algorithm 1 on group 0.
4 For b = 0 to B − 1, perform the following update:

ub+1 = ub −
µ

‖u0‖2

 1

m′

m′∑
r=1

(
|z∗a(b+1)

r |2 − y(b+1)
r

)
(a(b+1)
r a(b+1)∗

r )z


5 Set z0 = uB .
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By employing Algorithm 3, the distance between the initial guess z0 and a solution x can
be improved to

(6.2) dist(z0, x) ≤ 1

8
√
n
‖x‖.

Then the WF method can achieve

dist(zk, x) ≤ 1

8
√
n

(
1− µ

3

)k/2
‖x‖.

Readers who are interested in the WF algorithm can refer to section V and VII of [9] for the
detailed information.

The modified LM Algorithm 2 can be extended to solve the CD model directly. For the
sake of theoretical analysis, the regularization parameter µk is updated as

µk =

{
35000n

√
f(zk), if f(zk) ≥ 1

3260n‖zk‖
2;√

f(zk), otherwise.
(6.3)

If L ≥ c(log n)3, then a counterpart of Lemma 4.2 holds with probability at least 1 −
(2L+1)/n3. The first equality in Lemma 4.3 also holds with probability no less than 1−1/n2.
Finally, we extend Lemma 4.6 to the CD model.

LEMMA 6.2. Suppose that Assumption 6.1 holds, ‖Ψ(x) − Φ(x)‖ ≤ δ holds with
δ = 0.01 and µk is updated by (6.3). Then, with probability at least 1− 3/n2, we have

1. Estimate of the smallest nonzero eigenvalue:

v∗Ψ(u)v ≥ 1

2
‖u‖2‖v‖2(6.4)

holds for all u, v, z ∈ Cn, such that Im(u∗v) = 0, and dist(u, x) ≤ 1/(50
√
n);

2. Local error bound property:

4

5
dist(z, x)2 ≤ f(z) ≤ 8.04dist(z, x)2 + 6.06ndist(z, x)4,(6.5)

holds for any z satisfying dist(z, x) ≤ 1
8
√
n

;
3. Regularization condition:

µ(z)h∗ (Ψµ
z )
−1
g(z) ≥ 1

16
‖h‖2 +

1

33000n‖h‖
‖g(z)‖2(6.6)

holds for any z = x+ h, ‖h‖ ≤ 1
8
√
n

, and f(z) ≥ ‖z‖2
3260n .

Proof. Since the measurements are not independent from each other in the CD model,
Lemma 4.5 cannot be applied. We first prove (6.4). Note that for u, v, z ∈ Cn satisfying
Im(u∗v) = 0,

v∗Ψ(u)v = v∗Φ(u)v + v∗(Ψ(u)− Φ(u))v

≥ 2‖u‖2‖v‖2 + 2|u∗v|2 + 4Re
(
(v ∗ u)2

)
− 2‖v‖2‖Ψ(u)− Φ(u)‖

≥ 2‖u‖2‖v‖2 − 2‖v‖2‖Ψ(u)− Φ(u)‖.

Hence, (6.4) holds if ‖Ψ(u)−Φ(u)‖ ≤ 3
4‖u‖

2 for all u obeying dist(u, x) ≤ 1
50
√
n

. Because
Ψ(u) − Φ(u) is homogeneous for u when x is fixed, we assume ‖u‖ = 1 without loss of
generality. Then, we have to prove ‖Ψ(u)− Φ(u)‖ ≤ 3

4 . It holds that

‖Ψ(u)− Φ(u)‖ ≤ ‖Ψ(u)−Ψ(x)‖+ ‖Ψ(x)− Φ(x)‖+ ‖Φ(x)− Φ(u)‖.(6.7)
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Taking h = u− x leads to ‖h‖ ≤ 1/(50
√
n). By using (4.24), we have

y∗ (Ψ(u)−Ψ(x))y ≤ 2
√

12.12n(16.08‖h‖2 + 12.12n‖h‖4)

≤ 0.57,

for all y ∈ Cn, ‖y‖ = 1. Therefore, ‖Ψ(u)−Ψ(x)‖ ≤ 0.57 is an estimation of the first term
of the right side of (6.7). The second term of (6.7) satisfies

‖Ψ(x)− Φ(x)‖ ≤ δ = 0.01.

Similar to the first term, the third term of the right side of (6.7) can be estimated as

‖Φ(x)− Φ(u)‖ ≤ 8(1 + ‖h‖)‖h‖ ≤ 0.17.

Hence, we have

‖Ψ(u)− Φ(u)‖ ≤ 0.57 + 0.01 + 0.17 = 0.75.(6.8)

This completes the proof of (6.4).
We next prove the left side of (6.5). By following (a− b)2 ≥ a2

2 − b
2, we have

f(z) =
1

m

m∑
r=1

(
|a∗rz|2 − |a∗rx|2

)2
=

1

m

m∑
r=1

(
2Re(h∗a∗rarx

∗) + |a∗rh|2
)2

≥ 2

m

m∑
r=1

Re(h∗a∗rarx
∗)2 − 1

m

m∑
r=1

|a∗rh|4.

Using Corollary 7.5 of [9] and Im(h∗x) = 0, we know

1

m

m∑
r=1

Re(h∗a∗rarx
∗)2 ≥ 1− δ

2
‖h‖2.

Together with 1
m

m∑
r=1
|a∗rh|4 ≤ 6n(1 + δ)‖h‖4 and ‖h‖ ≤ 1/(8

√
n), we obtain

f(z) ≥
(

1− δ − 6(1 + δ)

64

)
‖h‖2 > 4

5
‖h‖2.

The right side of (6.5) can be proven in the same way as (4.8). Hence, the detailed proof
is omitted. Finally, we prove (6.6). Similar to (4.23) and using ‖h‖ ≤ 1

8
√
n

, we can estimate
the largest eigenvalue of Ψ(z):

λ2n ≤ 5.78 + 2
√

12.12nf(z).

Therefore, using a same derivation as (4.25), we obtain

‖h∗ (Ψµ
z )
−1

Ψg‖ ≤ 1

16
‖h‖2 +

1

16500n‖h‖
‖g‖2,

which together with (4.21) gives (6.6).
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Consequently, both global linear convergence rate and local quadratic rate can be estab-
lished for the CD model based on the above lemmas.

THEOREM 6.3. Suppose that Assumption 6.1 holds. Let x ∈ Cn be any solution of (1.2)
and {zk} be a sequence generated by Algorithm 2 where the LM equation exactly solved and
µk is chosen as (6.3). Then, starting from any initial solution z0 obeying dist(z0, x) ≤ ‖x‖

8
√
n

,
there is an event of probability at least 1− (2L+ 1)/n3 − 1/n2 such that on this event,

dist(zk+1, x) < c1dist(zk, x), for all k = 0, 1, ...

dist(zk+1, x) < c2dist(zk, x)2, for all k ≥ l,

where s satisfies f(zs) <
1

3260n‖zs‖
2, and

c1 :=


(

1− ||x||4µk

)
, if f(zk) ≥ 1

3260n‖zk‖
2;

8.19+10.23
√
n

35.35
√
n

, otherwise;
(6.9)

c2 :=
8.19 + 10.23

√
n

‖x‖
.(6.10)

Similar theoretical results on the inexact LM method can also be derived. The proof
of the theorem follows the same procedure and shares the same inequalities, although the
calculation is different. We omit them for conciseness.

7. Numerical Experiments. In this section, we present some numerical results to demon-
strate the performance of the LM method using the parameter µk =

√
f(zk), and compare it

with the WF method in [9].

7.1. Recovery of 1D signals. We begin our numerical experiments on 1-D random sig-
nals under Gaussian and CD model. In order to make comparison with the WF method, we
choose the same type of signals as that in [9]:

• Random low-pass signals, where x is given by

x[t] =

M/2∑
k=−(M/2−1)

(Xk + iYk)e2πi(k−1)(t−1)/n,

with M = n/8 and Xk and Yk are i.i.d. N (0, 1).
• Random Guassian signals, where x ∈ Cn is a random complex Gaussian vector with

i.i.d. entries of the form

X[t] = X + iY,

with X and Y distributed as N (0, 1).
In the initialization step, 50 iterations of power method are run to calculate the eigen-

vector needed in Algorithm 1. For the LM method, we solve the LM system accurately and
inaccurately, and these two versions are denoted by “ALM” and “ILM”, respectively. For
the ALM method, we set ηk = 10−16 in (3.6). For the ILM method, we set the maximum
iteration number of PCG to be min(k + 2, 5), where k is the iteration number in Algorithm
2. We stop the LM algorithm after 200 iterations. For the WF method, we use the step length
µk = min(1−exp(−k/τ0), 0.2), where τ0 ≈ 330, and stop after 2500 iterations. Notice that
in each ILM iteration, there are at most 5 PCG iterations. Consequently, the computational
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FIG. 7.1. Empirical probability of success based on 100 random trials.

cost of every PCG iteration is about two times of a WF iteration. Hence, considering the
calculation of gradient in each ILM iterations, the computational cost of one ILM iteration is
no more than that of 11 WF iterations. Therefore, excuting 200 ILM iterations is not more
expensive than 2500 WF iterations.

In this experiment, we set n = 512 and compare the empirical success rate and the
CPU time of the LM and WF methods. The empirical probability of success is an average
over 100 trials, where in each instance, new random sampling vectors are generated accord-
ing to the Gaussian or CD models. For coded diffraction model, we use octanary patterns
as the masks in [9]. We declare a trial successful if the relative error of the reconstruction
dist(zfinal, X

∗)/‖x‖ falls below 10−5 before the iteration process is stopped. For a suc-
cessful trial, we define the CPU time of this trial to be the time used until the first iteration
after which the relative error is smaller than 10−5.

Figure 7.1 shows that around 4.5n Gaussian phaseless measurements or 6 octanary pat-
terns are enough for an exact recovery with high probability for all algorithms. For all tested
signals and models, the success rate of the LM methods rises a little bit earlier than the WF
method as the number of measurements increases. The three algorithms perform similarly
in terms of the success rates. Furthermore, this figure shows that solving the LM equations
inexactly does not exert significant impact on success rate of the LM method.

We next examine the order of convergence of the WF and LM methods. Figure 7.2 shows
the relationship between the relative error in logarithm scale and the number of iterations for
the three algorithms. To better illustrate the performance of the LM methods, we only show
errors of the first 40 iterations. We can see from Figure 7.2 that the ALM method does show

22



0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Iteration

lo
g

1
0

(r
e

la
tiv

e
 e

rr
o

r)
Gaussian model

 

 

WF

ILM

ALM

0 5 10 15 20 25 30 35 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Iteration

Coded diffraction model

 

 

WF

ILM

ALM

(a)Gaussian signals

0 10 20 30 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Iteration

lo
g

1
0

(r
e

la
tiv

e
 e

rr
o

r)

Gaussian model

 

 

WF

ILM

ALM

0 10 20 30 40
−16

−14

−12

−10

−8

−6

−4

−2

0

Iteration

Coded diffraction model

 

 

WF

ILM

ALM

(b)Low-pass signals

FIG. 7.2. Relationship between the relative errors and the number of iterations. m/n = 6 for Gaussian model
and L = 10 for CD model.

Signal Gaussian signal Low-pass signal
model Gaussian Coded diffraction Gaussian Coded diffraction

iter CPU iter CPU iter CPU iter CPU
ALM 8.39 20.40s 6.41 0.53s 7.95 30.02s 5.64 0.79s
ILM 10.07 2.47s 6.58 0.06s 8.70 2.88s 6.04 0.07s
WF 300.79 7.14s 171.79 0.21s 229.08 8.94s 134.62 0.27s

TABLE 7.1
Computational results on random examples

quadratic convergence. As it is expected, the ILM method shows linear convergence after
the first several iterations. However, its convergence rate is much faster than that of the WF
method. Table 7.1 presents the averaged number of iterations of the LM and WF methods
used to achieve an accuracy of 10−5 under a fixed m/n or L. In the table, the statistics of the
ALM method is approximately proportional to the logarithm of that of the WF method, which
shows the quadratic convergence of the ALM method. Although the ILM method converges
linearly, it converges fast and does not take many more iterations than the accurate algorithm.

We should point out that Figure 7.2 is not very fair to the WF method, since the gradi-
ent method tends to takes a large number of iterations. Therefore, we show the relationship
between the relative error and CPU time in Figure 7.3. From this figure, we can see that,
although the ALM method converges quadratically, it consumes much more CPU time than
the other two methods because solving the LM equation accurately needs a lot of PCG iter-
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FIG. 7.3. Relationship between the relative errors and CPU time. m/n = 6 for Gaussian model and L = 10
for CD model.

ations. On the other side, the ILM method consumes the smallest CPU time. Table 7.1 also
shows the averaged CPU time (it does not include the CPU time of the initialization step) of
the three methods to make a successful recovery. We still can see that the ALM method is
the most time-consuming method, while the ILM method tends to take much less CPU time
(about 1/3 or less) than the WF method. Obviously, solving the LM equation is expensive
although a promising PCG is employed, and making a suitable truncation to the PCG method
can efficiently reduce the computational cost.

7.2. Performance on natural image. We next perform a few numerical experiments
on recovering natural images, similar to Section IV.C of [9]. The two images that we use are
colored photographs of the Turret of Palace Museum (“turret”) and the Milky Way Galaxy
(“galaxy”). The colored images are viewed as n1×n2× 3 arrays, where the first two indices
encode the pixel location, and the last is the color band. We run the LM and WF methods on
each of the three RGB images.

We generate L = 20 random octanary patterns and gather the CD patterns for each color
band using these 20 samples. We run 50 iterations of the power method in the initialization
step. For the ALM method, the stopping tolerance of the PCG is set to ηk = 10−16. For the
ILM method, the maximum iteration number of PCG is set to 5. For the WF method, the step
length is µk = min(1 − exp(−k/τ0), 0.4), where τ0 ≈ 330. We perform 25 LM iterations
and 300 WF iterations. The relative error is calculated by ‖x̄−x‖F /‖x‖F where x̄ and x are
the recovered and original image, respectively. The CPU time is an average of the CPU time
from three RGB images.
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FIG. 7.4. Turret of Palace Museum. The image size is 352×1000 pixels.

FIG. 7.5. The Milky Way Galaxy. The image size is 1080×1920 pixels.

Figure 7.4 and 7.5 show the image “turret” and “galaxy” recovered by the ILM, respec-
tively. The images recovered by the other two algorithms are not reported because they are
similar. Table 7.2 shows the average number of iterations and average CPU time used by the
three algorithms to reduce the relative error to 10−5 and 10−10 for the three color band. We
can see an obvious advantage of the ILM method over the WF method. However, the CPU
time of the ALM method is much larger than the other two methods.

Figure 7.6 shows the relationship between the relative errors and the number of itera-
tions. It obviously demonstrates quadratic convergence of the ALM method and fast linear
convergence of the ILM method. In particular, the ALM method takes about one iteration to
reduce the accuracy from 10−5 to 10−10. Figure 7.7 shows the relationship between the CPU
time and the relative errors of the three methods. Due to the inexactness in solving the LM
equation, the ILM method takes much less than than the ALM method.

7.3. Phase retrieval with noise. We now evaluate the numerical performance of the
LM methods when there exists noises in the observation. We add different level of noises to
{yr} and explore the relationship between the signal-to-noise rate (SNR) of the observation
and the mean square error (MSE) of the recovered solution. Specifically, SNR and MSE are
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Image Turret of Palace Musuem The Milky Way Galaxy
Criterion 10−5 10−10 10−5 10−10

iter CPU iter CPU iter CPU iter CPU
ALM 5.3 2244.80s 6.3 2664.72s 5.0 3605.58s 6.0 4316.84s
ILM 6.3 349.28s 9.3 519.69s 5.7 1071.86s 9.0 1701.89s
WF 136.3 685.46s 216.3 1117.15s 136.0 2396.80s 216.0 3798.73s

TABLE 7.2
Computational results in natural image recovering.
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FIG. 7.6. Relationship between the relative errors and the number of iterations for natural images recovery.

calculated by

(7.1) MSE :=
dist2(x̃, x)

‖x‖2
, and SNR :=

∑m
i=1 |a∗rx|4

‖w‖2
,

where x̃ is the output of the LM methods after 50 iterations or of the WF method after 2500
iterations, andw the added noise. The dB-scale of MSE and SNR is calculated by 20 log MSE
and 10 log SNR, respectively. We construct random signals with n = 512, set m = 6n for
Gaussian model and L = 12 for the CD model. The SNR is varied from 10db to 60db. For
each case, 100 Monte Carlo trials are repeated. Figure 7.8 shows the results on the change of
MSE versus SNR. It shows that both algorithms achieve a similar order of accuracy. In fact,
both algorithms can converge to the same minimum x with high probability.

8. Conclusion and future work. In this paper, we develop a modified LM method via
Wirtinger derivative to solve the phase retrieval problem. Starting from the same spectral
initialization step as the WF method, our method converges to the global solution linearly
under the same assumption as the WF method. The convergence rate is further improved to
be quadratic in a predictable neighborhood of the solution. Similar theoretical analysis holds
even if the LM equation is solved inexactly. In particular, a simple yet useful preconditioner
is constructed based on the expectation of the LM coefficient matrix by assuming the inde-
pendence between measurements and the LM iteration. Since the restricted condition number
of this preconditioned coefficient matrix is small, it enables a fast convergence of the PCG
method for solving the LM equation.

In our numerical experiments, we verify that the proposed LM method indeed converges
quadratically in recovering both random examples and natural images if the LM equation is
solved sufficiently accurate. Our inexact LM method is comparable to the WF method in
terms of the success rate and it has advantage in terms of the CPU time.
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FIG. 7.7. Relationship between the relative errors and CPU time for natural images recovery.
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FIG. 7.8. SNR versus relative MSE on a dB-scale for the LM and WF methods

Our algorithm and analysis can be improved in several aspects. Theoretically, it is worth
studying whether the convergence still holds globally if the LM regularization parameters µk
are chosen simpler than the current ones since our numerical experiments show that µk =√
f(zk) performs well. Practically, it is meaningful to improve the success rate and reduce

the computational complexity.

Acknowledgements. The authors would like to thank Prof. Xiaodong Li and Prof.
Zhiqiang Xu for the insightful discussions on phase retrieval.

REFERENCES

[1] A. AHMED, B. RECHT, AND J. ROMBERG, Blind deconvolution using convex programming, Information
Theory IEEE Transactions on, 60 (2012), pp. 1711 – 1732.

[2] R. BALAN, On signal reconstruction from its spectrogram, in Information Sciences and Systems (CISS), 2010
44th Annual Conference on, IEEE, 2010, pp. 1–4.

[3] R. BALAN, P. CASAZZA, AND E. DAN, On signal reconstruction without phase, Applied & Computational
Harmonic Analysis, 20 (2006).

[4] H. H. BAUSCHKE, P. L. COMBETTES, AND D. R. LUKE, Phase retrieval, error reduction algorithm, and
fienup variants: a view from convex optimization, J.opt.soc.amer.a, 19 (2002), pp. 1334–1345.

[5] , Hybrid projection-reflection method for phase retrieval., Journal of the Optical Society of America
A, 20 (2003), pp. 1025–1034.

[6] V. BENTKUS, An inequality for tail probabilities of martingales with differences bounded from one side,
Journal of Theoretical Probability, 16 (2003), pp. 161–173.

[7] J. T. BETTS, Solving the nonlinear least square problem: Application of a general method, Journal of Opti-
mization Theory and Applications, 18 (1976), pp. 469–483.

27



[8] O. BUNK, A. DIAZ, F. PFEIFFER, C. DAVID, B. SCHMITT, D. K. SATAPATHY, AND V. D. V. JF, Diffrac-
tive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic
channels, Acta Crystallographica, 63 (2007), pp. 306–314.

[9] E. J. CANDES, X. LI, AND M. SOLTANOLKOTABI, Phase retrieval via wirtinger flow: Theory and algo-
rithms, Information Theory IEEE Transactions on, 61 (2014), pp. 1985–2007.

[10] A. CHAI, M. MOSCOSO, AND G. PAPANICOLAOU, Array imaging using intensity-only measurements, In-
verse Problems, 27 (2011), p. 015005.

[11] J. CORBETT, The pauli problem, state reconstruction and quantum-real numbers, Reports on Mathematical
Physics, 57 (2006), pp. 53–68.

[12] W. C. DAVIDON, New least-square algorithms, Journal of Optimization Theory & Applications, 18 (1976),
pp. 187–197.

[13] L. DEMANET AND V. JUGNON, Convex recovery from interferometric measurements, arXiv preprint
arXiv:1307.6864, (2013).

[14] J. E. DENNIS, D. M. GAY, AND R. E. WELSCH, Algorithm 573nl2sol&mdash;an adaptive nonlinear least-
squares algorithm [e4], Acm Transactions on Mathematical Software, 7 (1981), pp. 369–383.

[15] V. ELSER, Phase retrieval by iterated projections., Journal of the Optical Society of America A Optics Im-
ageence & Vision, 20 (2003), pp. 40–55.

[16] J. FAN AND J. PAN, Convergence properties of a self-adaptive levenberg-marquadt algorithm under local
error bound condition, Computational Optimization and Applications, 34 (2006), pp. 47–62.

[17] J. FAN, L. XUE, AND H. ZOU, Strong oracle optimality of folded concave penalized estimation, Annals of
statistics, 42 (2014), p. 819.

[18] J. Y. FAN AND Y. X. YUAN, On the quadratic convergence of the levenberg-marquardt method without
nonsingularity assumption, Computing, 74 (2005), pp. 23–39.

[19] C. FIENUP AND J. DAINTY, Phase retrieval and image reconstruction for astronomy, Image Recovery: The-
ory and Application, (1987), pp. 231–275.

[20] J. R. FIENUP, Reconstruction of an object from the modulus of its fourier transform, Optics Letters, 3 (1978),
pp. 27–29.

[21] , Phase retrieval algorithms: a comparison, Applied Optics, 21 (1982), pp. 2758–2769.
[22] R. FLETCHER, Practical methods of optimization, John Wiley & Sons, 2013.
[23] R. FLETCHER AND C. XU, Hybrid methods for nonlinear least squares, IMA Journal of Numerical Analysis,

7 (1987), pp. 371–389.
[24] R. W. GERCHBERG, A practical algorithm for the determination of phase from image and diffraction plane

pictures, Optik, 35 (1972), pp. 237–250.
[25] R. W. HARRISON, Phase problem in crystallography, Journal of the Optical Society of America, Part A:

Optics and Image Science; (United States), 10:5 (1993), pp. 1046–1055.
[26] T. HEINOSAARI, L. MAZZARELLA, AND M. M. WOLF, Quantum tomography under prior information,

Communications in Mathematical Physics, 318 (2013), pp. 355–374.
[27] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,

J.res.nat.bur.stand, 49 (1952), pp. 409–436.
[28] J. E. D. JR, H. J. MARTINEZ, AND R. A. TAPIA, Convergence theory for the structured bfgs secant method

with an application to nonlinear least squares, Journal of Optimization Theory & Applications, 61
(1989), pp. 161–178.

[29] K. LEVENBERG, A method for the solution of certain non-linear problems in least squares, Quart.appl.math,
2 (1944), pp. 164–168.

[30] P. L. LOH AND M. J. WAINWRIGHT, Regularized m-estimators with nonconvexity: Statistical and algorith-
mic theory for local optima, Eprint Arxiv, 16 (2013), pp. 476–484.

[31] D. R. LUKE, Relaxed averaged alternating reflections for diffraction imaging, Inverse Problems, 21 (2005),
p. 37.

[32] S. MARCHESINI, Phase retrieval and saddle-point optimization., Journal of the Optical Society of America
A Optics Image Science & Vision, 24 (2007), pp. 3289–3296.

[33] D. W. MARQUARDT, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl.
Math., 11 (1963), pp. 431–441.

[34] J. MIAO, T. ISHIKAWA, Q. SHEN, AND T. EARNEST, Extending x-ray crystallography to allow the imaging
of noncrystalline materials, cells, and single protein complexes., Annual Review of Physical Chemistry,
59 (2008), pp. 387–410.

[35] R. P. MILLANE, Phase retrieval in crystallography and optics, Journal of the Optical Society of America A,
7 (1990), pp. 394–411.

[36] L. NAZARETH, Some recent approaches to solving large residual nonlinear least squares problems, Siam
Review, 22 (1980), pp. 1–11.

[37] P. NETRAPALLI, P. JAIN, AND S. SANGHAVI, Phase retrieval using alternating minimization, IEEE, (2015).
[38] POINCARÉ, Sur les propriétés du potentiel et sur les fonctions abéliennes”, Acta Mathematica (in French),
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