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What’s New?

Multilevel/Multigrid Methods in “Siam Conference on
Optimization 2008”

One plenary talk: “Multiscale Optimization”
One dedicated session
Four sessions on PDE-Based problems which are mainly
handled by multigrid methods
Almost 20 invited and contributed talks
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Statement of Problem

Consider solving problem minu∈V F(u)

Infinite-dimensional problem: F is a functional
F has a closely related representations {fh} on a
hierarchical discretization levels h.

Discretize-then-Optimize scheme: min fh
Solutions of {min fh} might have similar structures

Figure: Solution Structure of F(u) =
∫

Ω

√
1 + ‖∇u(x)‖2 dx
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(a) Level 4
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(b) Level 5
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(c) Level 6

Wen, Goldfarb Line Search MG



Motivation
A Line Search Multigrid Method

Numerical Results

Statement of Problem
Previous Work

Sources of Problems

Applications in nonlinear PDEs, image processing:

min
u∈U
F(u) =

∫
Ω
L(∇u,u, x) dx

PDE-constrained optimization: optimal control problems
and inverse Problems. Example: finding a local volatility
σ(t , x) such that the prices C(T ,S) from the Black-Scholes
PDEs match the observed prices on the market.

min J(C, σ) :=
∑

I

|C(Si ,Ti)− z(Si ,Ti)|2 + αJr (σ)

s.t. ∂τC − σ2K 2

2
∂2

KK C + (r − q)K∂K C + qC = 0,

C(0,K ) = (S − K )+, K > 0, τ ∈ (0,+∞),

where Jr (σ) is the regularization term.
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Mesh-refinement Method

Finest Level Problem

Prolongation

Finer Level Problem

Prolongation. . . . . . . . .

Coarser Level Problem

Prolongation

Coarsest Level Problem

Finest Level Problem

Restriction Prolongation

Finer Level Problem

Restriction Prolongation. . . . . . . . .

Coarser Level Problem

Restriction Prolongation

Coarsest Level Problem
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Linear Multigrid Methods

Multigrid method for solving Ahxh = bh,Ah � 0
Inter-grid operations: Restriction Rh, Prolongation Ph.
Smoothing: reducing high frequency errors efficiently
Coarse grid Correction: Let Ah−1 = RhAhPh.

Algorithm

Multigrid-cycle: xh,k+1 = MGCYCLE(h, Ah, bh, xh,k )

-PRE-SMOOTHING: Compute x̄h,k = xh,k + Bh(bh − Ahxh,k ).
-COARSE GRID CORRECTION:

Compute the residual r̄h,k = bh − Ah x̄h,k .
Restrict the residual r̄h−1,k = Rh r̄h,k .
-Solve the Coarse Grid Residual Equation Ah−1eh−1,k = r̄h−1,k

IF h − 1 = N0, solve eh−1,k = A−1
h−1 r̄h−1,k ,

ELSE call eh−1,k = MGCYCLE(h − 1, Ah−1, r̄h−1,k , 0).
Interpolate the correction: eh,k = Pheh−1,k .
Compute the new approximation solution: xh,k+1 = x̄h,k + eh,k .

Smoothing

Rh
Smoothing

RH PH

Ph

fine

coarse

coarsest
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Methods for Solving nonlinear PDEs

Global linearization method (Newton’s Method)
Local linearization method, such as the full approximation
scheme (Brandt, Hackbusch)
Combination of global and local linearization method (Irad
Yavneh, Gregory Dardyk)
Projection based multilevel method (Stephen Mccormick,
Thomas Manteuffel, Oliver Rohrle, John Ruge)
Multigrid methods for obstacle problems (Ralf Kornhuber,
Carsten Graser)
. . .
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Multigrid Methods for Optimization

Traditional optimization methods where the system of
linear equations is solved by multigrid methods (A.Borzi,
K.Kunisch, Volker Schulz, Thomas Dreyer, Bernd Maar,
U.M.Ascher, E.Haber)
The multigrid optimization framework proposed by Nash
and Lewis. (extensions given by A.Borzi)
The recursive trust region method for unconstrained and
box-constrained optimization (S. Gratton, A. Sartenaer, P.
Toint, M. Weber, D. Tomanos, M.Mouffe, M. Ulbrich, S.
Ulbrich, B. Loesch)
Multigrid method for image processing (Raymond Chan,
Ke Chen, Xue-cheng Tai, Tony Chan, Elad Haber, Jan
Moderstitzki)
. . .
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General Idea

Consider
min

xh∈Vh
fh(xh)

on a class of nested spaces VN0 ⊂ · · · ⊂ VN−1 ⊂ VN ⊂ V.

General idea of line search:

xh,k+1 = xh,k + αh,kdh,k , dh,k ∈ Vh,

where dh,k is the search direction and αh,k is the step size.
General idea of using coarse grid information:

dh,k = arg min
dH∈VH

fh(xh,k + dH).
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An illustration of the multigrid optimization framework.

A direct search direction (Taylor iteration), marked by→, is
generated on the current level.
A recursive search direction, marked by 99K, is generated
from the coarser levels.
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Construction of recursive search direction

If condition (Gratton, Sartenaer, Toint)

‖Rhgh,k‖ ≥ κ‖gh,k‖, ‖Rhgh,k‖ ≥ εh

hold, we compute

recursive search direction

dh,k = Phd∗H = Ph(xH,i∗ − xH,0) = Ph

(
i∗−1∑
i=0

αH,idH,i

)
,

Two major difficulties:
1 The calculation of fh(xh,k + dH) might be expensive.
2 The recursive direction might not be a descent direction.
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Construction of the Coarse Level Model

Coarse Level Model (Nash, 2000)

min
xH
{ψH(xH) ≡ fH(xH)− (vH)>xH},

where vH = ∇fH,0 − Rhgh,k and gh,k = ∇ψh(xh,k ).

Define vN = 0, then fN(xN) = ψN(xN)

The scheme is compatible to the FAS scheme
Second order coherence about the Hessian can also be
enforced

Wen, Goldfarb Line Search MG
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Properties of “Recursive Search Direction” dh,k

Assumption

Assume σhPh = R>h .

First-order coherence

gH,0 = Rhgh,k , (dh,k )>gh,k = (d∗H)>gH,0.

If f (x) is convex, the direction dh,k is a descent direction
(dh,k )>gh,k < 0 and the directional derivative (dh,k )>gh,k
satisfies

−(dh,k )>gh,k ≥ ψH,0 − ψH,i∗ .

Wen, Goldfarb Line Search MG
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Failure of recursive search direction

Consider “Rosenbrock” function

ϕ(x) = 100(x2 − x2
1 )2 + (1− x1)2

Local minimizer x∗ = (1,1)>, initial point x0 = (−0.5,0.5)>.
Search along the direction x∗ − x0?

∇ϕ(x0)>(x∗ − x0) = (47,50)(1.5,0.5)> = 95.5 > 0
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Obtaining a “descent” recursive direction

Convexify the function f (x) on the coarser level. For
example, setting ψ̂H = ψH + λH‖xH − xH,0‖22.
Trust region method:

min mh(sh,k ), subject to sh,k ∈ Bh

Line search method, but checking the decent condition at
each step.
Non-monotone line search
Watch-dog technique

Wen, Goldfarb Line Search MG
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A New Line Search Scheme

Given the direction dh,k = Phd̃H,i = Ph(xH,i − xH,0).

One can check g>h,kdh,k on the coarser levels since the first

order coherence: g>h,kdh,k = g>H,0d̃H,i

Since ψH(xH,i) ≈ ψH(xH,0) + g>H,0(xH,i − xH,0), we check

ψH(xH,i) > ψH,0 + ρ2g>H,0d̃H,i = ψH,0 + ρ2g>h,kdh,k

Then
g>h,kdh,k < ρ−1

2 (ψH(xH,i)− ψH,0) ≤ 0

Sufficient reduction of the function value (Armijo
Condition):

ψh(xh,k + αh,kdh,k ) ≤ ψh,k + ρ1αh,k (gh,k )>dh,k

Wen, Goldfarb Line Search MG
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A New Line Search Scheme

Line search conditions on the coarser level

(A) ψh(xh,k + αh,kdh,k ) ≤ ψh,k + ρ1αh,k (gh,k )>dh,k .

(B) ψh(xh,k + αh,kdh,k ) > ψh,0 + ρ2g>h,0(xh,k + αh,kdh,k − xh,0)

Condition (B) is similar to the Goldstein rule if k = 0 and
ρ2 = 1− ρ1.

Algorithm

Backtracking Line Search

Step 1. Given αρ > 0, 0 < ρ1 <
1
2 and 1− ρ1 ≤ ρ2 ≤ 1. Let α(0) = αρ . Set l = 0.

Step 2. If (h = N and condition (A) is satisfied) or if (h < N and both conditions (A) and (B) are satisfied),
RETURN αh,k = α(l).

Step 3. Set α(l+1) = τα(l), where τ ∈ (0, 1). Set l = l + 1 and go to Step 2.

Wen, Goldfarb Line Search MG
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Existence of the step size

The first step size αh,0 always exists!
Suppose αh,i for i = 0, · · · , k exist, then αh,k+1 also exists.

Define φh,k := ψh,0 + ρ2g>h,0(xh,k − xh,0).
ψh,k > ψh,0 + ρ2g>h,0(xh,k−1 + αh,k−1dh,k−1 − xh,0) = φh,k

Condition (B): ψh(xh,k + αh,k dh,k ) > φh,k + ρ2αh,k g>h,0dh,k

ψh(xh,k + αdh,k)

ψh,k

τ4

φh,k

τ1 τ3τ2

ψh,k + ρ1αg⊤h,kdh,k

φh,k + ρ2α(g1
h,0)⊤dh,k

φh,k + ρ2α(g2
h,0)⊤dh,k

Exit MG if the step size is too small

Wen, Goldfarb Line Search MG
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Choice of direct search direction

We require that a direct search satisfy

Direct Search Condition

‖dh,k‖ ≤ βT ‖gh,k‖ and − (dh,k )>gh,k ≥ ηT ‖gh,k‖2.

The following directions satisfy the condition (convex)
Steepest descent direction dh,k = −gh,k .
Exact Newton’s direction dh,k = −G−1

h,kgh,k .
Inexact Newton’s direction generated by the conjugate
gradient method.

Other possible choices:
Inexact Newton’s direction generated by the linear multigrid
method
Limited-memory BFGS direction

Wen, Goldfarb Line Search MG
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The Algorithm

Algorithm

xh = MGLS(h, xh,0, g̃h,0)

Step 1. Given κ > 0, εh > 0 and ξ > 0 and an integer K .
Step 2. IF h < N, compute vh = ∇fh,0 − g̃h,0, set gh,0 = g̃h,0;

ELSE set vh = 0 and compute gh,0 = ∇fh,0.
Step 3. FOR k = 0, 1, 2, · · ·

3.1. IF ‖gh,k‖ ≤ εh or IF h < N and k ≥ K,
RETURN solution xh,k ;

3.2. IF h = N0 or ‖Rhgh,k‖ < κ‖gh,k‖ or ‖Rhgh,k‖ < εh

-Direct Search Direction Computation.
Compute a descent search direction dh,k on the current level.

ELSE

-Recursive Search Direction Computation.
Call xh−1,i∗ = MGLS(h − 1,Rhxh,k ,Rhgh,k ) to return a solution (or approximate solution)
xh−1,i∗ of “minxh−1 ψh−1(xh−1)".

Compute dh,k = Ph
edh−1,i∗ = Ph(xh−1,i∗ − Rhxh,k ).

3.3. Call the backtracking line search Algorithm to obtain a step size αh,k .
3.4. Set xh,k+1 = xh,k + αh,k dh,k . IF αh,k ≤ ξ and h < N, RETURN solution xh,k+1.

Wen, Goldfarb Line Search MG
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Convergence for Convex functions

Let ρ2 = 1. Assume fh(x) is twice continuously differentiable
and uniformly convex. Suppose the “direct search” Condition is
satisfied by all direct search steps.

1 The step size αh,k is bounded below by a constant.
2 −d>h,kgh,k ≥ ηh‖gh,k‖2 and cos(θh,k ) ≥ δh, where θh,k is the

angle between dh,k and −gh,k .
3 {xN,k} converges to the unique minimizer {x∗N} of fN(xN).
4 The rate of convergence is at least R-linear.
5 For any ε > 0, after at most τ =

log((fN(xN,0)−fN(x∗N))/ε)
log(1/c)

iterations, where 0 < c = 1− χα∗ηN
2 < 1, we have

fN(xN,k )− fN(x∗N) ≤ ε.

Wen, Goldfarb Line Search MG
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Convergence for general nonconvex functions

Let 1− ρ1 ≤ ρ2 < 1. Assume all direct search direction dh,k
satisfy the “direct search” condition; the level set

Dh = {xh : ψh(xh) ≤ ψh(xh,0)}

is bounded; the objective function ψh is continuously
differentiable and the gradient ∇ψh is Lipschitz continuous.

1 The step size and the directional derivative of the first
iteration of each minimization sequence on the coarser
levels can be bounded from below by the norm of gradient
raised to some finite power

2 At the uppermost level limk→∞‖∇fN(xN,k )‖ = 0.

Wen, Goldfarb Line Search MG
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Implementation Issues

Discretization of the problems
Choices of the direct search direction
Prolongation and Restriction operator
Full multigrid method
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Sharing information on different minimization sequences

P(l) : minψ(l)
h (xh) = fh(xh)− (v (l)

h )>xh,

P(l+1) : minψ(l+1)
h (xh) = fh(xh)− (v (l+1)

h )>xh,
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We compared the following three algorithms:
1 The standard L-BFGS method, denoted by “L-BFGS”.
2 The mesh refinement technique, denoted by “MRLS”.
3 The full multigrid Algorithm with one “smoothing” step,

denoted by “FMLS”.
Implementation detail:

The problems are discretized by finite difference.
The initial point in the “FMLS” Algorithm is taken to be the
zero vector. For the “MGLS” Algorithm , we set

κ = 10−4, εh = 10−5/5N−h,K = 100, ρ1 = 10−3, ρ2 = 1−ρ1.

The number of gradient and step difference pairs stored by
the L-BFGS method was set to 5.

Wen, Goldfarb Line Search MG
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Minimal Surface Problem

Consider the minimal surface problem

min f (u) =

∫
Ω

√
1 + ‖∇u(x)‖2 dx

s.t. u(x) ∈ K = {u ∈ H1(Ω) : u(x) = u1
Ω(x) for x ∈ ∂Ω},

(1)

where Ω = [0,1]× [0,1] and

uΩ(x) =

{
y(1− y), x = 0,1,
x(1− x), y = 0,1.
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Minimal Surface Problem

Table: Summary of computational costs
L-BFGS

h nls nfe nge ‖g∗N‖2 CPU
8 820 837 821 7.614301e-06 169.0924

FMLS MRLS
h 3 4 5 6 7 8 3 4 5 6 7 8

nls 268 150 96 61 22 10 17 26 45 66 88 25
nfe 355 236 140 80 28 12 20 27 47 71 91 26
nge 324 181 112 67 24 11 18 27 46 67 89 26
‖g∗N‖2 7.198984e-06 9.031382e-06
CPU 3.913212 7.363142

h indicates the level; “nls", “nfe” and “nge" denote the total number of line searches, the total
number of function evaluations and the total number of gradient evaluations at that level, re-
spectively. We also report the total CPU time measured in seconds and the accuracy attained,
which is measured by the Euclidean-norm ‖g∗N‖2 of the gradient at the final iteration.
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Minimal Surface Problem

Figure: Iteration history of the “FMLS” method
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Nonlinear PDE

Consider the nonlinear PDE:

−∆u + λueu = f in Ω,

u = 0 on ∂Ω,
(2)

where λ = 10, Ω = [0,1]× [0,1] and

f =
(

9π2 + λe((x2−x3) sin(3πy))(x2 − x3) + 6x − 2
)

sin(3πy),

and the exact solution is u = (x2 − x3) sin(3πy). The
corresponding variational problem is

minF(u) =

∫
Ω

1
2
|∇u|2 − λ(ueu − eu)− fu dx .

Wen, Goldfarb Line Search MG
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Nonlinear PDE

Table: Summary of computational costs
L-BFGS

h nls nfe nge ‖g∗N‖2 CPU
8 431 463 432 8.858409e-06 56.4617

FMLS MRLS
h 3 4 5 6 7 8 3 4 5 6 7 8

nls 182 101 50 28 13 8 16 27 49 58 69 59
nfe 234 144 73 41 18 11 20 31 53 61 75 60
nge 208 114 56 32 15 9 17 28 50 59 70 60
‖g∗N‖2 5.190493e-06 9.401884e-06
CPU 3.052931 12.225726

h indicates the level; “nls", “nfe” and “nge" denote the total number of line searches, the total
number of function evaluations and the total number of gradient evaluations at that level, re-
spectively. We also report the total CPU time measured in seconds and the accuracy attained,
which is measured by the Euclidean-norm ‖g∗N‖2 of the gradient at the final iteration.
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Nonlinear PDE

Figure: Iteration history of the “FMLS” method
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Summary

Interpretation of Multigrid in optimization
A new globally convergent line search algorithm by
imposing a new condition on a modified backtracking line
search procedure

Outlook
More efficient “direct search” directions?
Multigrid for constrained optimization?

Thanks
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