
SUBSPACE METHODS WITH LOCAL REFINEMENTS FOR EIGENVALUE
COMPUTATION USING LOW-RANK TENSOR-TRAIN FORMAT

JUNYU ZHANG†, ZAIWEN WEN‡, AND YIN ZHANG§

Abstract. Computing a few eigenpairs from large-scale symmetric eigenvalue problems is far beyond the
tractability of classic eigensolvers when the storage of the eigenvectors in the classical way is impossible. We
consider a tractable case in which both the coefficient matrix and its eigenvectors can be represented in the low-rank
tensor train formats. We propose a subspace optimization method combined with some suitable truncation steps to
the given low-rank Tensor Train formats. Its performance can be further improved if the alternating minimization
method is used to refine the intermediate solutions locally. Preliminary numerical experiments show that our al-
gorithm is competitive to the state-of-the-art methods on problems arising from the discretization of the stationary
Schrödinger equation.

Key words. high-dimensional eigenvalue problem, tensor-train format, alternating least square method, sub-
space optimization method

1. Introduction. The need for computing a set of smallest or largest eigenvalues and
their corresponding eigenvectors frequently arises from diverse fields in statistics, signal pro-
cessing, data mining or compression, and from nonlinear eigenvalues problems in electronic
structure calculations. Given a symmetric matrix A ∈ RN×N and an integer p� N , finding
the p-smallest eigenpairs is equivalent to solving the trace-minimization problem

(1.1) min
U∈RN×p

Tr(U>AU), s.t. U>U = Ip,

where Tr(A) is the summation of the diagonal elements of a square matrix A and Ip is the
order p identity matrix. In this paper, we are interested in large-scale problems whose size N
can be up to 1042. For example, when solving the Schrödinger equation in quantum mechan-
ics, the discretized matrix can be as large as nd×nd, where n stands for the discretized point
in one dimension and d represents the dimension. Even the storage of the matrix A or the
eigenvectors U may be impossible and it is far beyond the tractability of classic eigensolvers.

The low-rank tensor representation enables us to handle the high-dimensional problem
(1.1) efficiently. For instance, by viewing a vector in Rnd as the vectorization of a tensor

in R

d︷ ︸︸ ︷
n× · · · × n, and viewing matrices in Rnd×nd as a reshaped tensor in R

2d︷ ︸︸ ︷
n× · · · × n,

these vectors and matrices often possess good low-rank structures or allow low-rank approx-
imations with a high accuracy, especially for discretized eigenvalue problems from partial
differential equations (PDE). In fact, low-rank tensor representation is a promising tool in
data compression and there have been a wide variety of low-rank tensor formats, including
canonical polyadic (CP), Tucker, Hierarchical Tucker, tensor-train (TT) and quantized tensor-
train (QTT) formats. The interested reader is referred to [10] and the references therein for
an overview of CP and Tucker formats, and to [14, 4, 13] for the properties and operations
on Hierarchical Tucker format. A relatively complete introduction of the basic properties of
the TT format is provided in [19]. The recent development of the TT format and its various

†Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, USA
(zhan4393@umn.edu). Research supported in part by NSF Grant CMMI-1462408.

‡Beijing International Center for Mathematical Research, Peking University, Beijing, CHINA
(wenzw@pku.edu.cn). Research supported in part by NSFC grant 11322109, and by the National Basic
Research Project under the grant 2015CB856000.

§Department of Computational and Applied Mathematics, Rice University, Houston, UNITED STATES
(yzhang@rice.edu). Research supported in part by NSF DMS-1115950 and NSF DMS-1418724.

1

2 J. ZHANG, AND Z. WEN

applications can be found in the survey paper [5]. The QTT format [18] is a further com-
pression of the TT format and the application of the QTT format can often speed up methods
using the TT format.

In this paper, we choose the BTT format because it has a simple structure and convenient
numerical operations. Our goal is to solve (1.1) under a low-rank BTT format T, where the
detailed definitions of the BTT format T will be introduced in section 2. Suppose that the
matrix A in (1.1) itself can be expressed in the TT format. Let U be the BTT representation
of U . Then the trace-minimization problem becomes

(1.2) min
U∈RN×p

Tr(U>AU), s.t. U>U = Ip and U ∈ T,

where U ∈ T means that all operations are performed in the BTT format. Due to the tractabil-
ity of the operations involving the BTT format, problem (1.2) is much more computational
friendly than the original problem (1.1).

Algorithms for solving (1.2) highly rely on the representations of the BTT format. The
standard iterative eigensolvers have been extended with low-rank tensor representation for
matrices and vectors/block vectors in [1, 12, 15]. In particular, the so-called locally opti-
mal preconditioned conjugate gradient (LOBPCG) method [9] is applied to the Hierarchical
Tucker format in [12] for calculating only the smallest eigenvalue. Although these tensor
formats can cover high dimensional data with a relatively low rank and the classic iterative
methods can solve certain examples, they exhibit convergence and robustness issues. An-
other difficulty is that the rank of some intermediate vectors increases iteration by iteration
and they have to be compressed to lower rank carefully. The most successful framework is
based on the technique of alternating minimization (block coordinate descent) method, such
as alternating linear scheme (ALS) and its variations [2, 8, 12]. Basically, the variables in
the BTT format are expressed blocks by blocks naturally according to its structure. Then the
objective function is minimized with respect to only one block of variables while all other
blocks are fixed at each iteration. Applying the unfolding properties of the BTT format, this
subproblem itself is a linear eigenvalue problem of a smaller size and can be solved efficiently
by standard eigensolvers. An algorithm called EVAMEn is developed in [11]. It also uses the
ALS framework but enriches each core locally based on preconditioned residual information.
The subproblems are in the same fashion as ALS and they again are solved by the LOBPCG
method. Numerical examples show that EVAMEn can be more efficient than ALS in a few
cases.

In this paper, we propose a truncated subspace optimization method for solving (1.2)
whose solutions are represented in the low-rank BTT formats. The main challenge of a direct
extension of the subspace optimization method [16] is that the TT-ranks increase dramati-
cally after several operations between tensor formats, such as the addition in the TT formats
and matrix-vector multiplications in the TT format. Consequently, the computational cost of
all subsequent operations becomes more and more expensive and eventually prohibitive as
the TT-ranks increase. Our strategy is to add projections to the given TT formats at some
suitable places so that the overall computational cost is still tractable while the accuracy is
still maintained. This scheme itself can be interpreted as an inexact alternating minimization
procedure between finding eigenpairs in a subspace and enforcing the given low-rank ten-
sor representation. Its performance can be further improved if the ALS method is used to
refine the intermediate solutions locally. Preliminary numerical experiments show that our
algorithm is quite promising comparing to the ALS method and EVAMEn on problems aris-
ing from the discretization of the stationary Schrödinger equation. In particular, our method
may has its advantage when solving the linear eigenvalue problem in the ALS method and
EVAMEn is still time consuming.

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 3

Organization and notations. The rest of this paper is organized as follows. The low-
rank TT and BTT formats as well as the operator TT format are introduced in section 2.
Some properties of these TT formats are reviewed in section 3. In section 4, we propose
the truncated subspace optimization method with local refinements. Numerical results are
presented in section 5. Finally, we conclude the paper in section 6.

We adopt the following notation. The operations x⊗ y and x� y denote the Kronecker
and Hadamard products between x and y, respectively. The ordinary upper case letters de-
note matrices, including a block of vectors; the ordinary lower case letters denote vectors;
the bold-faced upper case letters represent tensors and the tensor representation for matrices
and a block of vectors; the bold-faced lower case letters represent tensors and and the ten-
sor representation for vectors. When a same letter appears in both ordinary and bold-faced
letterforms, for example u and u, then u is a vector and u is the tensor representation of u.

2. The TT Formats for Vectors and Matrices. For completeness of this paper, we
give a relatively detailed introduction on the TT formats and its variants. The interested
reader is referred to [11] for further information. A vector u ∈ RN with N = n1n2 . . . nd
can be reshaped as a tensor u ∈ Rn1×n2×···×nd whose entries ui1i2...id are aligned in reverse
lexicographical order, 1 ≤ iµ ≤ nµ, µ = 1, 2, . . . , d. The tensor u can be written in the TT
format if its entries can be expressed as

(2.1) ui1i2...id = U1(i1)U2(i2) · · ·Ud(id),

where Uµ(iµ) ∈ Rrµ−1×rµ , iµ = 1, 2, . . . , nµ and the dimensions rµ, µ = 0, 1, . . . , d, are
fixed with r0 = rd = 1. The tuple {r0, r1, . . . , rd} is called the TT-rank. For each µ,
the tensor Uµ ∈ Rrµ−1×nµ×rµ formed by stacking the matrices Uµ(iµ), iµ = 1, . . . , nµ, is
called the µth TT core of u. Therefore, a vector u of size O(nd) can be stored with O(dnr2)
elements, if the corresponding tensor u has a TT representation or it can be approximated by
a TT format, with a maximal TT-rank r. A graphical representation of u is shown in Figure
2.1.

U1(i1)

r1

U1
r0

n1

r1

×
U2(i2)

r2
r1

U2
r1

r2

n2

×

U3(i3)

r3

r2

U3
r2

r3

n3

· · · · · ·

× ×

Ud-1

Ud-1(id-1)

rd-1

rd-2 rd-1

rd-2

rd-1

nd-1

· · · · · · ×

Ud
rd-1

rd

nd

Ud(id)

FIG. 2.1. Graphical representation of a TT tensor of order d with cores Uµ, µ = 1, 2, . . . , d. The first row is
for u and the second row is for its entry ui1i2...id .

Similarly, a matrix U ∈ RN×p with p� N can be expressed in the TT format. A simple
way is to derive tensors u1,u2, . . . ,up in the TT format for the first to the last columns of U ,
respectively. A more compact form is to share all but one core of these p tensors. Let the TT
cores of ui be U1,i,U2,i, . . . ,Ud,i, for i = 1, 2, . . . , p. Then the p tensors form a block-µ
TT (µ-BTT) format if

Ui,1 = Ui,2 = . . . = Ui,p = Ui, i = 1, 2, . . . , µ− 1, µ+ 1, . . . , d.

4 J. ZHANG, AND Z. WEN

Then the i1i2 · · · id entry of the jth tensor is

(2.2) U(i1, . . . , iµ,, id; j) = U1(i1) · · ·U jµ(iµ) · · ·Ud(id).

A graphical representation of the BTT format of U is depicted in Figure 2.2.

U1
r0

n1

r1

Uµ−1
rµ-2

rµ-1

nµ-1

Uµ,1

rµ−1

rµ

nµ

Uµ,p
rµ−1

rµ

nµ

Uµ+1
rµ

rµ+1

nµ+1

Ud
rd-1

rd

nd

FIG. 2.2. Graphical representation of a µ-BTT format.

Consider a matrix A ∈ Rm1m2···md×n1n2···nd whose rows and columns are both indexed
by multi-indices in reverse lexicographical order. If the entries of A can be written as

(2.3) Ai1i2···id,j1j2···jd = A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd),

where Aµ(iµ, jµ) ∈ Rrµ−1×rµ , iµ = 1, . . . ,mµ, jµ = 1, . . . , nµ, then the representation is
called the operator TT format A. Similarly, for each µ, the tensor Aµ ∈ Rrµ−1×mµ×nµ×rµ

constructed by stacking all matrices Aµ(iµ, jµ) is called the µth core of A. The tuple
{r0, r1, . . . , rd} with r0 = rd = 1 is called the TT-rank of A.

3. Properties of the TT formats.

3.1. Unfoldings of the TT formats. For a TT core Uµ, the left and right unfoldings are
given by

ULµ =

 Uµ(1)
...

Uµ(nµ)

 ∈ Rrµ−1nµ×rµ , URµ =
(
Vµ(1), · · · , Vµ(rµ)

)
∈ Rrµ−1×nµrµ ,

where Vµ(k) =
(
U

(k)
µ (1), · · · , U

(k)
µ (nµ)

)
and U (k)

µ (i) is the kth column of matrix
Uµ(i). Another pair of frequently used matrices are the interface matrices defined as

U≤µ = [U1(i1)U2(i2) · · ·Uµ(iµ)] ∈ Rn1n2···nµ×rµ ,

U≥µ = [Uµ(iµ)Uµ+1(iµ+1) · · ·Ud(id)]T ∈ Rnµnµ+1···nd×rµ−1 ,

where the rows and columns are aligned in reverse lexicographical order. It can be verified
that

U≤µ = (Inµ ⊗ U≤µ−1)ULµ and UT≥µ = URµ (U≥µ+1 ⊗ Inµ).(3.1)

Alternatively, the TT format can be expressed as a matrix-vector product. The properties
of the Kronecker products and (3.1) lead to

u = vec(U≤µ−1U
T
≥µ) = vec(U≤µ−1U

R
µ (UT

≥µ+1 ⊗ Inµ)) = U 6=µvec(UR
µ),(3.2)

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 5

where

(3.3) U 6=µ := (U≥µ+1 ⊗ Inµ ⊗U≤µ−1).

By substituting (3.1) into (3.2), we can extract two cores and build

(3.4) u = U 6=µ,µ+1vec(UL
µU

R
µ+1),

where

U 6=µ,µ+1 = U≥µ+2 ⊗ Inµ+1
⊗ Inµ ⊗U≤µ−1.

For a matrix U ∈ Rn1n2...nd×p, the unfolding properties (3.2) and (3.4) can be extended
to its µ-BTT tensor U. Applying them to each column of U gives

U = U 6=µ
(
vec(UR

µ,1) · · · vec(UR
µ,p)
)

(3.5)

= U 6=µ,µ+1

(
vec(UL

µ,1U
R
µ+1) · · · vec(UL

µ,pU
R
µ+1)

)
.(3.6)

3.2. Operations Related to the TT and BTT Formats. For simplicity, we will call the
vectorization of a TT tensor as a TT tensor if no confusion can arise. Almost all results of
the basic numerical linear algebraic operations, including vector additions, matrix by vector
products, the multiplication between a matrix in the BTT format and an ordinary matrix, are
still in the TT formats. We briefly describe a few of these operations as follows.

Consider two vectors u, v ∈ RN and their corresponding TT formats u,v with TT cores
Uµ and Vµ, for µ = 1, . . . , d. Let w = u+ v denote the addition of u+ v. Then w is again
a TT tensor with TT cores Wµ given by

W1(i1) =
(
U1(i1) V1(i1)

)
, Wd(id) =

(
Ud(id) Vd(id)

)>
,

Wk(ik) =

(
Uk(ik)

Vk(ik)

)
, ∀2 ≤ k ≤ d− 1.

It is easy to check that wi1i2···id = W1(i1)W2(i2) · · ·Wd(id). The TT-ranks of w is the
addition of the TT-ranks of u and v. The addition between two µ-BTT formats can be defined
in the same fashion and the details are omitted here.

The Hadamard product w = u � v between u and v is also a tensor in the TT format
with cores given by Wk(ik) = (Uk(ik)⊗ (Vk(ik)) since it can be verified that

Wi1i2···id = (U1(i1)U2(i2) · · ·Ud(id))⊗ (V1(i1)V2(i2) · · ·Vd(id))
= (U1(i1)⊗ V1(i1))(U2(i2)⊗ V2(i2)) · · · (Ud(id)⊗ Vd(id)).

Consider two matrices U ∈ RN×p and M ∈ Rp×k. Let U be the BTT format of U . Then
UM denotes the matrix multiplication UM , which can still be written in the BTT format. It
follows from the equation (3.5) that

UM = U 6=µ
(
vec(UR

µ,1) · · · vec(UR
µ,p)
)
M.

Hence, the 1, . . . , µ− 1, µ+ 1, . . . , dth cores of UM are the same as U while the µth cores
are the reshapes of

(
vec(UR

µ,1) · · · vec(UR
µ,p)
)
M .

When ULµ or (URµ)T is orthonormal, the TT core Uµ is called left or right orthonormal,
respectively. If ULµ is not orthonormal, one can compute the QR decomposition of ULµ as
ULµ = QR and substitute

(3.7) ULµ ← Q,URµ+1 ← RURµ+1.

6 J. ZHANG, AND Z. WEN

The unfolding property (3.4) implies that u is not changed under this new representation.
Similar substitutions apply to URµ as well. Hence, U≤µ−1 and U≥µ+1 can be made to have
orthonormal columns and rows, respectively, which implies that U6=µ and U 6=µ,µ+1 are or-
thogonal matrices. Consequently, a µ-BTT format can also be orthogonalized due to (3.5).

A µ-BTT format can be transformed to a (µ+ 1)-BTT format. Perform a minimal-rank
decomposition

[ULµ,1, . . . , U
L
µ,p] = Q[P1, . . . , Pp], Q ∈ Rrµ−1nµ×s, Pi ∈ Rs×rµ ,

where the minimal-rank decomposition can be obtained by, e.g., a QR decomposition with
column pivoting or an SVD. Then the cores are updated as

(3.8) ULµ ← Q and URµ+1,i ← PiU
R
µ+1,

and the rank is changed as rµ = s.

3.3. Operations Related to the Operator TT Formats. A summation of the Kronecker
products can be expressed in the operator TT format in (2.3). Suppose that

(3.9) A =

R∑
k=1

L
(k)
d ⊗ . . .⊗ L

(k)
2 ⊗ L(k)

1 ,

where L(k)
i , k = 1, . . . , R and i = 1, . . . , d, are matrices of suitable sizes. Then it has an

operator TT format with rank at most r1 = . . . = rd−1 = R and the corresponding matrices
in (2.3) are

A1(i1, j1) = [L
(1)
1 (i1, j1), . . . , L

(R)
1 (i1, j1)], Ad(id, jd) =


L
(1)
d (id, jd)

...
L
(R)
d (id, jd)

 ,

Aµ(iµ, jµ) =


L
(1)
µ (iµ, jµ)

L
(2)
µ (iµ, jµ)

. . .
L
(R)
µ (iµ, jµ)

 , µ = 2, . . . , d− 1.

A special form of (3.9) is

(3.10) A =

d∑
µ=1

Md ⊗ · · · ⊗Mµ−1 ⊗ Lµ ⊗Mµ+1 ⊗ · · · ⊗M1.

It has a rank-2 operator TT representation as

A1(i1, j1) = (L1(i1, j1), M1(i1, j1)) , Ad(id, jd) = (Md(id, jd), Ld(id, jd))
T
,

Aµ(iµ, jµ) =

(
Mµ(iµ, jµ) 0
Lµ(iµ, jµ) Mµ(iµ, jµ)

)
, µ = 2, . . . , d− 1.

Another specific matrix is

(3.11) A =

d−1∑
µ=1

Md ⊗ · · · ⊗Mµ+2 ⊗ Cµ+1 ⊗Bµ ⊗Mµ−1 ⊗ · · · ⊗M1,

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 7

whose operator TT format is

A1(i1, j1) =
(
0, B1(i1, j1), M1(i1, j1)

)
, Ad(id, jd) =

Md(id, jd)
Cd(id, jd)

0

 ,

Aµ(iµ, jµ) =

Mµ(iµ, jµ) 0 0
Cµ(iµ, jµ) 0 0

0 Bµ(iµ, jµ) Mµ(iµ, jµ)

 , µ = 2, . . . , d− 1.

The multiplication between a matrix in the operator TT format and a vector in the TT
format also gives a TT format. Consider a matrix A and a vector u defined by (2.1) and (2.3),
respectively. Let v = Au. Then we have

vi1i2···id =
∑

j1j2···jd
(A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd))⊗ (U1(j1)U2(j2) · · ·Ud(jd))

=
∑

j1j2···jd
(A1(i1, j1)⊗ U1(j1))(A2(i2, j2)⊗ U2(j2)) · · · (Ad(id, jd)⊗ Ud(jd))

=
∑
j1

(A1(i1, j1)⊗ U1(j1))
∑
j2

(A2(i2, j2)⊗ U2(j2)) . . .
∑
jd

(Ad(id, jd)⊗ Ud(jd)).

Hence, the TT cores of v are Vk(ik) =
∑
jk
Ak(ik, jk)⊗Uk(jk), k ∈ {1, 2, . . . , d}. The TT

ranks of v are bounded by the multiplications of the TT ranks of A and u.

3.4. Truncation of the BTT Formats. We now describe the truncation of the TT and
BTT formats by using a sequence of singular value decompositions (SVDs). Assume that the
SVD of UL

µ is UL
µ = USV >. The unfolding property (3.4) leads to

u = U 6=µ,µ+1vec(UL
µU

R
µ+1) = U 6=µ,µ+1vec(USV >UR

µ+1)(3.12)

= U 6=µ,µ+1vec(ŨL
µŨ

R
µ+1),

where ŨL
µ = U and ŨR

µ+1 = SV >UR
µ+1. Given a TT tensor u ∈ Rn1×···×nd with TT-rank

r and a maximal TT-rank R, we set Rµ = min(Rµ, rµ), µ = 0, 1, . . . , d. Therefore, u can
be truncated by applying the step (3.12) such that the rank of the µth core is smaller than Rµ.
A description of this truncation procedure based on SVD is presented in Algorithm 1.

Algorithm 1: SVD Truncation of a vector in the TT Format

1 Given a TT tensor u ∈ Rn1×···×nd with TT-rank r and a maximal TT-rank R.
2 Compute R← min(R, r), where the minimum is taken componentwisely.
3 for i = 1 : d− 1 do
4 Compute the SVD of UL

i as UL
i = USV >.

5 Set U ← U(:, 1 : Ri+1), S ← S(1 : Ri+1, 1 : Ri+1) and V ← V (:, 1 : Ri+1).
6 Set Ui and Ui+1 by properly reshape U and SV >UR

i+1, respectively.

We should point out that Algorithm 1 can not guarantee a small truncation error. It should
only be used when a low-rank approximation exists. There is a version in the reference [19]
with guarantees on the accuracy, but the low-rank properties may not be preserved.

The truncation of a collection of p vectors in the BTT format can be performed in the
same fashion as Algorithm 1. One only needs to truncate these tensors in one block and break

8 J. ZHANG, AND Z. WEN

it down into the BTT format again. Suppose that we have a µ-BTT format U with cores
U1, . . . ,Uµ−1,Uµ+1, . . . ,Ud, and Uj

µ, for j = 1, 2, . . . , p. By treating the block U as one
tensor in Rn1×···×nµ−1×(nµp)×nµ+1×···×nd and (iµ, j) as a long index in the lexicographical
order, then (2.2) can be rewritten in the form as

U(i1, . . . , ĩµ,, id) = U1(i1) · · ·Uµ−1(iµ−1)Ũµ(̃iµ)Uµ+1(iµ+1) · · ·Ud(id),

where ĩµ = (iµ, j) and Ũµ is a properly reshaped combination of the p cores. Hence, the
truncation procedure for a single tensor can be applied, then we break the truncated core Ũµ
into p cores and reconstruct the BTT format into U.

4. Truncated Subspace Optimization Methods. Let U ∈ RN×p and Tn,r,p be the set
of the BTT formats for a collection of p tensors such that the TT-ranks are no more than r
and the size is n = (n1, . . . , nd). Then the eigenvalue problem (1.2) is specified as

(4.1) min
U∈RN×p

Tr(U>AU), s.t. U>U = Ip and U ∈ Tn,r,p.

When the TT-rank of A is relatively low, problem (4.1) becomes tractable in the BTT format.
We next briefly review the subspace methods for solving the standard eigenvalue problem
(1.1), including the limited memory block Krylov subspace optimization method (LMSVD)
developed in [16] and the LOBPCG method [9]. Then we extend these algorithms to solve
the eigenvalue problem in the BTT formats.

4.1. Subspace Optimization Methods for Standard Eigenvalue Problems. Let (U (k),Λ(k))
be a Ritz-pair, i.e., the pair of approximated eigenvectors and their corresponding eigenvalues,
and S(k) be a chosen subspace with a block Krylov subspace structure at the kth iteration.
One solves a subspace trace minimization problem

(4.2) U (k+1) := arg min
U∈RN×p

Tr(U>AU), s.t. U>U = Ip, U ∈ S(k),

where U ∈ S(k) means that all columns of U are from the subspace S(k). The LOBPCG
method constructs S(k) as the span of the current iterate U (i), the conjugate gradient direction
P (k) = U (k) − U (k−1) and the residual vectors R(k) = AU (k) − U (k)Λ(k) as

(4.3) S(k) = span{U (k), R(k), P (k)}.

The term R(k) may be pre-multiplied by a pre-conditioning matrix. The subspace (4.3) is
essentially equivalent to

(4.4) S(k) ∈ span
{
U (k−1), U (k), AU (k)

}
,

In the LMSVD method, the subspace S(k) is spanned by the current i-th iterate and the
previous p iterates; i.e.,

S(k) := span
{
U (k), U (k−1), ..., U (k−q)

}
,(4.5)

where q is a suitable integer. In general, the subspace S(k) should be constructed such that
the cost of solving (4.2) can be kept relatively low.

Suppose that S is the collection of all blocks in S(k), for example, S = [U (k), R(k), P (k)]
in (4.3). It is clear that U ∈ S(k) if and only if U = SV for some V ∈ Rq×p with q =

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 9

3p. Then the subspace optimization problem (4.2) is equivalent to a generalized eigenvalue
decomposition problem:

(4.6) min
V ∈Rq×p

Tr(V >(S>AS)V), s.t. V >S>SV = Ip.

Numerical difficulty may arise in solving (4.6) when the matrix S>S is numerically rank
deficient. A more stable approach is to find an orthonormal basis for S(k), say

Q ∈ orth
(
S(k)

)
,

and to express a matrix U ∈ S(k) as U = QV for some V ∈ Rq×p. Here we assume that
S(k) has a full rank. The rank deficient case can be handled similarly. We now convert the
generalized eigenvalue problem (4.6) into an equivalent eigenvalue problem

(4.7) min
V ∈Rq×p

Tr(V >(Q>AQ)V), s.t. V >V = Ip.

A description of the subspace optimization algorithm is summarized in Algorithm 2.

Algorithm 2: A Subspace Optimization Framework

1 Given an initial guess U (0) ∈ RN×p and a matrix A ∈ RN×N . Set k = 0.
2 while not converge do
3 Construct a suitable subspace S(k).
4 Find an orthonormal basis Q of S(k).
5 Compute the eigenvalue decomposition V ΛV T = QTAQ.
6 Assemble U (k+1) = QV and set Λ(k+1) = Λ.

4.2. Truncated Subspace Optimization Methods Under the BTT Formats. Unfortu-
nately, Algorithm 2 cannot be used directly to solve the eigenvalue problems in the BTT for-
mats. The main challenge is that the TT-ranks increase dramatically after several operations
between tensor formats, such as the addition in the TT formats and matrix-vector multipli-
cations in the TT format. Consequently, the computational cost of all subsequent operations
becomes more and more expensive as the TT-ranks increase. Hence, projections to Tn,r,p at
some suitable places are necessary so that the overall computational cost is still tractable.

Each iteration (4.2) of our truncated subspace optimization methods is split into two
steps. First, the subspace S(k) is modified so that the computation of the coefficient matrix
QTAQ in the RR procedure is affordable. Let PT(U) be the truncation of U to the BTT
format Tn,r,p. One choice of the subspace is

(4.8) S(k)T = span{PT(AU(k)),U(k),U(k−1)}.

The subspace (4.4) can also be used but it requires two truncations as

(4.9) S(k)T = span{U(k),PT(R(k)),PT(P(k))}.

It is important to to use the projection of R(k) directly rather thanPT(PT(AU(k))−U(k)Λ(k)),
although the latter may be cheaper. The reason is that both AU(k) and U(k)Λ(k) can be large
while its subtraction is small.

10 J. ZHANG, AND Z. WEN

Then we compute Y(k+1) in the BTT format as

Y(k+1) := arg min
U∈RN×p

Tr(U>AU), s.t. U>U = Ip, U ∈ S(k)T .(4.10)

In general, we have that Y(k+1) /∈ Tn,r,p since the rank of Y(k+1) is larger than r due to
the addition of several BTT formats. However, because Y(k+1) is a linear combination of
the BTT formats PT(AU(k)),U(k) and U(k−1), problem (4.10) can be solved and Y(k+1)

is stored implicitly.
The next step is to truncate Y(k+1) to the required space Tn,r,p by using an orthogonal

projection as

(4.11) U(k+1) = arg min
U∈RN×p

‖U−Y(k+1)‖2F , s.t. U>U = Ip, U ∈ Tn,r,p.

The orthogonal projection (4.11) again can be solved by using the alternating minimization
scheme in the same fashion as the projection (4.16). The only difference between them is the
orthogonality constraints in (4.11). For the µth core, the new subproblem is

(4.12) min
V

‖U 6=µV − vec(Y(k+1))‖2F , s.t. V >U>6=µU 6=µV = Ip.

By imposing orthogonality on U 6=µ, (4.12) is reduced to

(4.13) min
V

‖V − U>6=µvec(Y(k+1))‖2F , s.t. V >V = Ip,

whose optimal solution is determined by the p-dominant SVD of U>6=µvec(Y(k+1)).
An outline of the above method is presented in Algorithm 3.

Algorithm 3: Truncated Subspace Optimization Methods (SPB)

1 Input A, initialize U(0) ∈ Tr and set k = 0.
2 while “not converged” do
3 Construct a suitable subspace S(k)T .
4 Compute Y(k+1) implicitly from the subspace problem (4.10).
5 Compute U(k+1) from (4.11).
6 Increment k and continue.

Similar to EVAMEn [11], our termination criteria is based on ||PT(R(k))||F ≤ tol,
where tol is a given tolerance. The projection of the residual to Tn,r,p is used because of
the requirement U ∈ Tn,r,p. Note that Algorithm 3 is faster per iteration when the TT rank
r is small. Hence, we also adopt a continuation strategy on the TT rank r in Algorithm 3
by starting from a small TT rank in our implementation. Then the TT rank is increased by
a given number when Algorithm 3 stagnates at the current rank. The continuation process is
terminated when Algorithm 3 stops with the given maximal TT rank.

4.3. Subspace Optimization with Local Refinements. Inspired by the block algo-
rithms with augmented Rayleigh-Ritz projections for large-scale eigenpair computation pro-
posed in [20], we propose to improve the convergence of Algorithm 3 by an iterative two-step
framework. At each iteration, the first step computes a better point U so that its column space
is a good approximation to the p-dimensional eigenspace spanned by p desired eigenvec-
tors. Once U is obtained, the subspace optimization step (4.10)-(4.11) extracts from a set of
approximate eigenpairs that are optimal in certain sense.

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 11

We next present the basic concept of the alternating minimization method. Given a block-
µ BTT U and a TT operator A, it follows from (3.5) that

(4.14) UTAU = V TA6=µV,

where A6=µ = UT6=µAU 6=µ and V =
(
vec(UR

µ,1), ..., vec(UR
µ,p)
)
. Since the columns of U 6=µ

can be easily orthogonalized, the matrix U is orthonormal if and only if V is orthonormal.
For the µth cores of U, the alternating minimization scheme first calculates

(4.15) min
V TV=I

Tr(V TA6=µV).

Then we replace the µth cores of U by the optimal solution V ∗ of (4.15) and shift U to be a
block-(µ + 1) BTT block by using (3.8). A similar procedure leads to a block-(µ − 1) BTT
block. Finally, we repeat this scheme core by core until the algorithm converges. A single left
to right operation of the ALS method is described in Algorithm 4 and its counterpart for the
right to left operation can be performed similarly. Several approaches can be used to accel-
erate this basic version of alternating minimization. One can construct a good preconditioner
for solving the subproblem (4.15) and add subspace enrichment by putting the gradient in-
formation into the subspace ran(U 6=µ). The detailed construction of the preconditioners and
local subspace correction are referred to [11].

Algorithm 4: A single left to right operation in ALS

1 Given A and a block-µ BTT block U ∈ Tr.
2 Orthonormalize U 6=µ by (3.7) or its counterpart for UR

i , i 6= µ, if UT6=µU 6=µ 6= I.

3 Replace Uµ,α by the optimal solution V of subproblem (4.15).
4 Shift U to be a block-(µ+ 1) BTT block using (3.8).

A complete subspace optimization with local refinements is presented in Algorithm 5.
The main difference to Algorithm 3 is the construction of the subspace S(k)T , which is gen-
erated from a point Ũ(k) by performing t steps of the left to right or the right to left ALS
operations by using Algorithm 4. The direction of applying these operations are reversed
when the index µ reaches the right or left end of the tensor. For convenience, the number t
can be a half of the dimension of U but other values can be used as well. Our numerical re-
sults show that the combination of the truncated subspace optimization and ALS often yields
much better solutions than performing only one of them.

4.4. Truncation of the BTT Formats Using the ALS Method. The truncation proce-
dure Algorithm 1 is based on a sequence of SVDs whose the numerical cost increase cubicly
with respect to the increase of the TT-ranks. In our framework, we need truncations of the
BTT block AU, where A is a TT matrix and U is a BTT block. For example, the TT-rank of
the Newton potential in our numerical experiment is (1, 12, . . . , 12, 1) and the numerical cost
roughly increases 123 times for AU. Therefore, more efficient approaches for truncation are
needed.

Another type of methods is the ALS-type truncation. For a given tensor y, the projection
of y to the space Tn,r,p is defined as

(4.16) PT(y) = arg min
u
‖u− y‖22, s.t. u ∈ Tn,r,p.

From the property (3.2), the matrix U 6=µ is orthonormal if all cores to the left of the µth core
are left-orthonormal and all cores to the right of core µ are right-orthonormal. Therefore,

12 J. ZHANG, AND Z. WEN

Algorithm 5: Truncated subspace optimization with ALS refinement (ALSPB)

1 Input A, initialize U(0) ∈ Tr. Set k = 0, t > 1 and the position µ = 1.
2 while “not converged” do
3 Perform t steps of the left to right or the right to left ALS operations by using

Algorithm 4, where the direction of applying these operations are reversed when
µ reaches the right or left end of the tensor. The outputed solution is denoted by
Ũ(k). /* Local refinement by ALS */

4 Construct a suitable subspace S(k)T based on Ũ(k).
5 Compute Y(k+1) implicitly from the subspace problem (4.10).
6 Compute U(k+1) from (4.11).
7 Increment k and continue.

an alternating minimization can be derived in a simple form for solving (4.16). Similar to
the above procedure, we treat the block y as one tensor and reshape it back when we finish
truncation. Hence, we only consider the case where p = 1 here. Starting from an initial
approximation u, we fix all cores of u except the µth core and solve the subproblem

(4.17) min
V

‖U 6=µV − vec(y)‖2F ,

where U 6=µ is defined in (3.2). The optimal solution of (4.17) is simply

V ∗ = U†6=µvec(y),

where U†6=µ represents the generalized inverse of U 6=µ. By enforcing the orthogonality of the
initial guess u, the matrix U 6=µ is orthogonal and we have U†6=µ = UT6=µ. Once the optimal
V ∗ is calculated, we can reconstruct Uµ by reshaping V ∗ to the size of the µth core of u.
Then we shift to the next core and update it similarly. In this way, we move from dth core
to 1st core and switch back again. This procedure is repeated until it converges. To keep the
orthonormality when shifting cores from µ to µ+ 1, one can perform orthogonalization steps
as (3.7). Therefore, a TT tensor u with U 6=µ orthonormal is converted to a TT tensor u with
U 6=µ+1 orthonormal while keeping the entries of u unchanged. The shift from core µ + 1 to
µ is similar and we omit it here. The ALS-type truncation is presented in Algorithm 6.

Algorithm 6: ALS Truncation of the BTT format

1 Given a TT or d-BTT tensor y and a maximal TT-rank R.
2 Convert y to a tensor in Rn1×···×nd−1×ndp if y is a collection of p tenors.
3 Construct an initial point u with TT cores Ui, i = 1, . . . , d, with a TT-rank at most R.
4 while not converge do
5 for µ = d : 2 do
6 Uµ = reshape(UT6=µvec(y)) and shift the core from µ to µ− 1.

7 for µ = 1 : d− 1 do
8 Uµ = reshape(UT6=µ(vec(y)) and shift the core from µ to µ+ 1

9 Reshape the dth core of u back to original size to obtain a TT or d-BTT format.

The cost of one sweep of Algorithm 6 includes a few block inner products and d− 1 QR
decompositions for shifting cores of u. This feature enables a faster algorithm than SVD-

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 13

type truncation. The derivation of DMRG-type truncation [17] is also possible. It is still in
the alternating minimization framework but finds two neighbouring cores at each time. The
ALS procedure has a smaller computational cost each iteration while it converges slower than
the DMRG-type procedure.

The truncation error is a by-product for the SVD-type truncation. For the ALS truncation,
the approximation error of y−u can be estimated by applying itself to y−u for a few sweeps.
Numerical experiments show that one or two sweeps are often enough to estimate an error
with the correct order of magnitude.

4.5. Separability of A. The structure of the operator A is critical for speeding up our
algorithm in that many operations including truncation procedure can be performed much
more efficiently when the operator A is separable.

Suppose that U has a TT-rank r and that A =
∑k
i=1 Pi, where each Pi has a TT-rank

R. Then the computational cost of AU directly and the storage are both O(nd(kRr)2). On
the other hand, the computational cost of

∑k
i=1 PiU and its storage are reduced by k times,

i.e., they are O(ndk(Rr)2). Then in the subsequent ALS-type truncation procedures, the
cost of the direct truncation of AU becomes O(nd(kRr)3) flops while the cost of truncating∑k
i=1 PiU is reduced to O(ndk(Rr)3) by k2 times.

Consider a tensor of the form y = y1 + . . .+yk, where each yi has a low TT-rank. This
form is ubiquitous in the multiplication of a matrix in the TT format of separable structure
with a BTT block. For example, the residual R = AU − UΛ is of this form when A is
separable. Suppose that all tensors yi, i = 1, ..., k, have the same TT-ranks. Then in the
SVD Algorithm 1 the cost of truncation for y grows cubicly with respect to k. One possible
strategy is to execute truncation after adding each yi. Although its numerical cost grows
linearly with respect to k, it may lead to a large error when each yi has a large norm while
the summation y has a rather small norm (see the case R). However, the numerical cost of
the ALS Algorithm 6 grows linearly with respect to k when truncating the full vector y if
we calculate UT6=µvec(y) in algorithm 6 by summing up UT6=µvec(yi), i = 1, . . . , k. In this
case, the ALS truncation procedure can take advantage of the structure while maintaining a
reasonably high accuracy.

In fact, for many functions such as the trigonometric functions and polynomials, their
TT formats have an explicit low-rank representation. In addition, when approximating the
potential function in A using rank-1 tensors with exponential sums or various kinds of poly-
nomial interpolations, we also obtain this favorable structure. For more general functions on
which we cannot analytically find a low-rank approximation, there are many ways to com-
pute a low-rank TT or CP approximation, see [7, 6, 5] and the references therein, for a more
detailed review of tensor approximation on multi-dimensional functions.

When a function itself is already a compact and higher-rank tensor, it is inconvenient to
approximate the function using exponential sums or interpolation. Then we can numerically
approximate it by a sum of low-rank tensors. In particular, the CP approximation can be

applied. A rank-R CP tensor t is defined as t =
r∑

k=1

tkd ⊗ · · · ⊗ tk1 , where tk1 ∈ Rn1, ..., tkd ∈

Rnd , k = 1, ..., r. This expression implies that a rank-r CP tensor is a summation of r rank-1
TT tensors and it is therefore a special case in the TT format. Finding a CP approximation
for a given tensor u can be formulated as solving the optimization problem

y = arg min
v∈CP(r)

||v − u||2F ,

where CP(r) stands for the set of CP tensors with ranks no more than R. The above problem
has been solved by using the ALS method, see section 3.4 in [10] and the references therein.

14 J. ZHANG, AND Z. WEN

Since the convergence of ALS method is highly dependent on the initial guess, we pro-
pose a method to construct some initial points. Note that the tensor u is already in TT format.
The SVD Algorithm 1 usually provides a robust and reliable way for low-rank approxima-
tions. Suppose that PT(·) denotes the projection to rank-1 TT set Tn,1,1 by the SVD ap-
proach. Then we calculate

P1 = PT(u), Pk = PT(u−
k−1∑
i=1

Pi), k = 2, ..., r.

One can prove that 〈Pi,Pj〉 = 0, i 6= j, which implies that ||
∑r
k=1 Pk||2F =

∑r
k=1 ||Pk||2F

is monotone increasing in r. Combining another fact that ||
∑R
k=1 Pk||2F ≤ ||u||2F , we know

that this sequential projection method constantly improves approximation accuracy. Numer-
ical experiment shows that it takes a very small r to reach a relative error of order 10−2. Of
course, the convergence may still slow down rapidly with the growth of r.

5. Numerical Results. In this section, we evaluate the numerical performance of the
proposed method for finding the p smallest eigenvalues of the PDE eigenvalue problem:

(5.1)
−∆u(x) + V (x)u(x) = λu(x), for x ∈ Ω = (a, b)d,

u(x) = 0, for x ∈ ∂Ω,

where ∆ is the d-dimensional Laplace operator and the function V (x) denotes potential en-
ergy. Problem (5.1) becomes the eigenvalue problem (4.1) after a suitable discretization of
the system. The coefficient matrix has the form A = L + V, where L is the discretization of
the negative Laplace operator as

(5.2) L =

d∑
µ=1

In ⊗ · · · ⊗ In ⊗ L⊗ In ⊗ · · · ⊗ In,

which is naturally in the operator TT format given in section 3.3, and V is the discretized
potential whose specific form will be specified later.

In order to construct a good preconditioner, we approximate A by the matrix of the form

(5.3) L̂ =

d∑
µ=1

In ⊗ · · · ⊗ In ⊗ Lµ ⊗ In ⊗ · · · ⊗ In.

It follows from [3] that, for symmetric definite matrices Lµ, µ = 1, . . . , d, the inverse of L̂ is

L̂−1 ≈
M∑
i=1

νi
λmin

exp(− γi
λmin

Ld)⊗ · · · ⊗ exp(− γi
λmin

L1),

where γi and νi, i = 1, . . . ,M are given parameters, and λmin = λmin(L̂) =
∑d
i=1 λmin(Li).

The inverse matrix L̂−1 is a TT operator with a maximal TT-rank M and we set M to be 3
in our numerical experiments. The choices of the parameters νk, γk and M with respect to a
given error tolerance can be found in [6].

We have implemented a practical version of Algorithm 3, denoted as SPB, and Algo-
rithm 5, denoted as ALSSPB, based on the TT/MPS tensor toolbox TTeMPS1. We compare

1Downloadable from http://anchp.epfl.ch/TTeMPS

http://anchp.epfl.ch/TTeMPS

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 15

SPB and ALSSPB with the state-of-the-art method EVAMEn [11]. We have also examined
the block ALS method [2, 11]. Since its overall performance is less comparable with EVA-
MEn, we decided not to use it in this paper. Instead of starting from initial points generated
randomly, we use EVAMEn with a maximal rank p and one sweep to produce a better point.
When the Ritz pair (X,Λ) is a good approximation to the true eigenpair, i.e., AX ≈ XΛ, it
means that AX can be compressed with a TT-rank which is approximately equal to that of
X. Therefore the truncation error of R = AX−XΛ is relatively small and the convergence
of numerical algorithms usually is faster. The parameters of EVAMEn are set to the same as
these in [11]. Specifically, a locally preconditioned augmentation is applied in EVAMEn for
acceleration. The maximal rank r in EVAMEn is set to 40. The maximal rank R of SPB and
ALSSPB is taken so that the total number of variables matches that of EVAMEn. In fact, the
variable is switched back and forth between the 1-BTT to d-BTT formats in EVAMEn while
the variable is fixed as the 1-BTT format in ALSSPB. Hence, the total number of variables
in EVAMEn and ALSSPB is O(n((d+ p− 3)r2 + 2r)) and O(n((d− 2)R2 + (p+ 1)R)),
respectively.

All of our numerical experiments are preformed on a workstation with two twelve-core
Intel Xeon E5-2697 CPUs and 128GB of memory running Ubuntu 12.04 and MATLAB
2013b.

5.1. Experiments on Newton Potential. We first test the Newton potential of the form

V (x) =
1

‖x‖
.

The parameters of the PDE problem (5.1) are set to d = 10 and Ω = (−1, 1)d. It is discretized
with n = 128 grid points in each dimension which generates a discretized eigenvalue problem
of size 12810. The potential is approximated by a summation of ten rank-one TT tensors by
using the technique of exponential sum (see [7] on the introduction to exponential sum and
see [6] on the examples including f(x) = 1

x). The approximation accuracy is 3.6 × 10−5

[11]. For preconditioning, the matrix Lµ in (5.3) is taken the same as L in (5.2).
We compare SPB and ALSSPB with EVAMEn for p = 1 and 11 eigenpairs. The numer-

ical results are presented in Figures 5.1 and 5.2, respectively. In the figures, the solid lines
correspond to residual errors measured by ||PT(AU−UΛ)||F , where (U,Λ) is an approx-
imated eigenpair. The dashed lines show the eigenvalue error

∑p
i=1 |Λii − Λ̂ii|, where Λ̂ are

the best eigenvalues returned by all solvers. The residual and eigenvalue errors versus the
iteration history in SPB and ALSSPB and the microiteration history of EVAMEn are shown
in the left side of each figure. The errors with respect to the CPU time measured in seconds
are presented in the right side of each figure. Each marker of the lines of SPB and ALSSPB
indicates an iteration and each marker of the lines of EVAMEn indicates the completion of a
half sweep.

Figure 5.1 shows that all algorithms achieve a similar accuracy in terms of both residual
and eigenvalue errors in almost the same amount of time. We can observe from Figure 5.2 that
ALSSPB is significantly faster than EVAMEn with a smaller accuracy. EVAMEn converges
faster in one or two sweeps and then it tends to stagnate. The residual and eigenvalue errors
of EVAMEn going up and down in the late microiterations on the case of p = 11 due to
the variation in the number of parameters during shifts between block-d tensors and block-µ
tensors, µ 6= d. We can observe that SPB can also stagnate after reaching a certain accuracy.
The jump of the residual in ALSSPB is due to our continuation strategy on increasing the
maximal rank gradually. When the TT-rank is sufficient, the improvement in both residual
and eigenvalue errors usually sharply slows down.

16 J. ZHANG, AND Z. WEN

0 20 40 60
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Microiterations

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

0 50 100 150 200
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

Res. err. EVAMEn

Res. err. ALSSPB

Res. err. SPB

EV. err. EVAMEn

EV. err. ALSSPB

EV. err. SPB

FIG. 5.1. Numerical results on Newton potential with n = 128, d = 10, and p = 1.

0 20 40 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Microiterations

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

0 5000 10000 15000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

Res. err. EVAMEn

Res. err. ALSSPB

Res. err. SPB

EV. err. EVAMEn

EV. err. ALSSPB

EV. err. SPB

FIG. 5.2. Numerical results on Newton potential with n = 128, d = 10, and p = 11

Each microiteration of EVAMEn needs to compute p eigenpairs from a matrix of size nr2

for p vectors while each iteration of SPB only need to compute a dense eigen-decomposition
of size 3p by 3p and a few truncations. Hence, SPB and ALSSPB may be competitive to
EVAMEn when n and r are not too small. We also should point out that EVAMEn is less
sensitive to the initial points than SPB.

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 17

5.2. Experiments on Henon-Heiles Potential. Our second example uses the Henon-
Heiles potential as

V (x) =
1

2

d∑
µ=1

x2µ +

d−1∑
µ=1

(
σ∗

(
xµx

2
µ+1 −

1

3
x3µ

)
+
σ2
∗

16

(
x2µ + x2µ+1

))
,

where σ∗ is a constant and is taken to be 0.11 in the numerical experiment. We choose an
unsymmetric domain Ω = (−10, 2)10 and the same discretization scheme as in [11] with
d = 10 and n = 128. Let D = (ζ1, ζ2, · · · , ζn) contain the discretized equidistant mesh
points for one dimension and set Bµ = σ∗D +

σ2
∗
8 D

2, Cµ = D2, and

(5.4) Lµ =


L+ 1

2D
2 − σ∗

3 D
3 +

σ3
∗

16D
4, µ = 1,

L+ 1
2D

2 − σ∗
3 D

3 +
σ3
∗
8 D

4, 2 ≤ µ ≤ d− 1,

L+ 1
2D

2 +
σ3
∗

16D
4, µ = d.

Then the discretized operator A is represented by

A =

d∑
µ=1

In⊗· · ·⊗ In⊗Lµ⊗ In⊗· · ·⊗ In+

d−1∑
µ=1

In⊗· · ·⊗ In⊗Cµ⊗Bµ⊗ In⊗· · ·⊗ In.

Section 3.3 shows that the above A has a TT operator representation with all ranks equal to
3. The matrix in (5.4) is used for preconditioning in the form of (5.3).

Similar to the case of Newton potential, we compare SPB and ALSSPB with EVAMEn
for p = 1 and 11 eigenpairs and present in Figures 5.3 and 5.4, respectively. EVAMEn
significantly outperforms ALSSPB in terms of the computational time on p = 1. They are
comparable on p = 11. The convergence rate of the residual norms begins to slow down when
the TT-rank is not sufficiently large enough. The accuracy of both methods can be improved
by increasing the maximal rank.

6. Conclusion. The goal of this paper is to compute a few eigenpairs when the storage
of the eigenvectors in the classical way is impossible. The main difference comparing to
the classical eigensolver is expressing the coefficient matrix and its eigenvectors in the low-
rank tensor train formats. Since the TT-ranks increase dramatically after several operations
between tensor formats, such as the addition in the TT formats and matrix-vector multiplica-
tions in the TT format, the computational cost of many existing algorithms becomes eventu-
ally prohibitive. We propose a subspace optimization method combined with some suitable
truncation steps to the given low-rank Tensor Train formats. Numerical results show that our
algorithm is competitive to the ALS type methods on problems arising from the discretization
of the stationary Schrödinger equation when the linear eigenvalue problem in each step of the
ALS methods is still expensive.

Acknowledgment. We thank D. Kressner, M. Steinlechner and A. Uschmajew for shar-
ing online their matlab codes on EVAMEn and the TT/MPS tensor toolbox TTeMPS.

REFERENCES

[1] JONAS BALLANI1 AND LARS GRASEDYCK, A projection method to solve linear systems in tensor format,
Numer. Linear Algebra Appl., 20 (2013), pp. 27–43.

[2] S. V. DOLGOV, B. N. KHOROMSKIJ, I. V. OSELEDETS, AND D. V. SAVOSTYANOV, Computation of extreme
eigenvalues in higher dimensions using block tensor train format, Comput. Phys. Commun., 185 (2013),
pp. 1207–C1216.

18 J. ZHANG, AND Z. WEN

0 20 40 60
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Microiterations

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

0 100 200 300
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Time [s]

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

Res. err. EVAMEn

Res. err. ALSSPB

Res. err. SPB

EV. err. EVAMEn

EV. err. ALSSPB

EV. err. SPB

FIG. 5.3. Numerical results on Henon-Heiles Potential with n = 128, d = 10, and p = 1.

0 20 40 60
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Microiterations

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

0 1000 2000 3000 4000
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Time [s]

R
es

id
ua

l a
nd

 e
ig

en
va

lu
e

er
ro

r

Res. err. EVAMEn

Res. err. ALSSPB

Res. err. SPB

EV. err. EVAMEn

EV. err. ALSSPB

EV. err. SPB

FIG. 5.4. Numerical results on Henon-Heiles Potential with n = 128, d = 10, and p = 11.

[3] L. GRASEDYCK, Existence and computation of low Kronecker-rank approximations for large linear systems
of tensor product structure, Computing, 72 (2004), pp. 247–265.

[4] , Hierarchical singular value decomposition of tensors, SIAM J. Matrix Anal. Appl., 31 (2009/10),
pp. 2029–2054.

[5] L. GRASEDYCK, D. KRESSNER, AND C. TOBLER, A literature survey of low-rank tensor approximation
techniques, GAMM-Mitt., 36 (2013), pp. 53–78.

[6] W. HACKBUSCH, Entwicklungen nach exponentialsummen, Technical Report 4, Max Planck Institute for
Mathematics in the Sciences,/2005, MPI MIS Leipzig, 2010. Revised version, September.

Truncated Subspace Algorithm For Eigenvalue Computation Using Low-Rank Tensor Train Format 19

[7] WOLFGANG HACKBUSCH, Tensor Spaces and Numerical Tensor Calculus, Springer, Heidelberg, 2012.
[8] S. HOLTZ, T. ROHWEDDER, AND R. SCHNEIDER, The alternating linear scheme for tensor optimization in

the tensor train format, SIAM J. Sci. Comput., 34 (2012), pp. A683–A713.
[9] A. V. KNYAZEV, Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned

conjugate gradient method, SIAM J. Sci. Comput., 23 (2001), pp. 517–541.
[10] TAMARA G. KOLDA AND BRETT W. BADER, Tensor decompositions and applications, SIAM Rev., 51

(2009), pp. 455–500.
[11] D. KRESSNER, M. STEINLECHNER, AND A. USCHMAJEW, Low-rank tensor methods with subspace cor-

rection for symmetric eigenvalue problems, SIAM J. Sci. Comput., 36 (2014), pp. A2346–CA2368.
[12] D. KRESSNER AND C. TOBLER, Preconditioned low-rank methods for high-dimensional elliptic PDE eigen-

value problems, Comput. Methods Appl. Math., 11 (2011), pp. 363–381.
[13] , htucker, a MATLAB toolbox for tensors in hierarchical Tucker format, Tech. rep, 2012.
[14] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, A multilinear singular value decomposition,

SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
[15] O. S. LEBEDEVA, Tensor conjugate-gradient-type method for Rayleigh quotient minimization in block QTT-

format, Russian J. Numer. Anal. Math. Modelling, 26 (2011), pp. 465–489.
[16] X. LIU, Z. WEN, AND Y. ZHANG, Limited memory block krylov subspace optimization for computing dom-

inant singular value decompositions, SIAM Journal on Scientific Computing, 35-3 (2013), pp. A1641–
A1668.

[17] IVAN OSELEDETS, DMRG approach to fast linear algebra in the TT-format, Comput. Methods Appl. Math.,
11 (2011), pp. 382–393.

[18] I. V. OSELEDETS, Approximation of 2d × 2d matrices using tensor decomposition, SIAM J. Matrix Anal.
Appl, 31 (2010), pp. 2130–2145.

[19] , Tensor train decomposition, SIAM J. Sci. Comput., 33 (2011), pp. 2295–2317.
[20] Z. WEN AND Y. ZHANG, Block algorithms with augmented rayleigh-ritz projections for large-scale eigenpair

computation, Arxiv: 1507.06078, (2015).

