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Abstract

In this paper, we consider the phase retrieval problem for recovering a complex
signal, given a number of observations on the magnitude of linear measure-
ments. This problem has direct applications in X-ray crystallography, diffrac-
tion imaging and microscopy. Motivated by the extensively studied theory of
(tight) wavelet frame and its great success in various applications, we propose
a wavelet frame based model for phase retrieval using the balanced approach.
A hybrid fidelity term is designed to deal with complicated noises and a hybrid
penalty term is constructed for different pursuits of sparsity and smoothness.
Consequently, a proximal alternating linearization algorithm is developed and
its convergence is analyzed. In particular, our proposed algorithm updates both
the internal weights in the hybrid penalty term and the penalty parameter bal-
ancing the fidelity and penalty terms in a data-driven way. Extensive numerical
experiments show that our method is quite competitive with other existing al-
gorithms. On one hand, our method can reconstruct the truth successfully from
a small number of measurements even if the phase retrieval problem is ill-posed.
On the other hand, our algorithm is very robust to different types of noise,
including Gaussian noise, Poisson noise and their mixtures.

Keywords: phase retrieval, wavelet frame, hybrid fidelity term, hybrid penalty
term, proximal alternating linearization, data-driven, complicated noise.

1. Introduction

Given a few observations on the magnitude of linear measurements of a
complex signal x ∈ Cn, one of the typical formulations of the phase retrieval
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problem tries to identify the true signal x by solving

find x ∈ Cn

s.t. |Ax| = b,
(1)

where A ∈ Cm×n, b ∈ Rm. This problem has direct applications in X-ray
crystallography [1], diffraction imaging [2] and microscopy [3]. In this paper,
we mainly consider the physically inspired diffraction model: coded diffraction
pattern (CDP) in [4]. In coded diffraction model, the measurements are of the
form

b = |Ax|, Ax =

 F(I1 ◦ x)
...

F(Im ◦ x)

 , (2)

where F denotes the DFT matrix, ◦ is the Hadamard product, I1, . . . , Im are
the illumination masks (also called coded diffreaction patterns). Since the phase
information is missing, this challenging inverse problem is ill-posed in general.
It is also nonconvex due to the amplitude constraints |Ax| = b.

Problem (1) is equivalent to identifying a phase variable y and the signal
variable x simultaneously as

min
x∈Cn,y∈Cm

‖Ax− y‖22

s.t. |y| = b.
(3)

Existing methods for (1) as well as (3) can roughly be summarized into four
types: the greedy methods, the nonlinear least squares based methods, the
convex relaxation based methods and the sparsity regularized methods. In the
following, we give a brief review on them.

1.1. Existing Methods for Phase Retrieval

Typical greedy methods for (1) and (3) include the Error-Reduction (ER) or
alternating projection algorithm by Gerchberg and Saxton [5], the hybrid input-
output (HIO) algorithm by Fienup [6], the hybrid projection-rejection method
(HPR) by Bauschke et al. [7, 8] and so on. The ER method minimizes the
quadratic error ‖Ax−y‖22 with respect to x using the orthogonal projector AA†

(A† is the pseudo-inverse of A), then normalizes the module of y by adjusting the
amplitude of each coordinate to b and keeps the phase unchanged at the same
time. If there is an additional object-domain constraint that the signal should
be supported on a given set D, the HIO method improves the convergence by
slightly changing the output of the ER method:

yk+1
i = bi

(Axk)i
|(Axk)i|

, i = 1, . . . ,m,

xk+1
i =

{ (
A†yk+1

)
i
, if i ∈ D

xki − β
(
A†yk+1

)
i
, otherwise

,

(HIO)
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where β is positive. These methods are variants of the alternating projection
on the range of A and on the nonconvex set of y such that |y| = |Ax|. They
may have a good empirical performance but may get stuck in local minimum.
The alternating direction methods of multipliers (ADMM) is used in [9] to solve
both the classical and ptychographic phase retrieval problems. It is shown that
the projection algorithms such as HIO are equivalent to ADMM with suitable
parameters.

Another type of methods is based on minimizing the nonlinear least squares
model:

min
x∈Cn

f(x) :=
1

2m

m∑
i=1

(b2i − |a∗i x|2)2, (4)

where a∗i is the i-th row of matrix A. In [10], a Wirtinger flow (WirtingerFlow)
method starts from an initial point x0 obtained by a spectral method, then
updates the next iteration using a gradient descent type scheme:

xk+1 = xk − µk

‖x0‖
Of(xk), (WirtignerFlow)

where µk

‖x0‖ can be interpreted as a step size. Exact retrieval of phase information

from a nearly minimal number of random measurements is proved. It is also
shown that the Wirtinger flow algorithm converges to the global minimizer at
a global linear rate. Ma, Liu and Wen [11] proposed a Levenberg-Marquadt
method to solve (4) and the global linear and local quadratic convergence are
achieved under certain conditions. For other methods such as ADMM by Wen
et. al. [9] and the damped Gauss-Newton method by Yoav Shechtman et. al.
in [12], the global convergence is not clear yet.

The PhaseLift and the PhaseCut method are two typical convex relaxation
based approaches. Observing that |Ax|2 is a linear function of X = xx∗,
PhaseLift is proposed in [13] and [14] by dropping the rank one constraint
and using a “lifting” technique which relaxes the original problem into an SDP
(Semidefinite Programming) problem:

min
X∈Sn

Tr(X)

s.t. Tr(aia
∗
iX) = b2i , i = 1, . . . ,m,

X � 0,

(PhaseLift)

where Sn denotes the set of symmetric matrices of dimension n. If the SDP
problem admits a rank-one solution, the relaxation is tight. Otherwise, the nor-
malized leading eigenvector of the solution is chosen as an approximate solution.
It has been shown in [15, 4, 14] that under certain conditions, the SDP problem
(PhaseLift) can recover x with high probabilities. Different from PhaseLift, the
PhaseCut method [16, 17] proposes a semidefinite relaxation by eliminating the
signal variable other than the phase variable. First, problem (3) is reformulated
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as:

min
x∈Cn,u∈Cm

1

2
‖Ax− diag(b)u‖22

s.t. |ui| = 1, i = 1, . . . ,m.

(5)

Given the phase variable u, the signal variable is x = A† diag{b}u. Then (5)
becomes

min
u∈Cm

u∗Mu

s.t. |ui| = 1, i = 1, . . . ,m,
(6)

where M = diag{b}(I−AA†) diag{b} is positive semidefinite. Problem (6) is an
extension of the MAXCUT problem over the unit complex torus and its SDP
relaxation is

min
U∈Sm

Tr(UM)

s.t. Uii = 1, i = 1, · · · ,m, U � 0.
(PhaseCut)

It is then solved by a provably convergent block coordinate descent algorithm.
Other convex approaches include [18, 19, 20].

Recently, the advances in compressed sensing [21] has inspired a few sparsity
regularized phase retrieval methods [22, 23, 24]. Chang et al. [24] first formu-
lated the phase retrieval problem as a least square problem with a box constraint
and a total variation (TV) regularization due to its efficiency to recover signals
or images from incomplete data or limited measurements:

min
0<u<1

ETV B(u) = TV (u) +
λ

2
‖ |Au| − b‖22, (TVB)

where TV (u) denotes the discrete total variation semi-norm, i.e., the `1 norm
of the discrete gradient of u. Then, an ADMM method was employed to solve
(TVB) in [24].

1.2. Wavelet Based Approaches

During the last ten years, we have witnessed the successful applications of
wavelet-based approaches in many areas, such as in image processing, electron
microscopy [25, 26, 27, 28]. The wavelet frame approach assumes that the
signal we are interested in, especially images, has a sparse approximation under
the wavelet tight frames. For a given signal u ∈ Rn and its measurements
g = Au with A ∈ Rm×n, g ∈ Rn, let W ∈ RL×n (usually L � n) denote
the analysis operator associated with some wavelet tight frame system such
that W>W = I. The corresponding synthesis operator is then its transpose
WT . There are three types of wavelet tight frame based approaches: synthesis
approach, analysis approach and balanced approach. All these three types of
approximation become equivalent when using an orthonormal wavelet basis, but
different when using a redundant wavelet frame. Both the analysis and synthesis
based approaches have their favorable data sets and applications. In this paper,
we only consider the balanced approach because it balances the advantages
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and disadvantages of the other two methods. Interested readers are referred to
[29] and [30] for more details. The balanced approach recovers u from linear
measurements g = Au by solving

ū = WT ᾱ, where ᾱ = arg min
α∈RL

1

2
‖AWTα−g‖22 +

κ

2
‖(I−WWT )α‖22 +‖λ◦α‖1

(7)
for some 0 ≤ κ ≤ ∞, and λ ∈ RL+. In fact, the so called synthesis and anal-
ysis approach is the model (7) with κ = 0 and κ = ∞, respectively. In the
literature, the variables included in the wavelet model are usually real-valued
while complex intermediate variables may appear in phase retrieval problems.
However, wavelet methods still apply as long as the ground truth enjoys some
smoothness properties and has sparse wavelet coefficients, which is true for most
applications.

1.3. Our Approach

Based on (7), we derive our wavelet frame based model for phase retrieval
problem. Here, we only provide a first glance of our model while a more detailed
discussion is presented in section 3:

min
α,y,λ

1

2
‖AWTα− y‖22 +

κ

2
‖(I −WWT )α‖22 +

L∑
i=1

ρ1(λi)|αi|+
L∑
i=1

ρ2(λi)|αi|2

s.t. ω1‖ |y| − b‖1 + ω2‖ |y| − b‖22 ≤ ε,
α ∈ CL, y ∈ Cm, λ ∈ RL+

(8)
where ρ1(·) and ρ2(·) are two smooth functions. Similar to (3), our model
(8) separates the phase variable y and the signal variable x and solves x using
wavelet frame based method. The different part is that the amplitude constraint
in (3) is relaxed in our model because we take the noises on the measurements
into consideration. Moreover, the hybrid fidelity term is introduced due to its
effectiveness of removing mixed and unknown noises. We also adopt `1-norm
and `2-norm hybrid penalty term in (8). It is known that `1-norm penalization
pursues sparsity and protects singularities while `2-norm penalization averages
the wavelet coefficients and keeps smoothness. Hence, the hybrid penalty term
can keep the edges sharp and the other parts smooth simultaneously. In addi-
tion, once the patterns of ρ1(·) and ρ2(·) are given, we can develop a modified
proximal alternating linearization method (PALM) to solve our model itera-
tively. In particular, the variables λ which balances the `1-norm and `2-norm
in the hybrid penalty term is updated in a data driven way, which helps us to
learn the most suitable penalty terms automatically during the iterations. A
data-driven update is also designed for the parameter that balances the fidelity
and penalty term. These are the reasons why we refer to our method, including
both the model and algorithm, as a data-driven wavelet frame based method.
Our method is indeed competitive numerically to other methods mentioned in
subsection 1.1. The recovered density maps of caffeine molecule using different
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(a) HIO (b) PhaseCut (c) WirtingerFlow (d) TVB (e) our method

Figure 1: Recovered density maps of caffeine molecule with Gaussian noise (α =1E-3). The
rows from top to bottom correspond to one to four bipolar masks, respectively.

numbers of bipolar masks under Gaussian noise are depicted in subsection 1.3.
It shows that our method reconstructs the molecule’s density map successfully
even if there is only one mask and the measurements are contaminated by Gaus-
sian noise. More experiments can be found in section 5.

1.4. Organization

The organization of the rest of the paper is as follows. In section 2, some
preliminaries on the tight wavelet frame and the Wirtinger derivatives are de-
scribed. In section 3, we develop our wavelet frame based model in detail and
propose a proximal alternating linearization algorithm. The convergence of the
PALM algorithm is also provided in this section and its detailed proof is given
in section 7. We next clarify the implementation details of our algorithms and
the parameter settings in section 4. Numerical results are reported in section 5
to illustrate the effectiveness of the proposed algorithms. Some final conclusions
are made in section 6.

1.5. Notations

We use a standard linear algebra notation whenever possible to describe
quantities required in the algorithms. Let Rn+ denote the nonnegative orthant.
For x ∈ Cn, we write diag{x} the square matrix with diagonal x. a ◦ b is the
Hadamard (or componentwrise) product of vectors a and b. z̄ is the conjugate of
z. XT is the transpose of X while X∗ is the Hermitian transpose. The notation
‖x‖1 is the `1 norm of vector x ∈ Cn, while |x| ∈ Rn is the moduli vector whose
ith component is |xi|. The notation x

|x| refers to the entrywise division with
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0
0 := 1. For x, y ∈ Cn, 〈x, y〉 := real(x∗y). For vectors, we use superscript to
denote the iteration number and subscript to denote the entries of each vector.

2. Preliminaries

In this section, we give some preliminaries on wavelet tight frames and
Wirtinger derivatives.

2.1. Wavelet tight frames

We first present here some basics of a tight frame in a Hilbert space H.
Interested readers are referred to [30, 31] for more details. Let ‖ · ‖ denote the
norm of the Hilbert space H. A sequence {φn}n∈L ⊂ H is a tight frame for H if

‖f‖22 =
∑
n∈L
|〈f, φn〉|2, ∀f ∈ H.

For a given sequence {φn}n∈L, the analysis operator and its adjoint operator
W∗, which is also called the synthesis operator, are defined by

W : f ∈ H −→ {〈f, φn〉} ∈ `2(N), W∗ : {an} ∈ `2(N) −→
∑
n∈L

anφn ∈ H.

Thus, a sequence {φn} ⊂ H forms a tight frame if and only if W∗W = I,
where I : H → H is the identity operator. A tight frame is a generalization of
orthonormal basis in the sense that both have the same perfect reconstruction
property:

f =
∑
n∈L
〈f, φn〉φn, ∀f ∈ H.

In the discrete setting, a tight frame consists of a finite number of masks {φn}Ln=1

with their support on {1, 2, . . . , N}. Thus the associated analysis operator and
synthesis operator can be represented in a matrix form. Let matrix W denote
the analysis operator, then the corresponding synthesis operator is its transpose
WT . Clearly, {φn}Ln=1 forms a tight frame for RN if and only if WTW = IN ,
where IN is the N -by-N identity matrix.

One widely used tight frame in signal/image processing is the multi-resolution
analysis (MRA) based wavelet tight frame. The wavelet tight frame for CN can
be constructed from the masks associated with some MRA-based framelets for
the space of continuum (see [30] for more details). For simplicity, only single-
level un-decimal wavelet tight frame system for CN is introduced. For a given
tight frame system, suppose that {a0, a1, · · · , al} are the associated masks with
finite supports. For each mask an (n ∈ {0, 1, . . . , l}), we define an N -by-N
matrix San as the symmetric Toeplitz matrix with an being the first row. Then
the corresponding analysis operator W takes the form of

[Sa0 ,Sa1 , · · · ,Sal ], (9)
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and its transpose WT is the synthesis operator of the tight frame system. The
perfect reconstruction property in matrix representation can be expressed as
WTW = IN .

For 2-dimensional images, the tight frame analysis and synthesis operations
can be obtained by tensor products of the corresponding operations on the x-axis
and y-axis. Interested readers are referred to [27] for more details. For an easy
notation, we vectorize 2-D images to 1-D signals formally in the following parts
of this paper, although there is no vectorization in the realistic implementation
of framelet operations.

In particular, one can construct tight framelet system from B-splines. In our
simulation, we choose the piecewise linear framelet for simplicity of the masks
and speed, or piecewise cubic when the smoothness of the framelet is desirable.
The construction of tight framelets from B-splines of high orders can be found
in [32].

2.2. Wirtinger derivatives

In section 1, the model (8) gives an objective function that is a real val-
ued function over complex variables. We next briefly introduce the Wirtinger
derivative as a tool to deal with such functions (See [33] for more details.). A
real-valued function g(z) = g(x+ iy) is said to be Wirtinger differentiable if it
is differentiable as a function of real variables x and y, and its Wirtinger deriva-

tives under the conjugate coordinates

[
z
z̄

]
∈ Cd×Cd is given by∇wg =

[
∂zg
∂z̄g

]
,

where

∂zg :=
∂g
(
[z, z̄]T

)
∂z

∣∣∣
z̄=constant

, ∂z̄g :=
∂g
(
[z, z̄]T

)
∂z̄

∣∣∣
z=constant

.

The Taylor’s expansion of g under the conjugate coordinates and Wirtinger
calculus takes the form

g(z + ∆z) = g(z) +
(
∇wg(z)

)T [∆z
∆z̄

]
+

1

2

[
∆z
∆z̄

]∗
Hw
(
z
) [∆z

∆z̄

]
+ h.o.t.,

where Hw
(
z
)

is the Wirtinger Hessian matrix. Furthermore, as g(z) is real-

valued, we have ∂zg = ∂z̄g, which yields(
∇wg(z)

)T [∆z
∆z̄

]
= 〈∂zg,∆z〉+ 〈∂zg,∆z〉 = 2 real(〈∂zg,∆z〉) := 〈∂zg,∆z〉ω.

Similarly, we can simplify the second order term[
∆z
∆z̄

]∗
Hw
(
z
) [∆z

∆z̄

]
= 2 real

(
∆z∗Hzz∆z + ∆z∗Hz̄z∆z̄

)
,

Hzz =
∂

∂z

(∂g
∂z

)∗
, Hzz̄ =

∂

∂z

(∂g
∂z̄

)∗
.

We say that h ∈ Cd is a Wirtinger subgradient of g : Cd → R at z ∈ dom g if

g(z′) ≥ g(z) + 〈h, z′ − z〉w, ∀z′ ∈ dom g. (10)
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Let ∂wg(z) := {h ∈ Cd : h satisfies (10)} be the set of subgradients of g at z.
If ∂wg(z) 6= ∅, g is said to be Wirtinger sub-differentiable at z. If g : Cd → R
is convex and z ∈ int dom g, then ∂wg(z) is nonempty and bounded. A point
ẑ is a minimizer of a convex function g : Cd → R if and only if g is Wirtinger
sub-differentiable at ẑ and 0 ∈ ∂wg(ẑ).

3. Wavelet framelet based recovery model and algorithms

In this section, a basic wavelet-based recovery model is first developed and
some improvements on the fidelity and penalty term are imposed to achieve a
better recovery performance. Then a proximal alternating linearization algo-
rithm is designed for the proposed model.

3.1. Wavelet framelet based model

For the complex signal x ∈ Cn and its phaseless measurements b = |Ax|
with A ∈ Cm×n, b ∈ Rn, let W ∈ RL×n be the analysis operator associated
with some wavelet tight frame system such that W>W = I. Inspired by (3),
we firstly separate the signal variable x and the phase variable y. The next step
is to compute α using the balanced wavelet approach (7) instead of the least
square method in (3):

min
α∈CL,y∈Cm

1

2
‖AWTα− y‖22 +

κ

2
‖(I −WWT )α‖22 + ‖λ ◦ α‖1,

s.t. |y| = b.

(11)

Then x is recovered by x = WTα. The l1-norm term is to impose certain
sparsity both on the amplitude and phase.

In reality, there are always noises on the observed magnitudes b, such as
Gaussian noise due to the device measurement error and Poisson noise due to
the randomness of photon capture. We should take them into consideration in
our model if one wants to get a better recovery performance. Actually the basic
model (11) can remove noises to some extent because of the `1-norm penalization
on the wavelet coefficients. But it is not enough to deal with complicated noises
such as mixed and unknown noises in reality. The study in [34] shows that the
fidelity term plays an important role in removing different types of noises and
a simple weighted sum of `1-norm and `2-norm fidelity term works effectively
and robustly for the removal of mixed and unknown noises. In the basic model
(11), the magnitude constraint should be satisfied strictly. Taking the potential
noises into consideration, we can relax the magnitude constraint to a certain
extent. As mentioned above, we use the hybrid l1-norm and l2-norm fidelity
term to deal with the mixed or unknown noises. Then the constraints in our
model becomes

y ∈ ∆ = {y ∈ Cm | ω1‖ |y| − b‖1 + ω2‖ |y| − b‖22 ≤ ε}, (12)

where ε is the tolerance of the noise, ω1, ω2 > 0 are weighting parameters in
the l1-norm and l2-norm fidelity terms.
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One of the reasons behind the success of wavelet models in image restoration
is that they use the `1-penalty term on wavelet coefficients to pursue a sparse
approximation and preserve the edges of the underlying solution. However, `1-
penalty term will also introduce artifact, or unwanted singularities in the smooth
regions of images. Accordingly, a more suitable wavelet-based model is proposed
in [35]. They model the images as piecewise smooth functions and partition the
images into smooth and rough (singularities) regions so that the most suitable
penalty norms can be used to different regions. They penalize the `1-norm on
the wavelet coefficients in the rough regions to pursue sparsity and keep the
edges sharp while they penalize the `2-norm in the smooth regions to remove
noise and protect the smoothness. In addition, they introduce the singularity set
as an unknown variable and optimize it using the alternative direction method
so that the singularity set can be detected easily and automatically. Therefore,
we merge their methods to get a new model:

min
α∈CL,y∈∆,Γ⊂{1,2,...,n}

f(α, y,Γ), (13)

where

f(α, y,Γ) =
1

2
‖AWTα−y‖22 +

κ

2
‖(I−WWT )α‖22 +‖[λ◦α]Γ‖2,1 +‖[γ ◦α]Γc‖22,2.

(14)
Here, Γ is the singularity set, and Γc is the complement of Γ. Note that the
`1-penalty term used by Cai et al. in [35] is defined in an isotropic way and it
is a little bit different from the anisotropic `1-penalty term used in model (11).
The isotropic `1-penalty term is used in model (14) so that the singularity set
can be solved easily, while we use the anisotropic `1-norm in for its convenience
of generalization and determining the weights in a closed form.

Inspired by the concept behind model (13), we propose a more generalized
hybrid penalization model as stated in (8). In particular, our model reduces to
model (13) if we use the isotropic `1-penalization and choose ρ1(·) and ρ2(·) to
be the indicator functions of set Γ and Γc, respectively. However, our penalty
term in (8) is more flexible and general than that of model (13) because one
can explore more patterns about ρ1(·) and ρ2(·). It can be interpreted that
the parameterized hybrid penalty term tries to find the most suitable penalty
strategy by self-adapting. The details will be discussed in subsection 3.2.

3.2. Algorithm based on proximal alternating linearization

We first make the following assumption on two functions ρ1(·) and ρ2(·).

Assumption 1. (i) ρ1 : R→ R+ and ρ2 : R→ R+ are coercive functions.

(ii) Both ρ1 and ρ2 are C2 functions such that

ρ′′1(λ) ≥ 0, ρ′′2(λ) ≥ 0, ρ′′1(λ) + ρ′′2(λ) > 0, ∀λ ∈ R. (15)

Then we rewrite our unified model (8) as follows:

min
α∈CL,y∈∆,λ∈RL+

f(α, y, λ) := F1(α, λ) + F2(α, y), (16)
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where

F1(α, λ) =

L∑
i=1

ρ1(λi)|αi|+
L∑
i=1

ρ2(λi)|αi|2, F2(α, y)

=
1

2
‖AWTα− y‖22 +

κ

2
‖(I −WWT )α‖22.

A variant of the alternating minimization method is used to solve (16) by
updating the variables α, y and λ one after another iteratively. In particular, the
proximal linearization method is applied to the variable α while the objective
function is minimized directly with respect to the variables y and λ, i.e.,

αk+1 = arg min
α∈CL

f̃t(α, λ
k, yk;αk) (17a)

yk+1 = arg min
y∈∆

F2(αk+1, y), (17b)

λk+1 = arg min
λ∈RL+

F1(αk+1, λ), (17c)

where f̃t is linearized with a proximal term under Wirtinger calculus:

f̃t(α, y
k, λk, αk) := 2 real(〈gk, α− αk〉) + F1(α, λk) + t

2‖α− α
k‖2

= F1(α, λk) + t
2‖α− α

k + 2
t g
k‖2 − 2

t ‖gk‖
2,

and
gk = ∇wαF2(αk, yk) = κ(I −WW>)αk +WA∗(AW>αk − yk).

Next, we focus on the solutions of subproblems (17a)–(17c).

(a). The subproblem of αk+1 is separable. We solve the i-th component of
αk+1 as

αk+1
i = arg min

αi∈C
ρ1(λki )|αi|+ ρ2(λki )|αi|2 + t

2 |αi − α
k
i + 2

t g
k
i |2

= 1
1+2ρ2(λki )/t

Γρ1(λki )/t(α
k
i − 2

t g
k
i ),

(18)

where Γλ(x) for x ∈ C is the optimal solution of the following problem

min
y∈C

1

2
‖y − x‖22 + λ‖y‖1,

and is also referred to as the soft-thresholding operator given by:

Γλ(x) =

{
0, if |x| ≤ λ,
x
|x| (|x| − λ), otherwise.

For an easier notation, we denote the mixed thresholding operator in (18)
as

M(t,λk;ρ1,ρ2)(β) :=
1

1 + 2ρ2(λk)/t
Γρ1(λk)/t(β). (19)
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Remark. The reason of using the proximal linearization method for α is
that the subproblem with respect to α:

min
α∈CL

F1(α, λk) + F2(α, yk)

has no closed form solution. For a better approximation, one can iterate
multiple times for fixed yk and λk, i.e.,{

αkj+1 = arg minα∈CL f̃t(α, λ
k, yk;αkj ), j = 1, 2, . . . , J − 1,

αk+1 = αkJ .

Moreover, the accelerated proximal gradient (APG) method in [28] can
be employed to speed up the convergence. However, our numerical ex-
periments show that executing inner iterations multiple times may not
improve the recovery performance too much, but the computational time
is increased notably. Hence, in our paper, we only perform the step once
at each outer loop. Note that the step size t is fixed for convenience and
ease of presentation but can be chosen adaptively.

(b). From (17b), we know yk+1 is actually the projection of AWTαk+1 on ∆.
Let hk+1 = AWTαk+1, p(αk+1) = |hk+1| − b and p(αk+1)↑ be the vector
with components arranged in an ascending order. For simplicity, we use
p and p↑ instead without clarification. The solution of (17b) is given by
Lemma 1 whose proof is provided in section 7.

Lemma 1. The solution of (17b) takes the following form:

yk+1 = rk+1 ◦ hk+1∣∣hk+1
∣∣ .

(i). If hk+1 ∈ ∆, then rk+1 = |hk+1|.
(ii). Otherwise,

rk+1 =
1

2ω2βk+1 + 1
Γω1βk+1

(
|hk+1| − b

)
+ b,

where βk+1 ∈
(
|p↑j |
ω1
,
|p↑j+1|
ω1

]
is a root of the equation

ω1

1 + 2ω2βk+1

∑
i>j

(|p↑i |−ω1β
k+1)+

ω2

(1 + 2ω2βk+1)2

∑
i>j

(|p↑i |−ω1β
k+1)2 = ε.

(c). The subproblem for λ is also separable. For the i-th component, we need
to solve

λki = arg min
λi∈R+

ρ1(λi)|αki |+ ρ2(λi)|αki |2, i = 1, 2, . . . , L. (20)
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When |αki | = 0, the subproblem (20) is degenerated. In this case, we do
not update λi but keep λki = λk−1

i . Otherwise, for i = {i| |αki | 6= 0, i =
1, 2, . . . , L}, we consider an equivalent form:

λki = arg minλi∈R ρ1(λi) + ρ2(λi)|αki |+ δR+
(λi), (21)

where δR+(λi) is the indicator function of the set R+. When Assumption 1
is satisfied, we have

ρ′′1(λi) + ρ′′2(λi)|αki | > 0,

which means that ρ1(·) + ρ2(·)|αki | is strictly convex. Hence, the function
ρ1(·) + ρ2(·)|αki | + δR+

(·) is proper, lower semi-continuous, coercive and
strictly convex. Therefore, the solution of (21) exits and is unique, which
is given by

λki = max{0, λ̃ki }, (22)

where λ̃ki satisfies
ρ′1(λ̃ki ) + ρ′2(λ̃ki )|αki | = 0. (23)

Note that the solution of (23) exits and is unique because ρ1(·)+ρ2(·)|αki |
is smooth, coercive and strictly convex.

As mentioned before, the purpose of adding the `1-norm is for sparsity,
while adding the `2-norm is for smoothness. For a trade-off between spar-
sity and smoothness, it is natural to design ρ1 and ρ2 inversely related. In
addition, we prefer the solution of (21) to have a simple and closed form.
Here, we give two examples of the choices.

(1). ρ1(λ) = µλ and ρ2(λ) = (C − λ)2, where µ and C are hyperparame-
ters. The solution of (21) is

λki =

{
0, |αki | ≤

µ
2C ,

C − µ
2|αki |

, |αki | >
µ

2C ,
i = 1, 2, . . . , L. (24)

Assume that {αk} converge to α̂. By substituting (24) into ρ1(λi)|αki |+
ρ2(λ2)|αki |2 for i = 1, 2, . . . , L, and taking the limit, we get that

lim
k→∞

(
ρ1(λi)|αki |+ ρ2(λ2)|αki |2

)
=

{
C2|α̂i|2, |α̂i| ≤ µ

2C ,

Cµ|α̂i| − µ2

4 , |α̂i| >
µ

2C ,
(25)

which is actually the Huber norm adopted in [36].

(2). ρ1(λ) = µλ2 and ρ2(λ) = (C − λ)2, where µ and C are hyperpa-
rameters. Then for i = 1, 2, . . . , L, we obtain the solution of (21)
as

λki =
C|αki |
µ+ |αki |

. (26)
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Assume that {αk} converges to α̂ and substitute (26) into ρ1(λi)|αki |+
ρ2(λ2)|αki |2. By taking the limit, we get that

lim
k→∞

(
ρ1(λi)|αki |+ ρ2(λ2)|αki |2

)
=
µC2|α̂i|2

µ+ |α̂i|
, i = 1, 2, . . . , L. (27)

The equation (27) is similar to the reweighed `2 scheme in [37].

Both of the above designed patterns satisfy Assumption 1 with positive µ
and C. Then they converges to well-known penalty terms, which indicates
that the data-driven penalty terms are learned well during iterations and
they reach a suitable term finally. Our method also provides a possible
way to explore better penalty terms.

3.3. Convergence results

The Wirtinger Hessian matrix of F2(α, y) with respect to α is

Hw
α

(
F2(α, y)

)
=

(
WA∗AWT + κ(I −WWT ) 0

0 WA∗AWT + κ(I −WWT )

)
.

LetH denoteWA∗AWT+κ(I−WWT ), which is real in coded diffraction model.
Let λmax be the maximum eigenvalue of H. Note that in [38], Attouch et al.
propose a proximal alternating linearized scheme for nonconvex and nonsmooth
problems and establish global convergence result. Their method uses a proximal
linearization scheme for each block in real domain while our algorithm updates
α in complex domain and solves the subproblem of y and λ exactly. However,
we still establish convergence in a similar fashion.

Theorem 1. Suppose that t > 2λmax, and the terms ρ1(·) and ρ2(·) satisfy
Assumption 1. Then the following facts holds.

(i) The sequence {f(αk, yk, λk)}∞k=0 generated by (17) is convergent. {αk}∞k=0,
{yk}∞k=0, {λk}∞k=0 are all convergent.

(ii) Let (α̂, ŷ, λ̂) be a limit of {(αk, yk, λk)}. Then (α̂, ŷ, λ̂) satisfies the fol-
lowing conditions

α̂ = arg min
α
F1(α, λ̂) + F2(α, ŷ), (28)

ŷ = arg min
y∈∆

F2(α̂, y), (29)

λ̂ = arg min
λ∈RL+

F1(α̂, λ). (30)

Thus (α̂, ŷ, λ̂) is a Nash equilibrium of (11).

Proof. The proof is given in subsection 7.2.
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4. Set-up and implementation details

In this section, we clarify the set-up of numerical experiments and imple-
mentation details of our algorithm.

4.1. Measurement set-up

In physical experiments, compactly supported signals are padded with (s−
1)n zeros to conduct an over sampled discrete Fourier transform by an integer
factor s ≥ 2 instead of the traditional DFT. In this paper, the oversampling
factor s is set to be 2.

In the following, we work with two kinds of patterns: octanary pattern and
bipolar pattern. The former is suggested in [4] and [10] due to some statistical
consideration and the latter is easy to be implemented in realistic experiments.
For both patterns, Il (l = 1, . . . , k) are i.i.d. distributed and their entries are
i.i.d. sampled from a distribution d.

• Octanary pattern. In this pattern, d = c1c2, where

c1 =


+1 with prob. 1/4
−1 with prob. 1/4
−i with prob. 1/4
+i with prob. 1/4

and c2 =

{ √
2/2 with prob. 4/5√
3 with prob. 1/5

.

(31)

• Bipolar pattern. Here, d is distributed as

d =

{
+1 with prob. 1/2
−1 with prob. 1/2

. (32)

The pseudo-inverse of A is given by

A†

 y1

...
ym

 =

m∑
l=1

F−1(yl) ◦ I
′

l ,

where I
′

l is the dual mask of Il defined as

I
′

l = I l/(
∑
s

|Is|2).

Due to the special structures and the FFT tranform, the multiplications with
respect to A and A† can be computed efficiently.

Since the measurements may be contaminated by noises in reality, we simu-
late Poisson noise and Gaussian noise, as well as their mixture. The measure-
ments contaminated by Poisson noise are obtained by

Pα(b) =

√
α · Poisson

( |b|2
α

)
, (P)
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where α is the Poisson noise level and Poisson(λ) is a random Poisson sample
of mean λ. Similarly, the measurements contaminated by Gaussian noise are
obtained by

Gβ(b) =

√√√√max

{
0, |b|2 + β ·Gaussian

(
0, I
)}

, (G)

where β is the Gaussian noise level and Gaussian
(

0, I
)

is a random sample from

standard normal distribution. Mixed noises are performed by superimposing (P)
and (G). We measure the phase recovery performance by relative mean squared
error (MSE). However, since the solution is not unique up to a global phase, it
does not make sense to compute the distance between x and its approximation
x̂. Instead we compute the distance modulo a global phase term and define the
relative MSE between x and x̂ as

ε(x, x̂) , min
c∈C,|c|=1

||x− cx̂||F
||x||F

. (33)

It is easy to get that the optimal c should be
¯̂x>x
|¯̂x>x| .

4.2. Implementation details of our algorithm

We next present the implementation details and parameter settings in our
algorithm.

4.2.1. Iterating in image domain

The update of αk solved by (18) performs the operations in the wavelet tight
frame space, which is quite expensive due to L � n. In order to reduce the
computational time, we propose some strategies such that the operations are
done in image domain, rather than in wavelet coefficient domain. The update
rule of (18) gives

αk+1 =
Γ
ρ1(λk)/t

1+2ρ2(λk)/t
(αk − 2

t g
k)

=
Γ
ρ1(λk)/t

1+2ρ2(λk)/t
Γρ1(λk)/t

(
αk − 2

t

(
κ(I −WWT )αk +WA∗(AWTαk − yk)

))
.

(34)
If we set t = 2κ, then

αk+1 =
1

1 + ρ2(λk)/κ
Γρ1(λk)/(2κ)(W (I − 1

κ
A∗A)WTαk +

1

κ
WA∗yk). (35)

Apparently, the scheme in (35) can be rewritten equivalently as{
uk = (I − 1

κA
∗A)W>αk + 1

κA
∗yk,

αk+1 = 1
1+ρ2(λki )/κ

Γρ1(λki )/(2κ)(Wuk). (36)
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In contrast to the update in (34), the iteration scheme (36) only performs the
wavelet analysis and synthesis operations once, respectively. All addition and
subtraction operations are completed in image domain. Therefore, it requires
much less computational time than (35). Similar techniques are also used in
[39].

The convergence results stated in Theorem 1 still apply here. Recall that
H = WA∗AWT + κ(I −WWT ) and λmax is the largest eigenvalue of H. We
should set κ such that t(= 2κ) is greater than 2λmax. This can be guaranteed
since κI − A∗A = κI − diag(

∑m
l=1 |Il|2) in the coded diffraction model. In

practice, we usually set κ to be a diagonal matrix diag(1.1
∑m
l=1 |Il|2) and modify

the corresponding terms accordingly. It is obvious that κI − A∗A is positive
definite in this setting.

4.2.2. Data-driven penalty parameter

In subsection 3.2, we have developed a data-driven method for determining
the weights of the `1 and `2 norm in the penalty term. However, we still need a
parameter to balance the fidelity and penalty terms. Thus a penalty parameter
is introduced as a positive scalar before the penalty term. The model (16)
becomes

min
α∈CL,y∈∆,λ∈RL+

δF1(α, λ) + F2(α, y). (37)

More importantly, we update δ in a data-driven way.
Intuitively, we know that the higher the noise level is, the larger the penalty

parameter should be. But it is hard to estimate the noise level statistically, as
the noise is usually of mixed and unknown types in reality. However, we find
numerically that with the same penalty parameters, the solution obtained in
the noiseless case will have a smaller relative residual of magnitude defined as

rel.err =
‖ |Ax| − b‖2
‖b‖2

than that in the noise case. Such observation is not hard to understand as
the recovered signal from observations with high noise level tends to fit the
fidelity worse. That is, there is a positive correlation between the noise level
and the magnitude residual. Hence, it makes sense to self-adapt the penalty
parameters during the iteration according to the residual of last step. Our
extensive numerical experiments show that choosing the penalty parameter as

δ = min{10, 2 ·
(
e3·rel.err − 1

)
} (38)

often provides reasonable performance. In the following, we choose ρ1(λ) = µλ
and ρ2(λ) = (C − λ)2 for model (8). At iteration k, the paramters Ck and
µk in ρ1 and ρ2 are updated as follows. Since Ck takes the same role as the
penalty parameter δ in (37), we update Ck as in (38) and set µk to be µki =
4Ck · percentile{|αk−1

i |, 70}, where i ∈ B and B is the wavelet band set. The

notation percentile{|αk−1
i |, 70} stands for the 70th percentile of the i-th band

of |αk−1|.
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(a) the number of bipolar masks is 2 (b) the number of bipolar masks is 8

Figure 2: MSE versus the iterations. The first and second row correspond to noiseless case
and the one with Possion noise, respectively.

We next test the effectiveness of the data-driven penalty parameter in (38) on
the caffeine molecule by comparing with the performance of different constant
penalty parameters. In addition to the setting of ν, t, Ck, µk discussed above,
we always set ω1 = ω2 = 1 and ε = 10−2 in our algorithm without clarification.
subsection 4.2.2 depicts the history of MSE for different numbers of masks and
noise levels.

When the number of masks is small or the noise level is high, a larger con-
stant penalty parameter performs better because a larger penalty parameter can
remove the ambiguity and noise better for ill-posed noisy problem. When there
is no noise and the number of masks is relatively large (see the top right figure),
a smaller penalty parameter is preferred probably because the problem is more
well-posed and large penalty parameters over smooth the result. Obviously,
the proposed data-driven penalty parameter shows advantages over constant
penalty parameters. In the noiseless case, constant penalty parameters always
get stuck in some local optimum while data-driven penalty parameter leads to a
quick convergence to the truth. At the beginning stage, a large penalty parame-
ter is necessary to remove ambiguity while after a few iterations, the ambiguity
has been removed enough and the recovery result is close to the truth. At this

18



time, the penalty parameter should be reduced to avoid over smoothing. In the
noisy case, a large penalty parameter is always preferred to remove noise. Our
data-driven parameter still performs well as it starts from a large parameter
and does not reduce too much until the recovery result fits the observation well
enough.

4.2.3. Summary of our algorithms

We summarize the improvements to derive our unified model and algorithms.
The model is basically (8), with ρ1(λ) = µλ and ρ2(λ) = (C − λ)2. In general,
we solve (8) by a three-block direction alternating projection method. At the
k-th iteration, αk is computed as (18); yk is solved by Lemma 1 where β is
determined by a binary search algorithm; the calculation of λk is the same as
(25). Simultaneously, we update the penalty parameter C as (38) and perform
iterations in the image domain stated in subsection 4.2.1 to reduce the com-
putational time. Our data driven wavelet frame based method is outlined in
Algorithm 1.

Algorithm 1: A Data-Driven Wavelet Frame based Algorithm

1 Choose u0 ∈ Cn, α0 = Wu0, y0 = b ◦ Au0

|Au0| ; set the parameters

ω1 = ω2 = 1, ε = 1e− 2, and κ = diag
(
1.1
∑m
l=1 |Il|2

)
;

2 while k=0,. . . ,N-1 do

3 set Ck+1 = min{10, 2 ·
(
e3·rel.err − 1

)
} and

µk+1
i = 4Ck+1 · percentile{|αki |, 70}, i ∈ B.

4 compute uk+1 = (I − 1
κA
∗A)W>αk + 1

κA
∗yk.

5 compute αk+1 = 1
1+ρ2(λk)/κ

Γρ1(λk)/(2κ)(Wuk+1).

6 compute yk+1 by Lemma Lemma 1 where β is determined by
Algorithm 2.

7 update λk+1 as (25).

8 x = WTαN .

4.3. Settings of other selected algorithms

We compare our method with three other algorithms: HIO, PhaseCut and
WirtingerFlow. HIO is selected due to its easy implementation and its effi-
ciency as a greedy algorithm. PhaseCut is selected as it is insensitive to the
initial points. WirtingerFlow is selected due to its global convergence with high
probability, and TVB is selected due to its involvement of sparsity prior.

Except that WitingerFlow uses a spectral initial guess stated in [10], HIO,
PhaseCut, TVB and our method are initialized from a random Gaussian point
x0 and the initial phase of y0 is set to be the phase of Ax0. For HIO, the
parameter β in (HIO) is set to be 1.7. As suggested in [16], PhaseCut keeps only
the largest 1000 observations and uses a rank-2 approximation block coordinate
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descent solver to solve the lifted SDP problem, followed by a HIO refinement.
In [10], the stepsize µk in (WirtignerFlow) was set to be

µk = min{1− e−k/330, 0.4},

which is unstable in our numerical experiments. In this paper, we improve the
numerical performance of WitingerFlow by using the Barzilar-Borwein step size
as well as a few other known strategies for µk. For TVB, we use the parameters
suggested in Table 3 of the original paper [24].

All these four algorithms are terminated if the relative residuals ‖|Ax| −
b‖2/‖b‖2 < η or a maximum number of iterations are reached. We also stop the
iterations when the difference of the recovered images between two successive
iterations is smaller enough, i.e., ‖xk+1 − xk‖F ≤ η. Here, we choose two sets
of values for the terminal conditions including one for a high accuracy recovery
and another for time saving.

(TC1) Let η=1e-10; set the maximum number of iterations for HIO (as well as the
refinement of PhaseCut), WirtingerFlow, TVB, our method to be 5000,
2000, 500, 200, respectively;

(TC2) Let η=1e-8; set the maximum number of iterations for HIO (as well as the
refinement of PhaseCut), WirtingerFlow, TVB, our method to be 1000,
1000, 200, 100, respectively.

Usually, (TC1) are employed for small size problems and noiseless cases. Oth-
erwise, we use (TC2).

5. Numerical experiments

In this section, we perform some numerical experiments to illustrate the
effectiveness of our algorithm. All the tests are conducted on a MacBook Pro
with 2-core 2.4 GHz Inter core i5 processors and 8GB memory.

5.1. Performance on molecules with multiple masks

Firstly, we test the performance of the selected algorithms on molecules in
noiseless case. In X-ray crystallography, molecules are illuminated from different
angles and their intensity of diffracted rays are collected, which can be modeled
as the phase retrieval problem (2). The 3D molecular structure can be recovered
if sufficient 2D projection slices of this molecule are recovered. In this paper,
we only pay attention to the 2D projection recovery and refer the readers to
[4] and [10] for the 3D recovery. Here fifty 3D molecules are selected from the
Protein Data Bank for study. Their 2D projection slices from one illustration
angle are shown in subsection 5.1.

In this subsection, the terminal condition (TC1) is employed. The recon-
struction is said to be successful if the relative MSE between x and x̂ defined
in (33) is smaller than 10−3. The number of masks ranges form 2 to 12 and the
empirical successful probability is computed as an average over the selected fifty
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Figure 3: Database: 2D projection slices of the selected 50 molecules.

protein molecules shown in subsection 5.1. From subsection 5.1, we observe that
the our method and TVB outperform than HIO, PhaseCut and WirtingerFlow
in terms of the successful recovery rate when the number of masks is small.
It is easy to understand because the sparsity prior removes ambiguity caused
by losing of phase information well when the measurements are insufficient.
PhaseCut improves the recovery rate of HIO slightly. However, since it lifts the
variable to matrix, its computational time is most expensive. Our algorithm
not only improves the recovery rate significantly, but also outperforms Phase-
Cut in both memory storage and CPU time. WirtingerFlow also shows a higher
successful recovery rate than HIO. However, the spectral initialization in [10]
assumes some statistical properties of the masks while our method uses a simple
Gaussian random initialization and thus is easier to be extended to other kind
of masks.

5.2. Robustness to complicated noise

In this subsection, we simulate four types of noise on the measurements:
single Gaussian noise (β = 1e − 3), single Poisson noise (α = 1e − 2), mixed
Gaussian noise (β1 = 1e−3 and β2 = 1e−4) and mixed Gaussian-Poisson noise
(β = 1e − 4 and α = 1e − 2). The stopping condition (TC2) is employed here
and the number of masks is set to be 8 to guarantee that the selected algorithms
work in noiseless case at least. The recovery results on the above molecule data
set are displayed in subsection 5.2.

These figures show clearly that our method is better than the other three
algorithms on all tested molecules and noise types. In general, the performance
of HIO and PhaseCut is quite close to each other, which means that the initial-
ization strategy of PhaseCut may not work very well in the presence of noise,

21



2 4 6 8 10 12

Number of filters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re
co

str
uc

tio
n r

ate

TVB

PhaseCut

Ours

WitingerFlow

TVB

2 4 6 8 10 12

Number of filters

0

50

100

150

200

250

300

350

Av
er

ag
e T

im
e

HIO

PhaseCut

Ours

WitingerFlow

TVB

2 4 6 8 10 12

Number of filters

0

50

100

150

200

250

300

Av
er

ag
e T

im
e

HIO

WirtingerFlow

PhaseCut

Ours

TVB

2 4 6 8 10 12

Number of filters

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Re
co

str
uc

tio
n r

ate

HIO

WirtingerFlow

PhaseCut

Ours

TVB

Figure 4: The left and right column are the reconstruction rate and average CPU time,
respectively, in the noiseless case. The first and second row correspond to octanary masks
and bipolar masks, respectively.
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Figure 5: Comparison of MSEs of the five algorithms in noisy case. The first to fourth rows
are the results of Gaussian, Possion, mixed Gaussian, mixed Gaussion-Possion noises. The
left and right column correspond to octanary masks and bipolar masks, respectively.

23



(a) HIO (b) PhaseCut (c) WirtingerFlow (d) TVB (e) our method

Figure 6: Recovered density maps under Mixed Gaussian noise.

although it can improve the recovery rate slightly in noiseless case. Wirtinger-
Flow works a little bit better than HIO and PhaseCut for Gaussian noise removal
with bipolar masks while the performance is the opposite with octanary masks.
For TVB, the MSEs are around one in most cases because the coefficients of
recovered images are very small. It may be attributed to over smoothing caused
by the sparsity regularization in the TVB model. Note that this phenomenon
can not be fixed even if we use smaller regularization thresholding parameters.
Nevertheless, our method avoids over smoothing in noisy case due to the design
of fidelity and penalty terms. For a closer visualization, we select four molecules
with the bipolar masks. subsection 5.2 and subsection 5.2 display the recovered
density maps under mixed Gaussian noise and mixed Gaussian-Poisson noise,
respectively. In most cases, only our method can reconstruct the atom locations
successfully.

5.3. Successful recovery with single mask

This subsection further demonstrates the recovery using only a single mask.
The numerical results in subsection 5.1 show that HIO, PhaseCut and Wirtinger-
Flow fail even if there are two masks. Thus, only TVB and our method are com-
pared in this subsection. Firstly, we test the recovery performance in noiseless
case and run over all the molecules in subsection 5.1. The recovered results with
one bipolar mask is shown in subsection 5.3, where (TC1) is employed. It can be
observed that our method recovers all molecules successfully, while TVB failed
for three molecules (boxed in red). Next, we test the recovery performance in
noisy case and (TC2) is used. subsection 5.3 presents the recovered images by
TVB and our method with one bipolar mask under different types of noise. It
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(a) HIO (b) PhaseCut (c) WirtingerFlow (d) TVB (e) our method

Figure 7: Recovery results under mixed Gaussian-Poisson noise.

shows that TVB fails with chaotic outputs, while our method computes better
results in the terms of recovering the locations of the atoms successfully.

In summary, the performance of TVB and our method is close in noiseless
case, although our method is slightly better. However, our method offers better
recovery than TVB in noisy case.

6. Conclusions

In this paper, we apply the wavelet tight frame approaches to phase re-
trieval problem. Hybrid fidelity and penalty terms are used and a data-driven
algorithm is designed. Numerical results show that our method outperforms
several state-of-the-art methods in terms of both the minimal number of mea-
surements required for a high quality recovery and robustness to complicated
noise. This ability makes our method quite practical in applications such as
X-ray crystallography, where the radiation dose should be controlled strictly.
Future directions include the investigation of our method on real data from
X-ray experiments and so on.

7. Proofs

7.1. Proof of Lemma 1

Proof. Let y = r ◦ exp(iθ), where r ∈ Rm+ , θ ∈ Rm. Denote hk+1 = |hk+1| ◦
exp(iφk+1), φk+1 ∈ [0, 2π)m. If |hk+1

j | = 0, we define φk+1
j = 0. Then (17b)

25



(a) TVB (b) our method

Figure 8: Recovered results with one bipolar mask in noiseless case.

(a) (b) (c) (d)

Figure 9: Recovered images of TVB (the first row) and our method (the second row) with
one bipolar mask. (a) single Poisson noise, α = 1e− 2; (b) single Gaussian noise, β = 1e− 3;
(c) mixed Gaussian noise, β1 = 1e − 3, β2 = 1e − 4; (d) mixed Gaussian-Poisson noise,
β = 1e− 4, α = 1e− 2.
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reduces to
min

r∈Rm+ ,θ∈Rm
ϕ(r, θ) = 1

2‖r exp(iθ)− hk+1‖22
s.t. ω1‖r − b‖1 + ω2‖r − b‖22 ≤ ε.

(39)

Obviously, the optimal solution of θ is achieved when θk+1
j = φk+1

j , j =

1, · · · ,m. Substituting θk+1 into (39) yields the following optimization problem
which only involves r:

min
r∈Rm+

1
2‖r − |h

k+1|‖22
s.t. ω1‖r − b‖1 + ω2‖r − b‖22 ≤ ε.

(40)

Actually, the non-negative constraint on r can be thrown away. Because if
r ∈ Rm is feasible, max{0, r} ∈ Rm+ is also feasible and has a smaller objective
value. Then (40) can be reduced to the following problem

rk+1 = arg min
r∈∆′

1

2
‖r − |hk+1|‖22, (41)

where ∆′ = {r ∈ Rm : ω1‖r − b‖1 + ω2‖r − b‖22 ≤ ε}. Note that ∆′ is a convex
set. Hence, the projection onto ∆′ is unique. In other words, rk+1 is a unique
solution of (41).

Let q = r − b, p = |hk+1| − b ∈ Rm. Then r = q + b, and (41) can be
equivalently written as

min
q∈Rm

1
2‖q − p‖

2
2

s.t. ω1‖q‖1 + ω2‖q‖22 ≤ ε.
(42)

For convenience, we define Λ′ = {q ∈ Rm : ω1‖q‖1 + ω2‖q‖22 ≤ ε}.
(i) is obvious, we only need to prove (ii).
(ii). For constrained problem (42), the KKT conditions are as follows

0 ∈ qi − pi + βω1∂‖qi‖1 + 2βω2qi, i = 1, · · · ,m, (43a)

β(ε− ω1‖q‖1 − ω2‖q‖22) = 0, β ≥ 0, (43b)

ω1‖q‖1 + ω2‖q‖22 ≤ ε. (43c)

If β = 0, (43a) gives q = p, which violates condition (43c). Therefore, β > 0,
and (43c) holds with equality. Then, the optimal solution of (42) is given by

q(β) =
1

1 + 2βω2
Γβω1

(p). (44)

Furthermore, q(β) has to satisfy

ω1‖q(β)‖1 + ω2‖q(β)‖22 = ε. (45)

Denote l(β) = ω1‖q(β)‖1 + ω2‖q(β)‖22 − ε. We have the following observations.
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(a) l(β) is a monotonically decreasing continuous function at β ∈ [0,+∞);

(b) l(0) = w1‖p‖1 +w2‖p‖22 − ε > 0, l(
|p↑m|
ω1

) = −ε < 0; (c) l is piecewise smooth

with nonsmooth points
|p↑i |
ω1
, i = 1, · · · ,m. Items (a) and (b) imply that (45)

has unique root in
(
0,
|p↑m|
ω1

)
. We denote it as βk+1. Once βk+1 is obtained,

q(βk+1) can be calculated accordingly. Therefore, rk+1 = q(βk+1) + b and

yk+1 = rk+1 ◦ eiθk+1

, which gives Lemma 1.
Next, we take a further look at βk+1. Based on (a) - (c), we can find a unique

β satisfying (45) in one of the intervals
(

0,
|p↑1 |
ω1

]
,
(
|p↑1 |
ω1
,
|p↑2 |
ω1

]
, · · · ,

(
|p↑m−1|
ω1

,
|p↑m|
ω1

]
.

If the wanted β falls into the interval

(
|p↑j |
ω1
,
|p↑j+1|
ω1

]
(j = 0, 1, . . . ,m−1 with

|p↑0 |
ω1

denotes 0), then (45) reduces to Lemma 1, the closed form of β can be solved
easily. The proof is completed.

The remaining problem is to determine the interval

(
|p↑j |
ω1
,
|p↑j+1|
ω1

]
which β

falls into. By the intermediate value theorem, if we can find out two successive

nodes
|p↑j |
ω1

and
|p↑j+1|
ω1

such that l

(
|p↑j |
ω1

)
> 0 and l

(
|p↑j+1|
ω1

)
≤ 0, then there exists

a zero point of p(β) on the interval

(
|p↑j |
ω1
,
|p↑j+1|
ω1

]
. The binary search algorithm

stated in Algorithm 2 can be used to find out such an interval

(
|p↑j |
ω1
,
|p↑j+1|
ω1

]
.

Algorithm 2: Binary search algorithm to find the interval

(
|p↑j |
ω1
,
|p↑j+1|
ω1

)
1 Set L = 0, R = m.
2 while R > L+ 1 do
3 j = L+ bR−L2 c

4 If l

(
|p↑j |
ω1

)
< 0 , R = j; else L = j

5 Output: β locates in the interval

(
|p↑L|
ω1
,
|p↑L+1|
ω1

]
and is the root of the

quadratic equation with j = L in Lemma 1.

7.2. Proofs of Theorem 1
We first prove a lemma that shows the decay of the objective function values

of the iterative sequences. After some simplification, the Taylor’s expansion of
F2(α, y) with respect to α takes the form

F2(α+ ∆α, y) = F2(α, y) + 〈∇wαF2(α, y),∆α〉w + ∆ᾱH∆α. (46)

Lemma 2. Let {(αk, yk, λk)} be generated by (17) with t > 2λmax. Then it
holds

f(αk, yk−1, λk−1)− f(αk+1, yk, λk) ≥ (
t

2
− λmax)‖αk+1 − αk‖2. (47)
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Proof. Since αk+1 is the optimal solution of the subproblem

min
α∈CL

〈∇wαF2(αk, yk), α− αk〉w + F1(α, λk) +
t

2
‖α− αk‖2,

we have

〈∇wαF2(αk, yk), αk+1 − αk〉w + F1(αk+1, λk) +
t

2
‖αk+1 − αk‖2 ≤ F1(αk, λk).

Together with (46), it gives

f(αk+1, yk, λk) = F1(αk+1, λk) + F2(αk+1, yk)

= F1(αk+1, λk) + F2(αk, yk) + 〈∇wαF2(α, y), αk+1 − αk〉w
+(ᾱk+1 − ᾱk)H(αk+1 − αk)

≤ F2(αk, yk) + F1(αk, λk) + (ᾱk+1 − ᾱk)H(αk+1 − αk)− t

2
‖αk+1 − αk‖2

≤ f(αk, yk, λk) + (λmax −
t

2
)‖αk+1 − αk‖2.

That is,

f(αk, yk, λk)− f(αk+1, yk, λk) ≥ (
t

2
− λmax)‖αk+1 − αk‖2. (48)

Moreover, as yk minimizes F2(αk, y) and λk minimizes F1(αk, λ), there holds

f(αk, yk−1, λk−1)− f(αk, yk, λk) ≥ 0. (49)

Combining (48) and (49), the inequality (47) is proved.

Now using Lemma 2, we give a proof of Theorem 1 as follows.

Proof. Let g(α, y, λ) = f(α, y, λ) + δ∆(y) + δRL+(λ), where δ∆(y) and δRL+(λ)

are the indicator functions of the amplitude constraint set ∆ and the set RL+,
respectively. Then g(α, yk, λk) = f(α, yk, λk) for the sequences {yk} generated
by (17), as yk ∈ ∆ and λk ∈ RL+ for all k ∈ N. Since g is semi-algebraic,
it satisfies the Kurdyka- Lojasievicz property [40]. The proximal alternating
minimization (17) yields

0 ∈ ∇wαF2(αk+1, yk) +
t

2
(ᾱk+1 − ᾱk) + ∂wαF1(αk+1, λk), (50a)

0 ∈ ∇wy F2(αk, yk) + ∂yδ∆(yk), (50b)

0 ∈ ∇λF1(αk, λk) + ∂λδRL+(λk). (50c)

Thus, we have

Ψ(αk+1, yk, λk) =

 t
2 (ᾱk − ᾱk+1)

∇wy F2(αk, yk)−∇wy F2(αk+1, yk)
∇λF1(αk, λk)−∇λF1(αk+1, λk)

 ∈ ∂g(αk+1, yk, λk).

(51)

29



A straightforward calculation gives

‖∇wy F2(αk, yk)−∇wy F2(αk+1, yk)‖2 = 4‖AW (αk − αk+1)‖2
≤ 4‖AW‖2‖αk − αk+1‖2

(52)

and

‖∇λF1(αk, λk)−∇λF1(αk+1, λk)‖22
=

∑L
i=1

[(
ρ′1(λki )(|αki | − |α

k+1
i |)

)
+
(
ρ′2(λki )(|αki |2 − |α

k+1
i |2)

)]2
=

∑L
i=1

[
ρ′1(λki ) + ρ′2(λki )(|αki |+ |α

k+1
i |)

]2
(|αki | − |α

k+1
i |)2

≤
∑L
i=1

[
ρ′1(λki ) + ρ′2(λki )(|αki |+ |α

k+1
i |)

]2|αki − αk+1
i |2

≤ M‖αk − αk+1‖22,

(53)

where M = max{
[
ρ′1(λki ) + ρ′2(λki )(|αki | + |α

k+1
i |)

]2
: 1 ≤ i ≤ L, k ∈ N}. It is

clear that g(α, y, λ) is coercive. On the other hand, Lemma 2 states the decay
of g(αk+1, yk, λk) equivalently, so {λk} and {αk} are bounded. In addition, ρ′1
and ρ′2 are smooth functions on R. Thus, M is finite. Combining (51), (52),
and (53), we have

‖Ψ(αk+1, yk, λk)‖2 ≤
t

2
‖ᾱk − ᾱk+1‖2 + ‖∇wy F2(αk, yk)−∇wy F2(αk+1, yk)‖2

+ ‖∇λF1(αk, λk)−∇λF1(αk+1, λk)‖2

≤
( t

2
+ 4‖AW‖2 +

√
M
)
‖αk − αk+1‖2,

(54)
which means a subgradient lower bound for the iteration gaps similar as Lemma
4 in [40]. Together with Lemma 2, we can conclude that αk is convergent using
the same argument as Theorem 1 in [40].

Next, we prove that {yk} is convergent. In Lemma 1, yk is given by

yk = rk ◦ hk

|hk|
.

First, we show that {rk} is convergent. We know that rk is the unique projection
of |hk| on convex set ∆′, where hk = AWTαk. As {αk} is convergent, it is

obvious that {hk} is also convergent. Let ĥ denote the limit of {hk} and let r̂

denote the projection of ĥ on ∆′. Because ∆′ is closed and convex, the projection
operator P∆′ is continuous and nonexpansive. Thus we have

‖rk − r̂‖2 = ‖P∆′(h
k)− P∆′(ĥ)‖2 ≤ ‖hk − ĥ‖2 → 0.

That is, {rk} converges to r̂. In particular, it holds rk → 0 if hk → 0. As a
consequence, {yk} always converges. Moreover, the limit of {yk}, denoted by ŷ,
is still the optimal solution of

ŷ = arg min
y∈∆
‖y − ĥ‖. (55)
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Let α̂ denote the limit of {αk}. If α̂i 6= 0, there exits a positive number K
such that αki 6= 0 for all k > K. When Assumption 1 is satisfied, the condition
(15) gives

ρ′′1(λ̃ki ) + ρ′′2(λ̃ki )|αk+1
i | 6= 0, ∀k > K. (56)

Together with (23), we can conclude that λ̃ki is a continuous function of αk+1
i

using the implicit function theorem. As the maximum function is also continu-
ous, λki is continuous with respect to αk+1

i . Therefore, {λki } is convergent given

that {αki } is convergent. Let λ̂i denote the limit of {λki }. Taking limits on (22),

we get that λ̂i = max{0, ˆ̃λi}, where
ˆ̃
λi satisfies

ρ′1(
ˆ̃
λi) + ρ′2(

ˆ̃
λi)|α̂i| = 0.

It is clear that
λ̂i = arg min

λi∈R+

ρ′1(λi) + ρ′2(λi)|α̂i|. (57)

If α̂i = 0, let {αkji } denote all non-zero subsequences of {αki }. When {αkji }
is empty or finite, the convergence of {λki } is trivial. Otherwise, λ

kj
i satisfies

(22) and

λki = λ
kj
i , when kj ≤ k < kj+1.

Hence, {λki } is convergent if {λkji } is convergent. The proof of the convergence

of {λkji } is similar as above and (57) still holds.
(ii) F1(α, λ) and F2(α, y) are both convex with respect to α. We have

−
(
∇wαF2(αk+1, yk) +

t

2
(ᾱk+1 − ᾱk)

)
∈ ∂wαF1(αk+1, λk). (58)

For any α, there holds

F1(α, λk)− F1(αk+1, λk) + 〈∇wαF2(αk+1, yk) +
t

2
(ᾱk+1 − ᾱk), α− αk+1〉w ≥ 0.

(59)
Taking limits on both sides of the above inequality, and using αk+1 − αk → 0,
we obtain

F1(α, λ̂)− F1(α̂, λ̂) + 〈∇wαF2(α̂, ŷ), α− α̂〉w ≥ 0, (60)

which gives
0 ∈ ∇wαF2(α̂, ŷ) + ∂wαF1(α̂, λ̂). (61)

Thus, (28) is proved.
We can get (30) directly from (57) and the relationship (29) has already

been proved by (55). This completes the proof.
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